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1 Introduction

The study of deuteron properties, like its mass, bind-
ing energy, radius, and electromagnetic form factors, has
been of great interest for many years, since it can encode
the nature of nuclear effects and the nucleon-nucleon in-
teraction. The deuteron, with spin-1, is one of the sim-
plest nuclei, and it is usually regarded as a loosely bound
state of a proton and a neutron. This feature also makes
the deuteron a widely used substitute for a neutron tar-
get or neutron beams. Moreover, as the only two-nucleon
bound state, the study of the deuteron is a good starting
point to understand multi-nucleon systems.

Under the one-photon-exchange (OPE) approxima-
tion, it is usually believed [1] that the deuteron electro-
magnetic current can be expressed by the sum of the two
triangular diagrams in Fig. 1, and the deuteron ground
state is approximately spherical symmetric (see the dis-
cussion in Ref. [2], for example) with a small mixture of
D wave. According to the work in relativistic quantum
mechanics by Chung, Coester and Keiser [3], the elec-
tromagnetic current matrix, for a particle with intrinsic
spin S > 1, only has (S+1)2−1 or (2S+1)(2S+3)/4−1
independent components respectively for the integer or

half-odd spin due to its Hermitian and its rotational in-
variance properties. In the deuteron case, with S = 1,
there are, therefore, three independent current matrix
elements corresponding to the three conventional form
factors, charge G0, magnetic G1, and quadrupole G2.

Fig. 1. The deuteron electromagnetic vertex.

There are many works in the literature which in-
vestigate the deuteron properties with the help of non-
relativistic potential models, effective Lagrangian ap-
proaches, relativistic frameworks, and many others [2–
23]. Two relativistic approaches, the Bethe-Salpeter for-
malism and the light-front approach, have been widely
employed to describe bound state problems like the
deuteron [22, 23]. The light-front approach has been
successfully applied for the pion form factors [24–27],
for the K and ρ meson form factors [28–30], and for the
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distribution amplitudes and decay constants of π, K and
ρ et al [31].

In the study of the ρ meson (another system with

S = 1) properties by Ref. [30], the three conventional

form factors G0, G1 and G2 are extracted from the ma-
trix elements of the front-form electromagnetic current
J+(= J0+J3). In the covariant light-front formalism, the

four-vectors are given on the hypersurface specified by
the invariant condition n·x = 0, where x = (t,~x) and n is
an arbitrary light-like four-vector, that is, n2 = 0. How-

ever, in the usual light-front formulation, n = (1,0,0,−1)
is always taken and the light-front hypersurface is given
by x+ = t+z = 0. Due to the approximation in the ac-
tual calculations, the final results may depend on the
particular choices of the orientation of the light-front
plan [22, 23]. Since the stability group no longer con-
tains the rotation generators around the x and y axes,
the rotation symmetry around x and y axes, which re-
spectively correspond to the angular conditions J+

yy = J+
zz

and J+
xx = J+

zz (where the subscripts are the polar-
izations in the instant form spin basis) may both be
broken [30]. Therefore, there are several different ap-
proaches to obtain the form factors in the light-front
framework [3, 7, 32, 33].

To find which prescription is more suitable for the

study of the ρ meson properties, Melo and Frederico [30]
compared the calculation of the non-covariant light-front
approach with the covariant case. In their work, the co-
variant calculation is done by integrating the k0 compo-
nent of the loop momentum analytically and the rest nu-
merically. In the light-front calculation, the k−(= k0−k3)

component is integrated analytically and x(= k+/p+)
(where k+ = k0+k3 and p+ = p0+p3) and k⊥(= (k1,k2))

are integrated numerically. Here, the Cauchy integral

with respect to k− is carried out in the Breit frame with

the q+ component of momentum transfer vanishing. This

selection leaves only one pole valid in the loop integra-
tion, corresponding to the forward propagator. The nu-
merical results in Ref. [30] show that different extraction
prescriptions cause sizeable effects on the form factors
and static properties of the ρ meson.

In this work, we plan to apply the light-front ap-
proach of Ref. [30] to the calculation of the deuteron
form factors. Here the extraction prescription, proposed

by Frankfurt, Frederico, and Strikman [32], will be taken
into account. In our calculation, we regard the deuteron
as a weakly bound state of a proton and a neutron, and
we do the numerical calculation in Minkowski space for
the loop integral with the help of the light-front ap-
proach. Therefore, the present work is different from
our previous calculations which were done in Euclidean
space with a Gauss-type regularization [21, 34]. In our
calculation, the model-dependent parameters will be de-
termined by fitting the form factors to the experimental

data. Moreover, we employ the empirical parametriza-
tion forms [35] for the γ-p and γ-n vertexes for our nu-
merical calculations. For the S wave spin structure of the
vertex among the deuteron, proton and neutron, we take
the form proposed by Ref. [30] for the ρ meson. In order
to account for the D wave spin structure, we refer to the
work of Blankenbecler, Gloderber, and Halpern [36].

