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Abstract: Based on the relativistic theory of superstrong magnetic fields (SMF), by using three models those of

Lai (LD), Fushiki (FGP), and our own (LJ), we investigate the influence of SMFs due to strong electron screening

(SES) on the nuclear reaction 23Mg (p,γ) 24Al in magnetars. In a relatively low density environment (e.g., ρ7<0.01)

and 1<B12<102, our screening rates are in good agreement with those of LD and FGP. However, in relatively high

magnetic fields (e.g., B12>102), our reaction rates can be 1.58 times and about three orders of magnitude larger than

those of FGP and LD, respectively (B12, ρ7 are in units of 1012G, 107g cm−3). The significant increase of strong

screening rate can imply that more 23Mg will escape from the Ne-Na cycle due to SES in a SMF. As a consequence,

the next reaction, 24Al (β+,ν) 24Mg, will produce more 24Mg to participate in the Mg-Al cycle. Thus, it may lead

to synthesis of a large amount of A>20 nuclides in magnetars.
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1 Introduction

In the dense sites of the universe, such as novae, X-
ray bursts and supernovae, there are explosive hydro-
gen burning processes in high temperature and high hy-
drogen environments. This burning is called the rapid-
proton (rp) process [1]. In the stage of hydrogen burning,
proton capture reactions and β+-decays (rp-process) will
be ignited in nuclei with mass number A> 20. For ex-
ample, the timescale of the proton capture reaction of
23Mg in the Ne-Na cycle at sufficiently high tempera-
ture is shorter than that of β+-decay. Therefore, some
23Mg will kindle and escape from the Ne-Na cycle by pro-
ton capture. The 23Mg leaks from the Ne-Na cycle into
the Mg-Al cycle, synthesizing a large amount of heavy
nuclei. Thus the reaction 23Mg (p,γ) 24Al in stellar envi-
ronments is an important reaction for producing heavy
nuclei. Wallace et al. [1] first discussed the reaction rate
of 23Mg (p,γ) 24Al. Then, Iliadis et al. [2] also investi-
gated this nuclear reaction rate. Kubono et al. [3] re-
considered the rate by considering four resonances and
the structure of 24Al. Based on some new experimen-
tal information on 24Al excitation energies, Herndl et al.
[4], Visser et al. [5], carried out an estimation of the rate.

However, they all seem to have overlooked the influence
of electron screening on nuclear reactions.

In pre-supernova stellar evolution and nucleosynthe-
sis, strong electron screening (SES) is always a challeng-
ing and interesting problem. Some works [6–12] have
been done on stellar weak-interaction rates and ther-
monuclear reaction rates. Some SES models for high-
density environments have been widely investigated, in-
cluding the Salpeter model [13, 14], Graboske model [15],
and Dewitt model [16]. Recently these issues were dis-
cussed by Liolios et al. [17, 18], and Liu [8]. However,
they neglected the effects of SES on thermonuclear reac-
tion rate in superstrong magnetic fields (SMF).

It is widely known that nuclear reaction rates at low
energies play a key role in energy generation in stars
and in stellar nucleosynthesis. The bare reaction rates
are modified in stars by the screening effects of free and
bound electrons. Knowledge of the bare nuclear reaction
rates at low energies is important not only to understand
various astrophysical nuclear problems, but also to assess
the effects of host material in low energy nuclear fusion
reactions in matter.

It is generally accepted that the surface dipole mag-
netic field strengths of magnetars are in a range from 1013
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to 1015 G [19–27]. The momentum space of the electron
gas is modified substantially by such intense magnetic
fields. The electron Fermi energy and nuclear reactions
are also greatly affected by SMFs in magnetars.

