
Chinese Physics C Vol. 41, No. 11 (2017) 115101

Two-flavor hybrid stars with the Dyson-Schwinger quark model *
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Abstract: We study the properties of two-flavor quark matter in the Dyson-Schwinger model and investigate the

possible consequences for hybrid neutron stars, with particular regard to the two-solar-mass limit. We find that with

some extreme values of the model parameters, the mass fraction of two-flavor quark matter in heavy neutron stars

can be as high as 30 percent and the possible energy release during the conversion from nucleonic neutron stars to

hybrid stars can reach 1052erg.
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1 Introduction

The interior structure of massive neutron stars (NS)
is one of the main issues in the physics of compact stars
[1]. Recent observations have confirmed the existence of
two NS of about two solar masses [2–4]. Based on a mi-
croscopic nucleonic equation of state (EOS), one expects
that in such heavy NS the central particle density may
reach values larger than 1/fm3, where in fact quark de-
grees of freedom are expected to appear at a macroscopic
level. There have been numerous studies (see, e.g., [5–
10]) to demonstrate the possibility of quark matter (QM)
in massive NSs.

However, there are still many open questions, due to
our lack of knowledge on dense matter. One issue is the
competition of QM with other degrees of freedom, such
as hyperons; another issue is the realization and composi-
tion of QM in compact stars. One possibility is based on
the hypothesis of absolutely stable strange quark matter
(SQM), which corresponds to the so-called strange quark
stars (SQS); another possibility is that QM only appears
in the core of a hybrid NS, with a phase transition from
hadronic matter (HM) to QM with three flavors (u, d, s),
simply called 3QM in the following. This is because the
current mass of strange quarks is only about 100 MeV
and usually one expects a chiral symmetry restoration at
such a high density in compact stars.

However, it is also possible that strange quarks are
suppressed by their large effective mass or by flavor con-
servation on a short time scale [11, 12]. There are also
studies [13] showing that the onset of the strange quark

flavor in a CFL phase marks an instability of the stars, so
that no stable 3QM-core stars might be found in nature.
It is therefore also interesting to investigate the possibil-
ity that QM with only two flavors u, d (2QM) appears in
the core of a NS. It can be regarded as a limiting case of
the 3QM hybrid stars or a transitory step of the conver-
sion from NS to SQS [11, 12, 14]. We therefore present
this work as a complement to our previous study of 3QM
hybrid stars [15–17].

The mass of a NS can be calculated by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations with the
relevant EOS as input, which embodies the theoretical
information of our theory on dense matter. The hybrid
EOS including both HM and QM is usually obtained by
combining the EOSs of HM and QM within individual
theories/models. Unfortunately, while the microscopic
theory of the nucleonic EOS has reached a high degree
of sophistication [1, 18–21], the QM EOS is still poorly
known at zero temperature and at the high baryonic den-
sity appropriate for NS. A lot of work has been done to
go beyond the MIT bag model, e.g., using perturbative
QCD [22–25], the density-dependent-quark-mass model
[26–30], the Nambu–Jona-Lasinio model [13, 31–34], the
chiral-quark-meson model [35], and the quasi-particle
model [36–39]. However, the EOS remains poorly known
due to the nonperturbative character of QCD.

The Dyson-Schwinger equations (DSE) provide a
continuum approach to QCD that can simultaneously
address both confinement and dynamical chiral symme-
try breaking [40, 41]. They have been applied with suc-
cess to hadron physics in vacuum [42–48] and to QCD
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at nonzero chemical potential and temperature [42, 49–
61]. Both MIT and NJL models have been recognized as
limiting cases of the DSM [33, 56].