This work is organized as follows. In Section 2, the
framework of our calculations is briefly shown and the
four prescriptions for the extraction of the form factors,
in the light front approach, are explicitly discussed. In
Section 3, the light-front current J+ is constructed from
the one-loop diagram shown in Fig. 2. To get a finite
loop integral in Minkowski space and to get a better
simulation of momentum distributions of the proton and
neutron inside the deuteron, the regularization functions
are also employed. In Section 4, a set of parameters is
given by fitting the obtained form factors to the experi-
mental data, and the numerical results for the deuteron
low-energy properties are also displayed. Moreover, a de-
tailed discussion about the relations between the S and
D vertex structures and their effects on the form fac-
tors are also displayed in this section. Finally, a short
summary is given in the last section.

2 Theoretical framework

In the OPE (Born) approximation, by neglecting the
electron mass me ∼ 0, one can get the conventional form
of the unpolarized e-d elastic scattering differential cross
section as [37]

dσ

dΩ
= σM

(

A(Q2)+B(Q2)tan2 θ

2

)

, (1)

with θ being the scattering angle and the two structure
functions

A(Q2)=G2
0(Q

2)+
8

9
η2G2

2(Q
2)+

2

3
ηG2

1(Q
2) ,

B(Q2)=
4

3
η(1+η)G2

1(Q
2), (2)

where η = Q2/4m2
D with mD being the deuteron mass,

Q2 ≡−q2 with q being the momentum transfer, and σM is
the Mott cross section. To extract the three form factors
G0, G1 and G2, except for the two structure functions
A(Q2) and B(Q2), one usually needs another observ-
able, like the tensor polarization t20, to determine the
three form factors.

The electron-deuteron elastic scattering process can
be treated as the interaction between electron and
deuteron electromagnetic currents. The corresponding
amplitude can be written as

Mjk =
e2

Q2
u(l ′)γµu(l)J µ

jk(pf ,pi), (3)
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where the subscripts (j,k) = (x,y,z) stand for the in-
dices of the final and initial deuteron polarizations and
pf and pi are the deuteron final and initial momenta. We
know that there are three independent electromagnetic
current elements of the spin-1 particle, then the deuteron
current matrix element as Jµ

jk(pf ,pi) = ε
′
∗α

j Sµ

αβεβ

k can be

factorized by the three form factors, where ε
′α
j and εβ

k

are respectively the final and initial polarization vectors,
which will be defined later. Sµ

αβ can be written as the
general form [30]

Sµ

αβ =
[

F1(Q
2)gαβ −F2(Q

2)
QαQβ

2m2
D

]

P µ

−F3(Q
2)(Qαgµ

β −Qβgµ
α) , (4)

where P µ is the sum of pµ
i and pµ

f . The charge monopole
G0, magnetic dipole G1 and charge quadrupole G2 form
factors in Eq. (2) relate to the form factors of F1, F2 and
F3 by [2]

G0(Q
2) = F1(Q

2)+
2

3
ηG2(Q

2) , (5)

G1(Q
2) = F2(Q

2) , (6)

G2(Q
2) =

3
√

2

4η
(F1(Q

2)−F2(Q
2)+(1+η)F3(Q

2)) ,

(7)

and they are normalized to

G0(0) = 1, G1(0) =
mD

m
µd ,

G2(Q
2)

2
√

2

3
η









Q2=0

= m2
DQd, (8)

where m is the nucleon mass, µd = 0.857µN is the
deuteron magnetic moment in units of the nuclear mag-
neton µN, and Qd = 0.286 fm2 is the deuteron quadrupole
moment.

In the Breit frame with the instant form spin ba-
sis, the momentum transfer is chosen to be in the
positive x direction, qµ = pµ

f − pµ
i = (0, qx,0,0), with

pµ
i = (p0,−qx/2,0,0) and pµ

f = (p0, qx/2,0,0), where
p0 = mD

√
1+η. Thus, the corresponding angular con-

dition of J+
yy = J+

zz breaks down due to this specified
reference frame as discussed above. The deuteron Carte-
sian polarization four-vectors are

εµ
x =(−√

η,
√

1+η,0,0) , εµ
y = (0,0,1,0),

εµ
z =(0,0,0,1) (9)

for the initial state, and

ε′µx = (
√

η,
√

1+η,0,0) , ε′µy = εµ
y , ε′µz = εµ

z , (10)

for the final state.

