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Estimating proton radius and proportion of other non-perturbative

components in the proton by the maximum entropy method *
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Abstract: In this paper, we apply the Maximum Entropy Method to estimate the proton radius and determine the

valence quark distributions in the proton at extremely low resolution scale Q2
0. Using the simplest functional form

of the valence quark distribution and standard deviations of quark distribution functions in the estimation of the

proton radius, we obtain a quadratic polynomial for the relationship between the proton radius and the momentum

fraction of other non-perturbative components in the proton. The proton radii are approximately equal to the muonic

hydrogen experimental result rp = 0.841 fm and the CODATA analysis rp = 0.877 fm when the other non-perturbative

components account for 17.5% and 22.3% respectively. We propose “ghost matter” to explain the difference in other

non-perturbative components (4.8%) that the electron can detect.
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1 Introduction

The proton radius puzzle [1–3] is an open problem
in both particle physics and nuclear physics. Due to
the emergence of precision Lamb shift measurements of
the muonic hydrogen atom (µp), it has received much
attention in the last few years. The muonic hydrogen
result for the proton radius is rp = 0.84087± 0.00039
fm [4, 5], which differs by about 7.9 standard devia-
tions from the CODATA value of rp = 0.8775± 0.0051
fm [6]. The CODATA value comes from the analysis of
electron-proton scattering data and electronic hydrogen
spectroscopy. This disagreement, called the proton ra-
dius puzzle, has not been solved yet. There are many
proposals to resolve the proton radius puzzle via consid-
ering different types of interaction for ep and µp [7, 8] or
by applying some algorithms, such as polynomial fits [9],
Bayesian inference [10], etc.

In this paper, we use the Maximum Entropy Method
(MEM) to extract the proton radius. This approach is
inspired by Ref. [11]. We consider the entropy as a func-
tion of the proton radius. When considering other non-
perturbative components for the proton radius correc-
tion, we get reasonable results for the proton radius and
the proportion of these other non-perturbative compo-

nents in the proton. The other non-perturbative compo-
nents include the cloud sea in the π cloud model [12–15],
the five-quark components of the proton [16–19], the in-
trinsic sea quarks in light front QCD theory [20–22], and
the connected sea quarks in LQCD [23–25]. Finally, we
compare the predicted up and down valence quark mo-
mentum distributions with the global QCD fits CT10
[26], MSTW08(LO) [27] and IMParton16 [28], and find
that our obtained up and down valence quark momen-
tum distributions are nearly consistent with the popular
parton distribution functions from QCD global analyses.

2 A naive non-perturbative input from

the quark model

The quark model has been a great success in the
study of hadron spectra and reaction dynamics in the
last several decades, and it has revealed the internal sym-
metry of hadrons. The proton consists of three colored
quarks at a low scale Q2

0. Thus, a naive nonperturba-
tive description of the proton includes only these three
valence quarks [29–32], which is the simplest initial par-
ton distribution. The simplest functional form used to
parametrize the valence quark distribution is the time-
honored canonical parametrization f(x) = AxB(1−x)C
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[33], which provides a good approximation to the va-
lence distribution at large x (the Bjorken scaling vari-
able). Therefore we use the naive inputs

uv(x,Q2
0)=AuxBu(1−x)Cu ,

dv(x,Q2
0)=Adx

Bd(1−x)Cd .
(1)

In the proton there are two u quarks and one d quark.
This yields the valence sum rules for the naive non-
perturbtive inputs∫ 1

0

uv(x,Q2
0)dx=2,

∫ 1

0

dv(x,Q2
0)dx=1. (2)

When considering the presence of other non-
perturbative components in the proton [34], we define
∆ (0 6∆ < 1) as the momentum fraction of other non-
perturbative components in the proton. Then the mo-
mentum sum for valence quarks is 1−∆. The momentum
sum rule for valence quarks using the naive input be-
comes ∫ 1

0

x[uv(x,Q2
0)+dv(x,Q2

0)]dx=1−∆. (3)

The valence quarks carry all the momentum of the pro-
ton when ∆ = 0. Hence, the momentum sum rule for
valence quarks using the naive input is∫ 1

0

x[uv(x,Q2
0)+dv(x,Q2

0)]dx=1. (4)