In this paper, we use a DSM for QM based on
our previous work [15–17], where we have investigated
the hadron-quark phase transition from HM to 3QM
in compact stars and the structure of hybrid stars
with 3QM, in combination with a nuclear-matter EOS
within the Brueckner-Hartree-Fock (BHF) many-body
approach [18–21]. The possibility of SQM and SQS was
also investigated in our model, with a full scanning of
the parameter space [17]. However, there are still free
parameters due to uncertainties of the gluon propaga-
tor and vacuum pressure in our model. Especially, there
is an ambiguity with the parameter BDS when including
strange quarks. To complement the above studies, in this
work we will investigate the phase transition from HM
to 2QM and hybrid stars with 2QM, also in combination
with the HM EOS within the BHF many-body approach.
Particular attention will be paid to the constraint on the
maximum mass of NS, Mmax > 2M�, which cannot be
fulfilled by SQSs, but by hybrid stars with 3QM or 2QM
in our model.

The paper is organized as follows. In Section 2 we
briefly discuss the HM EOS within the BHF approach
and the DSM for QM. In Section 3 we analyze the phase
transition from HM to 2QM, and present results on the
structure of two-flavor hybrid stars, with detailed com-
parison with the 3QM case. Section 4 contains our sum-
mary and conclusions.

2 Formalism: EOS of dense matter

2.1 Hadronic matter within Brueckner theory

Our EOS of HM obtained within the BHF approach
[62] has been amply discussed in previous publications
[15]. The basic input quantities of the calculation are the
nucleon-nucleon two-body potentials, namely Argonne
V18 [63], Bonn B [64, 65], or Nijmegen 93 [66, 67], sup-
plemented with compatible three-body forces [21, 68–73],
such that the empirical saturation properties of nuclear
matter are well fulfilled. The different high-density be-
havior of the EOSs leads, however, to different predic-
tions for NS maximum masses and radii, in particular
those given in Refs. [21, 74].

The consistency of various BHF EOSs with further
experimental constraints [75–77] was also studied in de-
tail in Refs. [21, 74]. In this work we choose the nucle-
onic EOS with the Argonne V18 potential, combined with
a compatible microscopic three-body force [21], which
gives a hard EOS in agreement with empirical constraints
up to high density, and a large NS maximum mass of
about 2.3M�.

This approach has also been extended with the in-

clusion of hyperons [20, 78–81], which might appear in
the core of a NS. The hyperonic EOS in this theory is
very soft, which results in maximum masses of the NS
which are too low [82]. Furthermore, in combination
with our DSM, either the phase transition to QM leads
to a too-soft EOS and low NS maximum mass, or the
QM onset is suppressed by the hyperons [15]. However,
the required input information like hyperon-hyperon po-
tentials or hyperonic three-body forces is currently com-
pletely unknown, such that firm conclusions cannot be
drawn. We therefore prefer not to address this issue in
our work, which is focused on the hadron-quark phase
transition.

The BHF calculations provide the energy density ε
of the bulk system as a function of the relevant partial
densities ρi, from which all other thermodynamical quan-
tities can be obtained, in particular chemical potentials
and pressure,

µi=
∂ε

∂ρi

, (1)

p(ρB)=ρ2
B

d

dρB

ε

ρB

=ρB

dε

dρB

−ε=ρBµB−ε. (2)

The parameterized energy density function can be found
in Ref. [21].

2.2 Quark phase with the Dyson-Schwinger

model

For cold dense QM, we adopt a model based on the
DSE of the quark propagator, described in detail in our
previous papers [15–17]. In the following, we only give
a brief introduction to the model. We start from the
gap equation for the quark propagator S(p;µ) at finite
chemical potential µ,

Σ(p;µ)=

∫

d4q

(2π)4
g2(µ)Dρσ(p−q;µ)

λa

2
γρS(q;µ)Γ a

σ (q,p;µ),

(3)
where λa are the Gell-Mann matrices, g(µ) is the cou-
pling strength, Dρσ(k;µ) the dressed gluon propagator,
and Γ a

σ (q,p;µ) the dressed quark-gluon vertex at finite
chemical potential. To solve the equation, one requires
an ansatz for both Dρσ and Γ a