To get the conventional electromagnetic form factors,
one needs to transfer the Cartesian polarization four-
vectors to the spherical spin basis:

ε(′)
± =∓ε(′)

x ±ε(′)
y√

2
, ε(′)

0 = ε(′)
z , (11)

for the initial (or final) state. With this spin basis set,
the J+ component of the electromagnetic current has the
form [32]

J+ =
1

2







J+
xx +J+

yy −
√

2J+
zx J+

yy−J+
xx√

2J+
zx 2J+

zz −
√

2J+
zx

J+
yy−J+

xx

√
2J+

zx J+
xx +J+

yy






, (12)

where the order of the projection is (+,0,−).
It is convenient to extract the three form factors from

the I+ component of the light-front form electromagnetic
current. In the front-form spin basis, the plus compo-
nents of the electromagnetic current matrix I+

λλ′ have
the form

I+ =







I+
11 I+

10 I+
1−1

−I+
10 I+

00 I+
10

I+
1−1 −I+

10 I+
11






, (13)

where the subscripts (λ,λ′) = (±1,0) label the different
polarizations in the front-form spin basis. The unitary
transformation between the instant-form spin basis and
the front-form spin basis is the Melosh rotation [38, 39].
With the help of the Melosh rotation, I+

λλ′ can be ex-
pressed by J+

jk as [30]

I+
11 =

J+
xx +(1+η)J+

yy−ηJ+
zz +2

√
ηJ+

zx

2(1+η)

I+
10 =

√
2ηJ+

xx +
√

2ηJ+
zz +

√
2(η−1)J+

zx

2(1+η)

I+
1−1 =

−J+
xx +(1+η)J+

yy +ηJ+
zz −2

√
ηJ+

zx

2(1+η)

I+
00 =

−ηJ+
xx +J+

zz +2
√

ηJ+
zx

(1+η)
. (14)

Since the rotational invariance condition breaks
down, there several different ways to extract the form
factors [30]. For example, one may consider some of
components as “good” ones and keep them, and ne-
glect the “worst” one. More details can be found in
Refs. [3, 23, 32, 40, 41].

In the work of Grach and Kondratyuk (GK) [33, 41],
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they chose the “worst” component as I+
00 and then got

GGK
0 =

1

3

[

(3−2η)I+
11 +2

√

2ηI+
10 +I+

1−1

]

=
1

3
[J+

xx +2J+
yy−ηJ+

yy +ηJ+
zz]

GGK
1 =2

[

I+
11−

1√
2η

I+
10

]

=J+
yy−J+

zz +
J+

zx√
η

GGK
2 =

2
√

2

3
[−ηI+

11 +
√

2ηI+
10−I+

1−1]

=

√
2

3
[J+

xx +J+
yy(−1−η)+ηJ+

zz] . (15)

In the work of Chung, Coester, Keister and Polizou
(CCKP) [3], on the other hand, they kept all the four
components I+

11, I+
00, I+

10 and I+
1−1 and obtained

GCCKP
0 =

1

3(1+η)

[(

3

2
−η

)

(I+
11 +I+

00)+5
√

2ηI+
10

+(2η− 1

2
)I+

1−1

]

=
1

6
[2J+

xx +J+
yy +3J+

zz]

GCCKP
1 =

1

(1+η)

[

I+
11 +I+

00−I+
1−1−

2(1−η)√
2η

I+
10

]

=
J+

zx√
η

GCCKP
2 =

√
2

3(1+η)

[

−ηI+
11−ηI+

00 +2
√

2ηI+
10

−(η+2)I+
1−1

]

=

√
2

3
[J+

xx−J+
yy] . (16)

Moreover, in the work of Brodsky and Hiller (BH) [7, 40],
the component I+

11 was avoided, and they gave

GBH
0 =

1

3(1+η)

[

(3−2η)I+
00 +8

√

2ηI+
10

+2(2η−1)I+
1−1

]

=
1

3(1+2η)

[

J+
xx(1+2η)+J+

yy(2η−1)

+J+
zz(3+2η)

]

GBH
1 =

2

(1+2η)

[

I+
00−I+

1−1 +
(2η−1)√

2η
I+
10

]

=
1

(1+2η)

[

J+
zx√
η

(1+2η)−J+
yy +J+

zz

]

GBH
2 =

2
√

2

3(1+2η)