3 Standard deviations of quark distribu-

tion functions and the maximum en-

tropy method

The valence quarks in a proton are confined to a
small spatial region. According to Heisenberg’s uncer-
tainty principle, the momenta of the quarks in the proton
are therefore uncertain, and are described by probability
density distributions. The Heisenberg uncertainty prin-
ciple is

σXσP >
~

2
. (5)

The uncertainty relation is σXσP = ~/2 for a quan-
tum harmonic oscillator in the ground state in quantum
mechanics. In order to constrain the standard devia-
tion of the quark momentum distributions, σXσP =~/2
is assumed for the three initial valence quarks in our
analysis instead of σXσP > ~/2. σX is related to the
radius of the proton. A simple estimation of σX is
σX =(2πR3/3)/(πR2)=2R/3, where R is a proton radius.
σX of each u valence quark is divided by 21/3 as there
are two u valence quarks in the spatial region. Then we
have σXd

=2R/3 and σXu
=2R/(3×21/3) [11].

The Bjorken scaling variable x is the momentum frac-
tion carried by one parton in the proton. In the proton
rest frame, we use the energy ratio instead. Therefore,

in this paper we assume that the standard deviation of
x at an extremely low resolution scale Q2

0 is written as

σx=
σP

Pp

, (6)

where Pp is the energy of the proton, which equals the
mass (0.938 GeV [35]) of the proton. Constraints for
the valence quark distributions from QCD confinement
and the Heisenberg uncertainty principle are expressed in
Ref. [11]. Then by applying the MEM, we can estimate
the proton radius and get the valence quark distribu-
tions from the constraint equations discussed above. The
generalized information entropy of the valence quarks is
defined as

S=−

∫ 1

0

[2
uv(x,Q2

0)

2
ln(

uv(x,Q2
0)

2
)

+dv(x,Q2
0)ln(dv(x,Q2

0))]dx.

(7)

In this paper we will consider two cases correspond-
ing to distinct non-perturbative inputs. In the first case,
the proton does not contain the other non-perturbative
components, so the valence quarks carry all the momen-
tum of the proton. Then the momentum sum equals 1
for valence quarks at Q2

0. The other case is that there are
also flavor-asymmetric sea components [34] in the naive
non-perturbative input. Namely, the flavor-asymmetric
sea components carry part of the momentum of the pro-
ton. By considering the above two cases, we are able to
estimate the values of the proton radius and the distri-
bution functions of the valence quarks. Then we find an
expression that relates the proton radius to the propor-
tion of other non-perturbative components in the proton.
Finally, we compare our predicted valence quark momen-
tum distributions with the latest global fits of parton
distribution functions.

4 Results and discussion

We consider the information entropy S(Bd,R) as a
function of the variable Bd and the proton radius R. The
momentum sum for valence quarks equals 1 in Eq. (4).

With the constraints given in Eqs. (2) , (4) , (5) ,
and (6), there are two free parameters (Bd and R) left
for the parametrized naive nonperturbative input. Fig-
ure 1 shows the information entropy of the valence quark
distributions of the proton at the starting scale as a func-
tion of the parameters R and Bd. We assume that va-
lence quarks carry all of the momentum of the proton
in Fig. 1. Using the MEM, we find that the R is opti-
mized at 0.745 fm, and Bd is 0.03411. The corresponding
valence quark distributions are as follows

uv(x,Q2
0)=2.13911x−0.21026(1−x)0.43090 ,

dv(x,Q2
0)=2.69719x0.03411(1−x)1.54750 .

(8)
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Table 1. ∆, Bd, and R are the momentum fraction of other non-perturbative components in the proton, the
parameter of the u quark distribution function (1), and the value of the proton radius, respectively.

∆ 0 0.02 0.04 0.06 0.08 0.1 0.12

Bd 3.411×10−2 2.529×10−2 1.947×10−2 1.371×10−2 9.25×10−3 2.09×10−3 −2.15×10−3

R 0.745 0.754 0.763 0.773 0.783 0.794 0.805

∆ 0.14 0.15 0.16 0.17 0.175 0.18 0.19

Bd −6.08×10−3
−8.60×10−3

−8.28×10−3
−7.84×10−3

−9.03×10−3
−1.032×10−2

−1.173×10−2

R 0.817 0.824 0.830 0.837 0.841 0.845 0.852

∆ 0.20 0.21 0.22 0.223 0.23 0.24 0.25

Bd −1.309×10−2
−1.404×10−2

−1.337×10−2
−1.483×10−2

−1.526×10−2
−1.588×10−2

−1.621×10−2

R 0.859 0.867 0.875 0.877 0.883 0.892 0.901

dB0.4−

0.2−

0 0.2 0.4 0.6 0.8
R (fm) 0.7

0.75
0.8
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Fig. 1. (color online) The information entropy S

plotted as a function of the parameters Bd and R

(∆ = 0).