σ . In our model, the ansatz
for Dρσ and Γσ is parameterized as

g2Dρσ(p−q)Γ a
σ (q,p)=G(k)Dfree

ρσ (k)
λa

2
Γσ(q,p), (4)

wherein Dfree
ρσ (k ≡ p−q) = (δρσ−

kρkσ

k2 ) 1
k2 is the Landau-

gauge free gluon propagator, Γσ(q,p) represents the ten-
sor structure of the quark-gluon vertex ansatz, while
other dressing effects of the vertex are assumed to de-
pend only on the gluon momentum k and, together with
the dressing of the gluon propagator, are included in a
model effective interaction G(k).

For Γσ, we use the rainbow approximation, i.e., the
bare vertex form Γσ = γσ. For the effective interaction,
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we employ an infrared-dominant interaction modified by
the quark chemical potential [15, 83]

G(k)=4π
2d

k4

ω6
e−

k2+αµ2

ω2 . (5)

The parameters ω,d in Eq. (5) are discussed in Refs. [45,
84]: ω represents the energy scale in nonperturbative
QCD, like ΛQCD, and d controls the effective coupling
strength. Their values as well as the quark masses are
obtained by fitting light (π and K) meson properties and
the chiral condensate in vacuum [45, 84], and we use the
set ω = 0.5 GeV and d = 1 GeV2. We choose the quark
masses mu,d=0 and ms=115MeV.

The phenomenological parameter α is of particular
importance in our work, since it represents a reduction
rate of the effective interaction with increasing chemical
potential. However, it cannot yet be fixed independently.
Obviously, α=∞ corresponds to a noninteracting system
at finite chemical potential, i.e., a simple version of the
MIT bag model; in the following we call that case the
MIT limit. In the previous and present work we investi-
gate the full parameter space 0<α<∞.

All the relevant thermodynamical quantities of cold
QM can be computed from the quark propagator at fi-
nite chemical potential, except a boundary value of the
pressure P , which is represented by a phenomenological
bag constant BDS,

P (µu,µd,µs)=−BDS+
∑

q=u,d,s

∫ µq

µ0
q

dµnq(µ), (6)

where the density distributions nq are obtained from the
quark propagator [15, 50, 85]

nq(µ)=6

∫

d3p

(2π)3
fq(|p|;µ), (7)

fq(|p|;µ)=
1

4π

∫

∞

−∞

dp4trD
[

−γ4Sq(p;µ)
]

, (8)

where the trace is over the spinor indices only.
As discussed in Refs. [15, 17], BDS≈90 MeVfm−3can

be obtained from the vacuum pressure in the massless
2QM case in our model, but there are ambiguities when
including strange quarks. In this paper we allow a free
variation of BDS, but expect it to be of the same order as
90 MeVfm−3. More constraints on BDS can be obtained
from, e.g., the stability of normal symmetric nuclear mat-
ter against QM [17, 56]. In this paper we mainly inves-
tigate the constraints imposed by the observed NSs with
M >2M�. In the following, BDS is always given in units
of MeVfm−3 in the text and figures.

3 Results and discussion

3.1 EOS of two-flavor quark matter

In the following, we investigate NS matter, i.e., cold,
neutrino-free, charge-neutral, and beta-stable matter
[15, 86], characterized by two degrees of freedom, the
baryon and charge chemical potentials µB and µQ. The
corresponding equations are

µi=biµB+qiµQ ,
∑

i

qiρi=0, (9)

with bi and qi denoting baryon number and charge of the
particle species, and i=n,p,e,µ in the nuclear phase and
i=u,d,(s),e,µ in the quark phase, respectively.

In Fig. 1 we first illustrate the corresponding EOS
P (µB) (lower panel) and the baryon number density
ρB(µB) (upper panel) of 2QM and 3QM in our DSM
with BDS = 90 and various values of the parameter α.
For comparison, we also show the results for hadronic
nuclear matter from the BHF V18 EOS [21] (thick solid
black curve). More detailed results of the 3QM EOS can
be found in Ref. [15].