[

√

2ηI+
10−ηI+

00−(η+1)I+
1−1

]

=

√
2

3(1+2η)
[J+

xx(1+2η)−J+
yy(1+η)

−ηJ+
zz] . (17)

In this work, we will apply the approach of Frankfurt,
Frederico and Strikman’s prescription (FFS) [32] to the
extraction of the deuteron form factors. It coincides with
the CCKP prescription for G1 and G2 but differs for G0,

GFFS
0 =

1

3(1+η)

[

(2η+3)I+
11 +2

√

2ηI+
10−ηI+

00

+(2η+1)I+
1−1

]

=
1

3
[J+

xx +2J+
yy]

GFFS
1 =GCCKP

1

GFFS
2 =GCCKP

2 . (18)

It is straightforward to verify that those four prescrip-
tions would be equivalent if the angular condition J+

yy =
J+

zz keeps valid. The differences between the four pre-
scriptions will be analyzed later.

In addition, we know that the mean square charge
radius 〈r2〉, magnetic moment µd, and quadrupole mo-
ment Qd have the following relations to the three form
factors [3],

〈r2〉= lim
Q2→0

6(G0(Q
2)−1)

Q2
, µd = lim

Q2→0

m

mD

G1(Q
2) ,

Qd = lim
Q2→0

3
√

2
G2(Q

2)

Q2
. (19)

Therefore, those low-energy observables can also be de-
termined if the form factors are calculated.

3 The light-front current

To perform the numerical calculation for the electro-
magnetic matrix elements, we consider both the S and
D wave vertex functions for the d-pn interaction,

Γ µ

d-pn = Γ µ
S +Γ µ

D , (20)
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where the S wave vertex takes the form proposed in
Ref. [30],

Γ µ
S

(

k,k−pi,f

)

= γµ− mD

2

2kµ−pµ

i,f

pi,f ·k+mDm− iε
, (21)

and the D wave vertex has been explicitly studied by
Blankenbecler, Goldberger, Halpern [34, 36], and can be
expressed as

Γ µ
D

(

k,k−pi,f

)

= ρ

(

γµ− 3

mδ

(

/k−
/p

i,f

2

)

γµ

(

/k−
/p

i,f

2

))

,

(22)

where δ is the deuteron binding energy, and ρ is a model-
dependent parameter. ρ is not an observable [2], and it
connects to the D wave admixture in the nonrelativistic
potential model.

In the practical calculation, we employ the follow-
ing parametrization forms for the known electromagnetic
current of the nucleon

Γ µ

γ-NN = F1(Q
2)γµ +

iσµνqν

2m
F2(Q

2), (23)

where F1(Q
2) and F2(Q

2) are the Dirac and Pauli form
factors and they have been parameterized as the sum of
three or two monopoles, proposed by Ref. [35],

F1,2(Q
2) =

N
∑

i=1

ni

di +q2
, (24)

where ni and di are parameters shown in Table 1. Note
that for F n

2 , N = 2.

Table 1. Parameters for F1 and F2 in Eq. (24) used
in this work, with ni, di, and Q2 in units of GeV2.

F p
1 F p

2 F n
1 F n

2

N 3 3 3 2

n1 0.38676 1.01650 24.8109 5.37640

n2 0.53222 –19.0246 –99.8420 –5.29920

n3 –0.94491 18.0371 75.0544 —

d1 3.29899 0.40886 1.98524 0.76533

d2 0.45614 2.94311 1.72105 0.59289

d3 3.32682 3.12550 1.64902 —

d

q

d'

pf

k−pf

k

μ

γ

k−pi
p(n)

n(p)

pi

βα

Fig. 2. Photon coupling to the deuteron.

In the Cartesian instant-form spin basis with the con-
vention of Fig. 2, the electromagnetic current of the
deuteron takes the form

J+
jk =i

∫

d4k

(2π)4

Tr
[

ε
′
∗α

j Γ d-pn
α

(

k,k−pf

)(

/k−/p
f
+m

)

Γ+
γ-NN(/k−/p

i
+m

)

εβ
kΓ d-pn

β

(

k,k−pi

)

(/k+m
)

]

[(

k−pi

)2−m2 +iε
][

k2−m2 +iε
][(

k−pf

)2−m2 +iε
]

×Λ(k,pf)Λ(k,pi)Λ0(λ
2,Q2) . (25)

It should be reiterated that the polarization vectors of εβ

k

and ε
′α
j , defined in Eqs. (9) and (10), are in the Cartesian

instant-form spin basis.
The regularization function in the above Eq. (25) is

taken as the sum of the two dipoles

Λ(k,p) = N1

(

1

[(k−p)2−m2
R +iε]2

− N ′

[(k−p)2−m2
R2 +iε]2

)

, (26)

where mR and mR2 are the two independent regulator
masses; N ′ is a model-dependent parameter and the nor-
malization constant N1 can be obtained by G0(0) = 1.
Here we use the two monopole functions instead of one
[30] due to the fitting to the deuteron experimental data.