Anomalous X-ray pulsars (AXPs) and soft gamma-
ray repeaters (SGRs) are conceived as magnetars, which
are a special kind of pulsar powered by their magnetic
energy [28]. The Fermi energy of the electrons will in-
crease with magnetic field, and the quantum effects of
the electron gas will be very obvious in a SMF. As we
know, the positive energy levels of electrons must abide
by Landau quantization. The distribution of electrons
in momentum space will be strongly modified by a SMF.
Some authors have discussed this issue in detail for the
strong magnetic fields of magnetars. For instance, Gao
et al. [23, 24, 25] investigated not only the spin-down and
magnetic field evolutions, but also the electron Landau
level effects on emission properties of magnetars.

In this paper, based on relativistic theory in a SMF
[20–23, 25], we discuss the problem of SES and then in-
vestigate the effect of SES on the thermonuclear reaction
on the surface of magnetars within three different mod-
els (i.e., our model (LJ), Lai’s model (LD) [27, 29], and
Fushiki’s model (FGP) [30]).

This work differs from our previous work [10] on the
discussion of nuclear reaction rates. Firstly, in Ref. [10],
though we cited several works from Gao et al., we were
not familiar with the calculations involved in electron
Fermi energy in a superhigh magnetic field, so a non-
relativistic electron cyclotron solution was applied when
calculating the rates. Secondly, Ref. [10] did not compare
the LJ, LD, and FGP models in the case with a SMF. Fi-
nally, we analyze the nuclear reaction rates in a SMF and
also compare our model with the Dewitt model [16], and
Liolios model [17], in which SMFs were not taken into
consideration. Maybe SES universally occurs in pulsars,
and the screening rate calculations in SMFs are impor-
tant for future studies on cooling, nucleosynthesis, and
emission properties of magnetars.

In this paper, following the works of Peng et al. [20],
and Gao et al. [21, 22, 23, 25], we calculate the resonant
reaction rates in the case with SMF and without SMF in
several screening models. In the case of the former, the
results from the LD and FGP models will be compared
with those of our model, while in the latter case, the
results from the Dewitt and Liolios models also will be
compared. We derive new results for SES theory and the
screening rates for nuclear reactions in relativistic strong
magnetic fields.

The article is organized as follows. In the next sec-
tion, we analyse three SES models for a SMF in magne-
tars. In Section 3 we discuss the effects of SES on the
proton capture reaction rate of 23Mg, in which the four
resonances contributions will also be considered. The re-

sults and discussions will be shown in Section 4. The
article is closed with some conclusions in Section 5.

2 SES in a SMF

In astrophysical systems, the SMF may have signifi-
cant influence on the quantum processes. In this section,
we will study three models of the electron screening po-
tential (ESP) in a SMF, i.e., the LJ model, LD model,
and FGP model.

2.1 ESP in our model

The rate of nuclear reactions in high density matter
is affected by how the clouds of electrons surrounding the
nuclei alter the interactions among nuclei. The positive
energy levels of electrons in a SMF are given by [31]

εn

mec2
=

[(
pz

mec

)
+1+2

(
n+

1

2
+σ

)
b

]1/2

=(p2
z+Θ)1/2, (1)

where Θ = 1+2(n+ 1
2
+σ)b, n = 0,1,2,3...., b = B

Bcr
=

0.02266B12, B12 is the magnetic field in units of 1012 G,

i.e., B12≡B/1012 G, Bcr=
m2

e
c3

e~
=4.414×103 G is the elec-

tron quantum critical magnetic field, pz is the electron
momentum along the field, and σ is the spin quantum
number of an electron, when n= 0, σ= 1/2, and when
n≥1, σ=±1/2.

In an extremely strong magnetic field (B�Bcr), the
Landau column becomes a very long and narrow cylin-
der along the magnetic field. According to the Pauli
exclusion principle, the electron number density should
be equal to its microscopic state density. By introducing
the electron Landau level stability coefficient, the Fermi
energy of the electron is given by [22, 32]

UF = 5.91×104

(
B

Bcr

)1/6(
ρYe

ρ0×0.00564

)1/3

= 5.91×104

(
B

Bcr

)1/6(
ne

0.00564×ρ0NA

)1/3

keV, (2)

where ρ0=2.8×1014g/cm
3
is the standard nuclear density.