Fig. 1. (color online) Pressure (lower panel) and
baryon density (upper panel) vs. baryon chemical
potential of dense NS matter for different mod-
els and parameters. Results for 2QM/3QM are
shown as thick/thin curves.

Under a Maxwell construction, the physically real-
ized phase at a given chemical potential µB is the one
with the highest pressure, and the crossing points of the
nuclear and quark pressure curves represent the transi-
tion between HM and QM phases. Obviously, at a fixed

115101-3



Chinese Physics C Vol. 41, No. 11 (2017) 115101

chemical potential, the density and pressure are larger
for 3QM than for 2QM. Therefore, the Maxwell phase
transition to 2QM is located at larger chemical poten-
tial than that to 3QM. On the other hand, at a fixed
baryon density, the baryon chemical potential of 3QM
is smaller than that of 2QM, and consequently, the en-
ergy density of 3QM is smaller than that of 2QM. There-
fore, the Maxwell phase transition to 2QM is located at
larger density than that in the 3QM case. For example,
in the α = ∞, i.e., the MIT(2QM) limit, the Maxwell
phase transition is located at ρB = 0.62 fm−3 in HM,
which is much larger than that in the MIT(3QM) case,
ρB=0.10 fm−3.

With decreasing α (increasing interaction strength),
the curves of the pressure and density of QM shift down-
wards, and correspondingly the phase transition points
shift to larger densities. With an unscreened interaction
(α=0) no phase transition at all is possible. When α is
not large enough, the phase transition can be at densities
higher than 1.01 fm−3, which corresponds to the central
density of a NS with maximum mass of 2.34M�, and hy-
brid NSs with Maxwell construction cannot be built for
such parameter choices.

Considering variation of the parameter BDS, it is ob-
vious that with increasing (decreasing) BDS, the curves in
the lower panel move downwards (upwards), while those
in the upper panel remain fixed. Therefore, the phase
transition densities increase (decrease) correspondingly.
It is worth noting that when α is small, the phase tran-
sition occurs at high density, and is fairly insensitive to
the change of BDS, which is not the case for large α.

Regarding the difference between 2QM and 3QM re-
sults, at given parameters BDS and α, the latter QM is
obviously more bound, i.e., the pressure is lower. How-
ever, readjusting the parameters, similar results can be
obtained, see, e.g., the 2QM α = 1 and the 3QM α = 2
results in Fig. 1.

In Fig. 2 we show the results of pressure vs. den-
sity, for phase transitions from HM to 2QM (left panels)
or 3QM (right panels) under the more realistic Gibbs
construction [1, 87–89] with BDS = 90(60) in the up-
per(lower) panel. When the phase transition is at high
density (small value of α), where the pressure is large,
the relative influence of BDS on the EOS is small. How-
ever, when the phase transition is at low density with a
large value of α, it is quite sensitive to BDS. For example,
the onset density of the Gibbs phase transition to 2QM
shifts from 0.84 fm−3 down to 0.82 fm−3 when α=1, but
from 0.55 fm−3 down to 0.26 fm−3 when α=4.

Qualitatively, the effects of varying the parameters
α and BDS are the same in both 2QM and 3QM cases.
Comparing the difference between 2QM and 3QM with
the same parameters α and BDS, the phase transition in
3QM is at lower density and pressure, and the EOS is
much softer than in 2QM. Therefore, the maximum mass

of 3QM hybrid stars is smaller than in the 2QM case.
These results are discussed in the following section.

Fig. 2. (color online) NS matter pressure vs.
baryon number density for different EOSs with
2QM (left panels), 3QM (right panels), BDS =90
(upper panels), and BDS = 60 (lower panels).
Markers indicate the onset of the Gibbs phase
transition. In the lower panels, some curves cor-
responding to too low maximum masses of hybrid
stars are not shown.