The additional regularization function is

Λ0(λ
2,Q2) =

λ2

λ2 +Q2
, (27)

with λ2 being a model-dependent parameter. This reg-
ularization function is also needed in order to suppress
the Q2-dependences of the form factors in the larger Q2

region.
Let’s look at the poles of the integral. In the Breit

frame, p+
i = p+

f = p0 ≡ p+, and for the condition of
p+ > k+ > 0, only one pole contributes to the final residue
of Eq. (25), that is

k− =
k2

⊥
+m2− ıε

k+
≡ k. (28)

Detailed discussion of the poles and residues of the inte-
gral is referred to Refs. [30, 34, 42].
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Similar to Refs. [29] and [30], after carrying out the
integration of k− and x, we can rewrite the propaga-
tors together with the corresponding regulators Λ(k,p)
as the light-front wave functions. The initial light-front
wave function is obtained as

1

(k−pi)2−m2 + ıε

(

1

[(k−pi)2−m2
R + ıε]2

− 1

[(k−pi)2−m2
R2 + ıε]2

)

=
1

(1−x)3(m2
D−M 2

0 )

(

1

(m2
D−M 2

R)2

− 1

(m2
D−M 2

R2)
2

)

≡φi(x,k⊥), (29)

where the mass squared M 2
0 is given by

M 2
0 =

k2
⊥

+m2

x
+

(pi−k)2
⊥

+m2

1−x
−p2

i⊥, (30)

with pi⊥ = (p1
i ,p

2
i ), and the functions M 2

R and M 2
R2 are

M 2
R =

k2
⊥

+m2

x
+

(pi−k)2
⊥

+m2
R

1−x
−p2

i⊥ ,

M 2
R2 =

k2
⊥

+m2

x
+

(pi−k)2
⊥

+m2
R2

1−x
−p2

i⊥. (31)

To get the corresponding final light-front wave function
φf , one only needs to do the replacement of pi ↔ pf . In
terms of the initial and final light-front wave functions,
the current J+

jk has the form

J+
jk = i

∫

d2k⊥dx

(2π)4
N+

jkφ∗

f (x,k⊥)φi(x,k⊥)Λ0(λ
2,Q2),

(32)

where N+
jk = Tr[ε

′
∗α

j Γ d-pn
α

(

k ,k−pf

)(

/k−/p
f
+m

)

Γ+
γ-NN(/k−

/p
i
+m

)

εβ
k Γ

d-pn
β

(

k ,k −pi

)

(/k +m
)

]|k−=k . The above light-
front wave functions correspond to the wave function of
the S wave state [43].

4 Numerical results and discussions

So far, in our calculation there are 5 model-dependent
parameters, i.e., two regulator masses mR and mR2, a
normalization constant N ′, a regulator constant λ2 and
ρ. Moreover, the requirement of stability of the bound
states, mentioned in the work of Ref. [30], should also
be maintained. This constrains m + mR2 > mD and
m + mR > mD. By fitting to the experimental data of
deuteron form factors from Ref. [44] and its references,
we take the parameter values shown in Table 2. The
parameter errors are obtained through the propagation
of experimental data errors, under the linear approxima-
tion. Usually, to get the most appropriate parameters,

the initial values must be chosen to be as close as possi-
ble. In this work, we are trying to describe all three form
factors and three static properties simultaneously with
only five parameters, which are not easy to fit equally
well. Besides, only a few restricted conditions can help to
narrow down the parameter space. Therefore, the small
errors in the parameters, all less than 1%, may just mean
that this set of values is very close to the optimal one.
Out of the range, the calculation results would deviate
from the experimental data quickly since the integrals
are sensitive to the model parameters. The three form
factors G0, G1 and G2 are shown in Figs. 3, 4, and 5
as the functions of Q2, together with experimental data
from Ref. [44–50].

Table 2. The parameters used in this work.

parameter value

mR 2.238±0.010 GeV

mR2 1.251±0.004 GeV

N ′ 0.135±0.004

ρ −0.011±1.33e-6

λ2 0.40±0.012 GeV2

Fig. 3. (color online) The obtained deuteron
charge form factor G0. The points with error bars
are the experimental data from Ref. [44] (red cir-
cle), [45] (blue disk), [46] (green rectangle), [47]
(cyan, triangle) and [48] (gray pentagon). The
curve shows our results.