In order to evaluate the Thomas-Fermi screening
wave-number KLJ

TF, we define a parameter DLJ(Ue) and
then, from Eq. (2), we have

ne=0.00564ρ0NA

(
UF

5.91×104b1/6

)3

(3)

DLJ(UF) =
∂ne

∂UF

=
∂

∂UF

(
0.00564ρ0NA

(
UF

5.910×104b1/6

)3
)

= 4.9913×107n2/3
e b−1/6 cm−3 KeV−1. (4)

The Thomas-Fermi screening wave-number KLJ
TF is
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then given by [33]

(KLJ
TF)2 = 4πe2DLJ(UF)=4πe2

∂ne

∂UF

= 6.269×107e2(ne)
2/3b−1/6 cm−3. (5)

By using the uniform electron gas model [34], the
binding energy of the magnetized condensed matter at
zero pressure can be estimated. The energy per cell can
be written as

Etotal=Ek+Elatt=
3π2e2z3

j

8b21r
6
i

+
9e2z

5

3

10re
MeV, (6)

where the first term is the kinetic energy and the second
term is the lattice energy. ri = z1/3rea0 is the Wigner-
Seitz cell radius, a0=0.529×10−8cm is the Bohr radius,
and re =(3/4πne)

1/3 is the mean electron spacing. zj is
the charge number of species j. b1 =B/B0 =425.4B12 =
1.9773×104b and B0=m2

ece
3/~3=2.3505×10−9 G is the

natural (atomic) unit for the field strength [27]. For zero-
pressure condensed matter, we require dEtotal/dri=0, so
we have

ri=ri0=0.0371z1/5
j b−2/5a0 cm. (7)

By using linear response theory, the energy correction
per cell due to non-uniformity is given by [35]

ELJ
TF(ri,zj) = −

18

175
(KLJ

TFri)
2 (zje)

2

ri

= −
1.30×10−6e6(ne)

4/3z9/5
j

b11/15
MeV. (8)

For relativistic electrons, the influence from exchange
free energy was discussed in Refs. [36, 37]. Their work
showed that the correlation correction is very small.
Therefore, in this paper we have neglected the correc-
tion of the Coulomb exchange free energy interaction in
the electron gas model. By taking into consideration
the Coulomb energy and Thomas-Fermi correction due
to non-uniformity of the electron gas, the energy per cell
should be corrected as

ELJ
s (ri,zj)=Ek(ri,zj)−Ucoul(ri,zj)−E

LJ
TF(ri,zj). (9)

For two interaction nuclides, the energy required to
bring two nuclei with nuclear charge numbers z1 and z2 so
close together that they essentially coincide differs from
the bare Coulomb energy by an amount which in the
Wigner-Seitz approximation is

Usc=Es(ri,z12)−Es(ri,z1)−Es(ri,z2), (10)

where z12=z1+z2. If the electron distribution is rigid, the
contributions to Es from the bulk electron energy cancel,
and the screening potential is simply given as

Usc = Ecoul(ri,z12)−Ecoul(ri,z1)−Ecoul(ri,z2)

= 6.5984×104b2/5(z9/5
12 −z9/5

1 −z9/5
2 )MeV, (11)

where we assume the electron density is uniform, and the
screening potential is independent of the magnetic field.

From Eq. (9), the change in the screening potential
due to the compressibility of electrons in zero-pressure
magnetized condensed matter can obtained as

δELJ
TF = −

18

175
(KLJ

TFri)
2 e

2(z2
12−z

2
1−z

2
2)

ri

= −
1.30×10−6e6n4/3

e (z9/5
12 −z9/5

1 −z9/5
2 )

b11/15
. (12)

In accordance with the above discussions, the total
screening potential is the sum of the screening potential
with a uniform distribution and a corrected screening po-
tential with a non-uniform distribution. The screening
potential in a SMF is given by