Analysing Fig. 1, we find that the proton radius is
smaller than the muonic hydrogen result and the CO-
DATA analysis. Next, flavor-asymmetric sea compo-
nents [34] will be included and found to be a rather bet-
ter non-perturbative input. Namely, we will allow the
proton to contain other non-perturbative components in
addition to the three valence quarks. In order to better
explain the value of the proton radius estimated by the
MEM, we should take into account the contribution of
other non-perturbative components to the proton radius.
The non-perturbative components include the cloud sea
in the pion cloud [12–15], the five-quark components in
the proton [16–19], the intrinsic sea quarks in light front
QCD theory [20–22], and the connected sea quarks in
LQCD [23–25]. These non-perturbative components lead
to the flavor-asymmetric sea quarks in the proton. Y.-J.
Zhang et al. [36, 37] proved the light flavor sea quark
asymmetry of the proton, i.e. ū 6= d̄, by the principle of
detailed balance and the balance model, which is based
on a purely statistical effect. Furthermore, they calcu-
lated the strange content of the proton using the bal-
ance model under the equal probability assumption. In
addition, muon-hydrogen and muon-deuterium deep in-
elastic scattering measurements also find an excess of
d and u sea quarks [38]. On the other hand, the fact
that the value of the proton radius is smaller than the
muonic hydrogen result and the CODATA analysis when

valence quarks carry all the momentum of proton sup-
ports the case for the pion cloud model or other models.
So we need to consider the proportion of momentum car-
ried by other non-perturbative components of the proton.
Then we scan the momentum fraction (∆) for other non-
perturbative components from 0.00 to 0.25.

∆

0 0.1 0.2 0.3

R
 (

fm
)

0.7

0.8

0.9

1

0
+a∆

0
R = k

0
+a∆

0
+k2

∆
1

R = k

Fig. 2. (color online) The relationship between
the proton radius and the momentum fraction of
other non-perturbative components in the pro-
ton. The fitting curves are a linear function
(dashed line) and a quadratic polynomial (solid
line) respectively.

In Table 1 and Fig. 2, R represents the proton radius
in fm and ∆ represents the momentum fraction of other
non-perturbative components in the proton. The pro-
ton radius is approximately equal to the muonic hydro-
gen experimental result and the CODATA analysis when
other non-perturbative components account for 17.5%
and 22.3% respectively. Through the fitting of the data
points, we get an expression for the relationship between
the proton radius and the momentum fraction of other
non-perturbative components in the proton

R=k0∆+a0. (9)

R=k1∆
2+k0∆+a0, (10)

where k0, k1 and a0 are adjustable parameters. Equa-
tions (9) and (10) are the relationship between the pro-
ton radius and the momentum fraction of other non-
perturbative components in the proton; they are a linear
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function and a quadratic function, respectively. Through
fitting the data points in Table 1, where Table 2 gives
the fitted parameters with their errors, it is apparent
that Eq. (10) has a better goodness-of-fit.

Table 2. The fitted parameters with their errors.

k1 k0 a0

fit (9) – 0.618±0.012 0.736±0.012

fit (10) 0.944±0.015 0.380±0.004 0.746±0.000

Figure 3 shows the information entropy of the va-
lence quark distribution of the proton at the starting
scale as a function of the parameters R and Bd. Ac-
cording to the MEM, R is optimized at 0.841 fm, and
Bd is 0.00903 when the other non-perturbative compo-
nents occupy 17.5 percent of the proton’s momentum.
Then the corresponding valence quark distributions are
as follows:

uv(x,Q2
0)=2.75223x−0.20512(1−x)0.91502 ,

dv(x,Q2
0)=3.11320x0.00903(1−x)2.16667 .

(11)
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0.2−
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0.8
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0.95
1

S
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1.12−

1.1−

1.08−

1.06−

1.04−

Fig. 3. (color online) Information entropy S plot-
ted as a function of the parameters Bd and R (∆
= 0.175).