Fig. 4. (color online) The obtained deuteron mag-
netic form factor G1. The notations are the same
as Fig. 3. The data are from Ref. [44] (red circle),
[50] (blue disk), [49] (green rectangle).
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Fig. 5. (color online) The obtained deuteron
quadrupole form factor G2. The notations are the
same as Fig. 3. The data are from Ref. [44–48],
marked the same as in Fig. 3.

The experimental data [2] shows that the value of the
deuteron quadrupole moment Qd(= 0.286 fm2) is smaller
than the mean square charge radius 〈r2〉(= 4.54 fm2) by
more than one order of magnitude. This feature im-
plies that the ground state of the deuteron is basically
spherically symmetric and the admixture of the D wave
accounts for a relatively small part [1]. According to the
results of most three-dimension potential models, the D
wave probability ranges from 4.83% to 5.8% [2]. In this
work, ρ2 plays a similar but not identical role. The mean-
ing of ρ, here, is not exactly the same as in the three-
dimensional potential models, and it may also be differ-
ent from our previous calculation which was done in Eu-
clidean space with a Gauss-type regularization [21, 34].
It is the value of ρ2 that actually connects to the D wave
admixture. Therefore, the sign of the ρ, in principle, only
affects the interference terms between S and D waves,
and the negative sign is allowed.

In Figs. 3–5, the curves represent our calculated re-
sults. Figure 3 shows that the charge form factor G0

obtained in our light-front calculation does not provide
the depth at Q2 ≈ 0.7 GeV2. Moreover, Fig. 4 indicates
that our light-front calculation for the magnetic form fac-
tor G1 fits the experimental data very well at Q2 = 0–0.6
GeV2. For the Q2 > 0.6 GeV2 region, the obtained re-
sults became larger than the experimental data. Finally,
Fig. 5 tells that the calculated quadrupole form factor
G2 is somewhat lower than the experimental data. But
overall, we conclude that our simulations of G1 and G2

are reasonable. In our calculation, we also test all the
four different prescriptions for the form factor extrac-
tion, and we find that, in the small momentum transfer
region, the differences among the four prescriptions for
the deuteron form factors are negligible. This conclusion
is unlike the case of the ρ meson in Ref. [30]. It coincides
with the work in Ref [32]. Here, in Figs. 3–5, we only
plot our calculated results with the FFS prescription.

We also calculate the deuteron static properties by
using the relations of Eq. (19) with the same set of pa-

rameters mentioned above. The calculated results are
showed in Table 3. Similar to the three form factors with
the four prescriptions, the differences among the four
prescriptions for the three low-energy observables are
also negligible. We also find that in the light-front calcu-
lation the obtained deuteron charge radius 〈r〉, magnetic
moment µd, and the quadrupole moment Qd are about
15%–20% larger than the experimental values.

Table 3. The calculated deuteron static properties.

model FFS GK CCKP BH experiment [2]

〈r〉/fm 2.58 2.58 2.58 2.58 2.130(10)

µd/µN 1.024 1.024 1.024 1.024 0.8574382284 (94)

Qd/fm2 0.325 0.325 0.325 0.325 0.2859 (3)

From our numerical calculation, we find that the pure
S wave vertex plays important roles in the charge G0 and
the magnetic G1 form factors. In the small momentum
transfer region, the contribution accounts for about 65%
and 75% respectively of the total of G0 and G1 where
both the S and D wave vertexes are taken into account.
This feature also implies that the D wave vertex also
contributes to the G0 and G1 form factors. Because of
the above analyses, we perform our fitting to the data of
all three form factors by taking both the S and D wave
vertexes simultaneously, and thus we get the optimum
values of the model-dependent parameters as mentioned
above. In addition, in contrast with the first term of
Γµ

S(i.e. γµ), we find that the contribution of the second
term to G0 and G1 can be neglected.

Figure 6 shows that the pure S wave vertex only con-
tributes a small part to the quadrupole G2 form fac-
tor, and there exists strong cancellation between the two
terms in S wave vertex function. The D wave vertex to-
gether with the interference terms between the D wave
and S wave vertexes, on the other hand, account much
more for the G2 form factor. This conclusion is consis-
tent with the potential model calculation [28] and agrees
with the general knowledge that the quadrupole moment
originates from the non-central force between the two nu-
cleons [2].