ULJ
sc =Usc+δE

LJ
TF. (13)

2.2 ESP in LD model

Refs. [27] and [29] discussed the equation of state and
the electron energy in a SMF. In a SMF, the electron
number density ne is related to the chemical potential
Ue by

ne =
1

(2πρ̂)2~

∞∑

0

gn0

∫ +∞

−∞

fdpz

=
1

(2πρ̂)2~

∞∑

0

gn0

∫ +∞

−∞

[
1+exp

(
E−Ue

kT

)]−1

dpz, (14)

where ρ̂=(~c/eB)1/2 =2.5656×10−10B1/2
12 cm is the elec-

tron cyclotron radius (the characteristic size of the wave
packet), E=[c2p2

z+mec
4(1+nb)]1/2 is the free electron en-

ergy, gn is the spin degeneracy of the Landau level, g00=1
and gn0=2 for n>1, and the Fermi-Dirac distribution is
given by

f=

[
1+exp

(
E−Ue

kT

)]−1

. (15)

The electron Fermi energy including the electron rest
mass is given by

ne=
1

2π3/2λTeρ̂2

∞∑

(n=0)

gnI−1/2

(
Ue−n~ωce

kT

)
, (16)

where the thermal wavelength of the electron is λTe =
(2π~

2/mekT )2, and the Fermi integral is written as

In(y)=

∫
∞

0

xn

exp(x−y)+1
dx. (17)

The binding energy of magnetized condensed mat-
ter at zero pressure can be estimated using the uniform
electron gas model. Under the condition of a super-
strong magnetic field, the Fermi energy UF is less than
the cyclotron energy ~ωce, and the electrons only occupy
the ground Landau level. According to Ref. [27], the

125102-3



Chinese Physics C Vol. 41, No. 12 (2017) 125102

Thomas-Fermi screening wave-number is given by

(KLD
TF )2=4πe2DLD(εF)=4πe2

∂ne

∂εF
=4πe2

∂ne

∂UF

, (18)

where ∂ne/∂εF is the density of states per unit volume
at the Fermi surface. εF =P 2

F/2me. From Eq. (6.16) of
Ref. [27], we have

DLD=
∂ne

∂εF
=

3.79×106b2r3e
e2

. (19)

The Thomas-Fermi screening wave-number is given
by

KLD
TF =(

4

3π2
)1/2b1r

3/2
e =6.901×103br3/2

e . (20)

Using the linear response theory, the energy correc-
tion (in atomic units) per cell due to non-uniformity can
be calculated and given by [27]

ELD
TF (ri,zj)=−

18

175
(KLD

TFri)
2
e2z2

j

ri

=−0.0139b21r
4
i zj . (21)

The uniform electron gas model can be improved
by taking into consideration the Coulomb energy and
Thomas-Fermi correction due to non-uniformity of the
electron gas. When the electron density is assumed to
be uniform, the screening potential is independent of the
magnetic field. The change of the screening potential due
to the compressibility of the electrons for zero-pressure
magnetized condensed matter can obtained as

δELD
TF =−2.5236×10−4b2/5(z9/5

12 −z9/5
1 −z9/5

2 ). (22)

When we sum a screening potential with a uniform
distribution and a corrected screening potential with a
non-uniform distribution, the screening potential in a
SMF is given by

ULD
s =Usc+δE

LD
TF . (23)

2.3 ESP in FGP model

The influence of SES in a SMF on nuclear reactions
was also discussed in detail by Fushiki et al. [30] (FGP).
The electron Coulomb energy in the Wigner-Seitz ap-
proximation in a SMF was given by

UFGP
sc =Eatm(ri,z12)−Eatm(ri,z1)−Eatm(ri,z2), (24)

where Eatm(ri,zj) is the total energy of Wigner-Seitz cell.
If the electron distribution is rigid, the contributions to
Eatm(ri,zj) from the bulk electron energy cancel, and
the electron screening potential at high density can be
expressed as