3.2 Structure of hybrid stars

As usual, we assume that a NS is a spherically sym-
metric distribution of mass in hydrostatic equilibrium
and obtain the stellar radius R and the gravitational
mass M by the standard process of solving the TOV
equations [90]. We have used as input the EOSs with the
Gibbs construction discussed above and shown in Fig. 2.
For the description of the NS crust, we have joined the
hadronic EOS with the ones by Negele and Vautherin [91]
in the medium-density regime, and the ones by Feynman-
Metropolis-Teller [92] and Baym-Pethick-Sutherland [93]
for the outer crust.

In Fig. 3 we show the gravitational mass of 2QM
(lower panels) and 3QM (upper panels) hybrid stars
vs. the central baryon density (left panels) and the ra-
dius (right panels) with various α and BDS = 90(60)
[thick(thin) curves]. In comparison we also show the
nucleonic NSs (thick solid curve). The results are in
line with those shown in Fig. 2, namely, increasing the
damping parameter α of the effectively repulsive QM in-
teraction leads to an earlier onset of the QM phase in NS
and a consequential reduction of the maximum mass.
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Fig. 3. (color online) NS gravitational mass vs.
central baryon density (left panels) and radius
(right panels), using EOSs shown in Fig. 2, with
BDS = 90 (thick curves) and BDS = 60 (thin
curves).

Fig. 4. (color online) The parameter space in the
(BDS,α−1) plane that allows hybrid stars with
Mmax ≥ 2M�, which lie on the top/right side
of the corresponding solid black or dashed blue
curves. The dash-dotted green curve represents
the lower boundary of BDS under the stability
constraint of symmetric nuclear matter against
2QM at the saturation point, and the dotted red
curve represents the upper boundary of BDS for
the SQM hypothesis, see details in Ref. [17]. The
markers indicate parameter sets chosen in Fig. 5.

Obviously, in a certain range of the parameters BDS

and α, there exist 2QM-hybrid stars with Mmax≥2M�.
For example, under such a constraint, α should be
smaller than 7.2(4.3) for BDS=90(60). The correspond-
ing parameter curve for Mmax=2M� is shown as the solid
black curve in Fig. 4. We also show the lower boundary of
BDS at given α under the stability constraint of symmet-
ric nuclear matter against 2QM at the saturation point

(dash-dotted green curve), as well as the upper bound-
ary of BDS for the SQM hypothesis (dotted red curve),
see details in Ref. [17]. We can see that, although 2QM
hybrid stars can coexist with SQSs in the same parame-
ter space, which is enclosed by the dotted red curve and
the dash-dotted green curve, their mass is below 2M� in
that domain. Therefore, if SQSs exist and NSs convert
first to 2QM-hybrid stars and then to SQSs, the maxi-
mum mass of the metastable 2QM-hybrid stars (and the
SQSs) is lower than two solar masses in the DS model.

It is also worth comparing with 3QM-hybrid stars
[15]. The maximum mass of 2QM-hybrid stars can reach
a higher value with the same parameters in our model,
because the phase transition occurs at higher density
and correspondingly in heavier stars. In other words,
under the constraint of Mmax = 2M�, the correspond-
ing (dashed blue) parameter curve for 3QM lies at the
top/right of that for 2QM (solid black) in Fig. 4. For
3QM-hybrid stars with the constraint Mmax ≥ 2M�, α
should be smaller than 1.65(1.45) for BDS =90(60), see
the markers in Fig. 4.