Actually, the second term in Γ µ
D can be rewritten as

Γ µ
D2 ≡− 3ρ

mδ

(

−
(

/k−
/p
i,f

2

)

γµ +2
(

k− pi,f

2

)µ
)

≡− 3ρ

mδ
(Γ µ

D21 +Γ µ
D22) . (33)

One may eliminate Γ µ
D21 term in both initial and final

vertex functions in order to distinguish the contributions
of these two terms to G2. The relevant results are plot-
ted in Fig. 7. Comparing the calculated results showed
in Figs. 6 and 7, we find that the contribution of Γ µ

D22 is
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essential to the quadrupole G2 form factor, which con-
tributes over 84% of the integral. Namely, it is the struc-
ture which proportional to kµ in the D wave function
that mainly accounts for the quadrupole form factor.

Fig. 6. (color online) The obtained deuteron
quadrupole form factor G2 from S wave vertex
only. The dashed curve is the contribution from
the full S wave vertex and the dotted curve is ob-
tained by leaving only γµ terms in both the initial
and final vertex functions.

Fig. 7. (color online) The obtained deuteron
quadrupole form factors G2. The dotted curve
shows the results without the Γ

µ
D21 term in both

initial and final vertex functions, and the dashed
curve is for the full S and D wave vertexes.

5 Summary

In this work, the electromagnetic form factors and

other low-energy observables of the deuteron are stud-
ied with the help of the light-front approach, where the
deuteron is regarded as a weakly bound state of a pro-
ton and a neutron. We take into account both the S
and D waves interacting vertexes among the deuteron,
proton and neutron, by introducing phenomenological
vertex functions. Here we intend to simulate the mo-
mentum distribution inside the deuteron by these vertex
functions and the regularization functions. The param-
eters are obtained by fitting to the experimental data of
the three form factors with the FFS extraction prescrip-
tion. We compare our calculated results among the four
prescriptions of the form factors extraction, and find,
in the small momentum transfer region, the differences
among the four are negligible. We also calculate other
low-energy observables for the deuteron and we see neg-
ligible differences among the four prescriptions. In our
calculations, the S wave vertex function is assumed to be
the same as ρ-qq in Ref. [30]. The contribution of the D
wave vertex function, which results from the tensor force,
is studied in detail and we conclude that it mainly corre-
sponds to the quadrupole form factor. Our numerical re-
sults show that the light-front approach can only roughly
reproduce the deuteron electromagnetic form factors, like
G0, G1 and G2, in the low Q2 region. Moreover, the es-
timated low-energy observables for the deuteron are all
overestimated by about 15%–20% compared to the data.

Although the light-front approach is considered suit-
able for describing bound state problems, the present
results for the deuteron are not very satisfactory. This
is due to the complicated structure of the deuteron.
It should be mentioned that Ref. [51] develops a phe-
nomenological parametrization model to get a good fit-
ting to the deuteron form factors. In their fitting, differ-
ent sets of the parameters are employed for the different
form factors. We expect to further improve our theoreti-
cal calculations by adjusting the structures of the vertex
functions and the sophisticated regularization functions.
In addition, other ingredients, like the two-body current
(see Ref. [21]), can also be taken into account.
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2 M. Garçon and J. W. Van Orden, Adv. Nucl. Phys., 26: 293–

378 (2001)
3 P. L. Chung, F. Coester, B. D. Keister et al, Phys. Rev. C,

37(5): 2000–2015 (1988)
4 F. Gross, Eur. Phys. J. A, 17(3): 407–413 (2003)
5 I. Sick, Prog. Part. Nucl. Phys., 47(1): 245–318 (2001)
6 R. Gilman and F. Gross, J. Phys. G, 28: R37 (2002)
7 R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C, 21:

1426 (1980)
8 J. F. Mathiot, Phys. Rept., 173:63 (1989)

9 H. Arenhovel, F. Ritz, and T. Wilbois, Phys. Rev. C, 61:
034002

10 A. J. Buchmann and A. Faessler, Nucl. Phys. A, 496: 621
(1989)

11 E. Hummel and J. A. Tjon, Phys. Rev. Lett, 63: 1788 (1980)
12 D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Rev. C,

59: 617 (1999)
13 G. Ramalho, M. T. Pena, and F. Gross, Eur. Phys. J. A, 36:

329 (2008)
14 V. A. Karmanov, and A. V. Smirnov, Nucl. Phys. A, 575: 520

(1994)
15 T. W. Allen, W. H. Klink, and W. N. Polyzou, Phys. Rev. C,

63: 034002 (2001)

013102-8



Chinese Physics C Vol. 41, No. 1 (2017) 013102

16 J. Carbonell and V. A. Karmanov, Eur. Phys. J. A, 6: 9 (1999)
17 D. R. Pillips, S. J. Wallace and N. K. Devine, Phys. Rev. C,

58: 2261 (1998)
18 J. W. Chen, H. W. Griesshammer, S. J. Savage et al, Nucl.