UFGP
sc =Elatt(ri,z12)−Elatt(ri,z1)−Elatt(ri,z2), (25)

where Elatt(ri,zj) is the electrostatic energy of a Wigner-

Seitz cell and Eatm(ri,zj) = −0.9z5/3
j e2/re. Due to the

compressibility of the electron, the change in the screen-
ing potential is given by [30]

δUFGP
s = −

54

175

(
e2

re

)
1

ne

∂ne

∂Ue

[(z12)
7/3−(z1)

7/3−(z2)
7/3]

= −
54

175

(
e2

re

)
1

ne

DFGP[(z12)
7/3−(z1)

7/3−(z2)
7/3],

(26)

where

DFGP=823.1481
rene

e2

(
A

z

)4/3

ρ−4/3B2
12. (27)

The Thomas-Fermi screening wave-number is given
by

(KFGP
TF )2=1.0344×104rene

(
A

z

)4/3

ρ−4/3B2
12. (28)

Thus, the corresponding result for the changes in the
screening potential in a SMF is

δUFGP
s =−0.254

(
A

z

)4/3

ρ−4/3B2
12[(z12)

7/3−(z1)
7/3−(z2)

7/3]=−494.668

(
A

z

)4/3

ρ−4/3b2[(z12)
7/3−(z1)

7/3−(z2)
7/3] MeV,

(29)

where (A/z) is the average ratio of A/z, which corre-
sponds to the mean molecular weight per electron. Thus,
the electron screening potential in a SMF in the FGP
model is given by

UFGP
s =Usc+δE

FGP
TF =Usc+δU

FGP
s . (30)

3 Resonant reaction process and rates

3.1 Calculations of resonant reaction rates with

and without SES

The reaction rates are the sums of contributions from
the resonant and non-resonant reactions. In the case of

a narrow resonance, the resonant cross section σr is ap-
proximated by a Breit-Wigner expression [38]

σr(E)=
πω

κ2

Λi(E)Λf(E)

(E−E2
r )+

Λ2
total(E)

4

, (31)

where κ is the wave number, and the entrance and exit
channel partial widths are Λi(E) and Λf(E), respectively.
Λtotal(E) is the total width, and the statistical factor, ω,
is given by

ω=(1+δ12)
2J+1

(2J1+1)(2J2+1)
, (32)
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where the spins of the interacting nuclei and the reso-
nance are J1, and J2, respectively, and δ12 is the Kro-
necker delta.

The partial widths are dependent on the energy, and
can be written as [39]

Λi,f=2ϑ2
i,fψl(E,a)=Λi,f

ψl(E,a)

ψl(Ef ,a)
. (33)

The penetration factor ψl is associated with l and a,
which are the relative angular momentum and the chan-
nel radius, respectively. a= 1.4(A1/3

1 +A1/3
2 ) fm. Λi,f is

the partial energy width at the resonance process. Er

and ϑ2
i,f are the reduced widths, given by

ϑ2
i,f=0.01ϑ2

w=
0.03~

2

2Aa2
. (34)

Based on the above analysis, in the explosive stel-
lar burning phase, the narrow resonance reaction rates
without SES are determined by [4, 40]

λ0
r = NA〈σv〉r=1.54×1011(AT9)

−3/2

×
∑

i

ωγiexp(−11.605Eri
/T9) cm3mol−1s−1, (35)

where NA is Avogadro’s constant, A is the reduced mass
of the two collision partners, Eri

is the resonance ener-
gies and T9 is the temperature in units of 109 K. The ωγi

is the strength of the resonance in units of MeV and is
given by

ωγi=(1+δ12)
2J+1

(2J1+1)(2J2+1)

ΛiΛf

Λtotal

. (36)

The reaction rates of narrow resonances with SES are
given by

λs
r = FrNA〈σv〉r′

= 1.54×1011(AT9)
−3/2

∑

i

ωγiexp(−11.605E
′

ri
/T9)

= 1.54×1011Fr(AT9)
−3/2

×
∑

i

ωγiexp(−11.605Eri
/T9) cm3mol−1s−1, (37)

where Fr is the screening enhancement factor (SEF). The
values of E

′

ri
should be measured by experiment, but it

is too hard to provide sufficient data. In a general and
approximate analysis, we have E

′

ri
=Eri

−U0=Eri
−Us.