3.3 Quark matter content and energy release

It is interesting to investigate how much QM can be
present in hybrid stars. As an illustration we show in
Fig. 5 the QM fractions MQM/M in hybrid stars, for
several NS configurations with Mmax =2M� (see mark-
ers in Fig. 4). It can be seen that with decreasing BDS,
QM can appear in lighter NSs and the mass fraction can
be much higher, up to nearly 30% of 2QM with BDS=60,
which is close to the minimal value according to Fig. 4.
When BDS is large, e.g., BDS=90, the curves correspond-
ing to 2QM are close to the 3QM case, i.e., the masses
of QM in hybrid stars are insensitive to the components
of QM. However, when BDS = 60, the 2QM can appear
in lighter NSs and the masses reach larger values than
in the 3QM case. For example, even in a 1.4 solar mass
NS, the mass fraction of 2QM can be as large as 18%.
The results shown in Fig. 5 represent upper limits on
the quark fraction in hybrid stars within the DS+V18
model. Choosing parameter sets with Mmax >2M�, the
onset of the QM phase will be delayed and the QM frac-
tion reduced.

The hybrid stars in the DS model are lighter than
nucleonic NSs with the same baryonic mass. Therefore
it is possible that a NS converts to a hybrid star with a
phase transition, accompanied by an energy release. As
an illustration we show in the lower panel of Fig. 5 the
mass difference of NSs and hybrid stars with the same
baryonic mass. One expects that that quantity depends
strongly on the QM fraction in hybrid stars, and in fact
the upper and lower panels of Fig. 5 show qualitatively
similar results. Quantitatively, the maximum value of
the mass difference can reach about 7 promille of the so-
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lar mass, with 2QM in the core and the smallest possible
BDS. The corresponding energy release is about 1052erg
in the conversion from NSs to hybrid stars, which is much
smaller than the possible energy release in the conver-
sion from NSs to SQSs [17]. With increasing BDS and/or
maximum mass value of hybrid stars, the mass difference
and corresponding energy release decrease along with the
fraction of QM in the hybrid stars.

Fig. 5. (color online) Upper panel: The mass frac-
tions of 2QM or 3QM in hybrid stars with Mmax=
2M� for different parameter sets of BDS and α,
as indicated in Fig. 4. Lower panel: The corre-
sponding mass difference of NSs and hybrid stars
with the same baryonic masses.

4 Conclusions

We have investigated the phase transition from HM
to 2QM and hybrid stars with 2QM in our DSM for QM,

in combination with a nuclear matter EOS within the
BHF many-body approach.

In the full space of parameters α and BDS, we inves-
tigated the EoS of 2QM and the phase transition from
HM to 2QM. In comparison with 3QM with the same
parameters, the phase transition from HM to 2QM is
at higher chemical potential and density. Correspond-
ingly, the hybrid EoS with HM and 2QM mixed phase is
stiffer than that in the 3QM case, and the 2QM hybrid
stars have larger maximum mass. Furthermore, we have
shown the allowed parameter space in the 2QM case un-
der the constraint of Mmax>2M�, which is much larger
than that in the 3QM case.

This study completes previous works on 3QM hybrid
stars. 2QM is less bound than 3QM and could only ex-
ist as a transitory phase during stellar evolution. After
that, either a 3QM hybrid NS is formed or collapse to a
black hole occurs.

We have shown that for parameter choices that re-
spect the Mmax > 2M� condition, the possible quark
matter content of 2QM(3QM)-hybrid NSs is limited to
about 30%(15%), due to constraints on the onset density
of QM in the stellar matter. Such heavy 2QM hybrid
stars would eventually collapse to black holes, because
the compatible 3QM stars with the same parameters α
and BDS are too strongly bound with a much smaller
maximum gravitational mass and baryon mass.

The related energy release during the HM-QM tran-
sition is limited to about 1052 erg. We have only con-
sidered energy balances and disregarded the dynamical
development of that transition, which is still a difficult
theoretical problem.

These results obviously depend on the chosen nucle-
onic EOS and the parameters in the DSM model. For the
future it will be important to establish direct estimates
of the DS model parameters in a more fundamental way
from QCD, and to provide in this way more reliable pre-
dictions, and also to clarify the qualitative differences
between different current theoretical quark models.
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