Phys. A, 644: 245 (1998)
19 A. N. Ivnaov, N. I. Troitskaya, M. Faber et al, Phys. Lett. B,

361: 74 (1995)
20 F. M. Lev and E. Pace, G. Salme, Phys. Rev. C, 62: 064004

(2000)
21 Y. Dong, A. Faessler, T. Gutsche et al, Phys. Rev. C, 78(3):

035205 (2008)
22 J. Carbonell, B. Desplanques, V. A. Karmanov et al, Phys.

Rep., 300(5-6): 215–347 (1998)
23 J. R. Cooke and G. A. Miller, Physical Review C, 66(3): 034002

(2002)
24 T. Frederico, E. Pace, B. Pasquini et al, Nucl. Phys. B, 199(1):

264–269 (2010)
25 T. Frederico, E. Pace, B. Pasquini et al, Phys. Rev. D, 80(22):

054021 (2009)
26 G. P. Lepage and S. J. Brodsky, Phys. Rev. D, 22(9): 2157–

2198 (1980)
27 T. Gutsche, V. E. Lyubovitskij, I. Schmidt et al, J. Phys. G,

42: 095005 (2015)
28 R. Machleidt, Phys. Rev. C, 63(2): 024001 (2001)
29 F. P. Pereira, J. P. B. C. de Melo, T. Frederico et al, Nucl.

Phys. A, 790(1-4): 610c–613c (2007)
30 J. P. B. C. de Melo and T. Frederico, Phys. Rev. C, 55(4):

2043–2048 (1997)
31 H.-M. Choi and C.-R. Ji, Phys. Rev. D, 75(12): 034019 (2007)
32 L. L. Frankfurt, T. Frederico, and M. Strikman, Phys. Rev. C,

48(5): 2182–2189 (1993)
33 L. L. Frankfurt, I. L. Grach, L. A. Kondratyuk et al, Phys.

Rev. Lett., 62(4): 387–390 (1989)
34 C. Y. Liang, Y. B. Dong, Chin. Phys. C, 39(6): 104104 (2015)

35 P. G. Blunden, W. Melnitchouk and J. A. Tjon, Phys. Rev. C,
72(3): 034612 (2005)

36 R. Blankenbecler, M. L. Goldberger, and F. E. Halpern, Nucl.
Phys, 12(6): 629–646 (1959)

37 F. Coester and A. Ostebee, Phys. Rev. C, 11(5): 1836–1848
(1975)

38 H. J. Melosh, Phys. Rev. D, 9(4): 1095–1112 (1974)
39 T. Frederico, E. M. Henley, and G. A. Miller, Nucl. Phys. A,

533(4): 617–641 (1991)
40 S. J. Brodsky and J. R. Hiller, Phys. Rev. D, 46(5): 2141–2149

(1992)
41 I. L. Grach and L. A. Kondratyuk, Sov. J. Nucl. Phys, 39: 198

(1984)
42 G. A. Miller, Phys. Rev. C, 80(4): 045210 (2009)
43 W. Jaus, Phys. Rev. D, 41(11): 3394–3404 (1990)
44 D. Abbott, A. Ahmidouch, H. Anklin et al, Eur. Phys. J. A,

7(3): 421–427 (2000)
45 I. I. The, J. Arvieux, D. H. Beck et al. Phys. Rev. Lett., 67(2):

173–176 (1991)
46 D. M. Nikolenko, H. Arenhovel, L. M. Barkov et al. Phys. Rev.

Lett., 90(7): 072501 (2003)
47 P. Karpius, Vector Polarization Observables of the Deuteron

and A New Measurement of the Magnetic Dipole Form Fac-

tor GM , Ph.D. thesis (Durham:University of New Hampshire,
2005)

48 C. Zhang, M. Kohl, T. Akdogan et al. Phys. Rev. Lett, 107(25):
252501 (2011)

49 F. Martin, R. G. Arnold, B. T. Chertok et al. Phys. Rev. Lett.,
38(23): 1320–1323 (1977)

50 S. Platchkov, A. Amroun, S. Auffret et al. Nucl. Phys. A, 508:
343–348 (1990)

51 E. Tomasi-Gustafsson, G. I. Gakh, and C. Adamus̆c̆́ın, Phys.
Rev. C, 73(6): 045204 (2006)

013102-9