Next we consider the information entropy of the va-
lence quark distribution of the proton at the starting
scale as a function of the parameters R, Bd and M . Here
the momentum sum M in Eq. (3) is a free parameter. By
fitting, R is optimized at 0.745 fm, Bd at 0.0341 and M
is 1. The proton radius R, Bd and M are equivalent to
the situation in which we take the proton radius R and
Bd as free parameters and assume that valence quarks
take the total momentum of the proton. So the corre-
sponding valence quark distributions are equivalent to
the distributions in Eq. (8).

Through analysis of the above results, we find that
the proton radius is smaller than muonic hydrogen re-
sult and the CODATA result if the proton only contains
three valence quarks. The value of proton radius which
we estimated using the MEM is approximately equal to
the measured value of the muonic hydrogen (µp) exper-
iment and the CODATA analysis when the other non-
perturbative components account for 17.5% and 22.3%
of the proton momentum, respectively.

Figures 4 and 5 show comparisons of the up and
down valence quark momentum distributions we ob-
tained, multiplied by x (the Bjorken scaling variable).
These predicted up and down valence quark momen-
tum distributions are compared with the global fits from
CT10 [26] , MSTW08 [27] and IMParton16 [28] at Q2

= 10 GeV2. Figure 4 shows a comparison of our pre-
dicted up and down valence quark momentum distri-
butions from Eq. (8) with the global QCD fits CT10 ,
MSTW08(LO) and IMParton16. Figure 5 shows a com-
parison of our predicted up and down valence quark mo-
mentum distributions from Eq. (11) with the global QCD
fits CT10 , MSTW08(LsO) and IMParton16. The up and
down valence quark momentum distributions which we
obtained are basically consistent with the popular parton
distribution functions from QCD global analyses.

x
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MSTW08(lo)

IMParton16
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NNLO

2 =10 GeV2Q

vxu

vxd

Fig. 4. (color online) Comparisons of our predicted
up and down valence quark momentum distribu-
tions from Eq. (8) (solid and dot-dashed lines)
with global QCD fits CT10 (dashed lines) [26],
MSTW08(LO) (dotted lines) [27] and IMPar-
ton16 (short dashed lines) [28].
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Fig. 5. (color online) Comparisons of our predicted
up and down valence quark momentum distribu-
tions from Eq. (11) (solid and dot-dashed lines)
with global QCD fits CT10 (dashed lines) [26],
MSTW08(LO) (dotted lines) [27] and IMPar-
ton16 (short dashed lines)[28].
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5 Summary

We have attempted to determine the proton radius
and parton distribution functions using the MEM and to
determine the presence of other non-perturbative compo-
nents of the proton. Previously, Y.-H. Zhang et al. [39]
calculated the proton radius and parton ditribution func-
tions through a statistical approach, where the radius
value is close to the result by Mac and Ugaz [40] with the
consideration of first-order QCD corrections. We found
a quadratic polynomial that relates the proton radius
and the proportion of other non-perturbative compo-
nents in the proton. The obtained proton radius, which
considers the pion cloud model or intrinsic sea quarks
or connected sea quarks or other non-perturbative com-
ponents, is consistent with the muonic hydrogen atom
result and the CODATA analysis when the other non-
perturbation components account for 17.5% and 22.3%,
respectively. Moreover, the valence quark distributions
are basically consistent with the experimental observa-
tions from high energy lepton probes and PDFs from
global analyses. However, the MEM is applicable for ob-
taining the proton radius and valence quark distributions

with the least bias in situations where detailed informa-
tion is not given. Through calculation and analysis, we
find that the proton radius, the proportion of other non-
perturbative components in the proton and the valence
quark distributions obtained by the MEM are reason-
able.

The difference in the non-perturbative components
between the muonic hydrogen atom result and the CO-
DATA analysis is 4.8%. An interesting question is
whether an electron from the CODATA analysis is more
likely to detect other non-perturbative components than
the muon from the muonic hydrogen atom result. We
propose “ghost matter” to explain the difference in other
non-perturbative components (4.8%) that the electron
can detect, which shows that using muons and electrons
as a probe will correspond to different proton radii. Fur-
thermore, the MEM can also be used to make theoretical
predictions, estimate the radii of other hadrons, and get
the proportion of other non-perturbative components
inside.

The authors would like to thank Rong Wang for help-

ful and fruitful suggestions.
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