3.2 Screening model of resonant reaction rates

without SMF

3.2.1 Dewitt model

Dewitt et al. [16] discussed the problem of thermonu-
clear ion-electron screening at some densities. Based on
a statistical mechanical theory for the screening function,
the influence of electron screening on the nuclear reac-
tion process was also investigated in their paper. The
strong electron screening potential function is given by

[16]

Hsc
12 =

e2

rekT
{0.9(z)1/3(z5/3

12 −z5/3
1 −z5/3

2 )

+c1(z)
2/3(z4/3

12 −z4/3
1 −z4/3

2 )}

+[c2(z)
−2/3(z2/3

12 −z2/3
1 −z2/3

2 )], (38)

where c1 = 0.2843 and c2 = 0.4600, and z, the average
ionic charge, is given by

z=
∑

i

zifi=
∑

i

zi

ni

nI

, (39)

where ni and nI are the ion densities of nuclear species i
and I of the total system, respectively.

The screening enhancement factor (SEF) in the De-
witt model is written as

F 0
r (Dew)=exp(Hsc

12). (40)

3.2.2 Liolios model

At astrophysical energies the electron-screening ac-
celeration in laboratory fusion reactions always plays a
key role and is an interesting problem for astrophysics.
Based on a mean-field model, Liolios et al. [17] studied
the screened nuclear reactions at astrophysical energies.
The electron screening potential in the Liolios-screened
Coulomb model is given as [17]

ULios
0 =

15

8

z1z2e
2

Ξ
, (41)

where

Ξ=

(
15

8πz2
i

)1/3

a0=0.8853a0(z
2/3
1 +z2/3

2 )1/2. (42)

The SEF for the resonant reaction in the Liolios model
is

F 0
r (Lios)=exp

(
11.605ULios

0

T9

)
. (43)

3.3 Screening model of resonant reaction rates

in SMFs

In this subsection, we will discuss the screening po-
tential in the strong screening limit. The dimensionless
parameter (Γ ), which determines whether or not correla-
tions between two species of nuclei (z1,z2) are important,
is given by

Γ=
z1z2e

2

(z1/3
1 +z1/3

2 )rekT
, (44)

When Γ�1, the nuclear reaction rates will be influenced
appreciably by SES. According to the above three SES
models (LD, FGP, LJ) for SMFs, the three enhancement
factors for resonant reaction processes in SMFs can be
expressed as follows

FB
r (LD)=exp

(
11.605ULD

s

T9

)
, (45)
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FB
r (FGP)=exp

(
11.605UFGP

s

T9

)
, (46)

FB
r (LJ)=exp

(
11.605ULJ

s

T9

)
. (47)

4 Numerical results

4.1 Analysis of the results for SEF

Strong magnetic fields significantly modify the prop-
erties of matter and always play a critical role in astro-
nomical conditions. Figure 1 presents the variations of
ESP as a function of B12 for our SES model. The SMF
has only a slight influence on ESP when B12 > 3×103

and ρ7 < 1. However, the ESP increases greatly when
B12<1.4×103 and ρ7<1 (B12, ρ7 are in units of 1012 G,
107g cm−3, respectively). The numerical results in our
model show that the maximum value of ESP reaches 0.1
MeV. Figure 2(a) presents the ESP in the LD model as a
function of B12. The ESP increases rapidly and reaches
a maximum value of 0.008442 MeV at B12 = 80, then
decreases with increasing SMF.

Based on the Thomas-Fermi and Thomas-Fermi-
Dirac approximations, Fushiki et al. [30] analyzed the
electron Fermi energy, electron Landau level, and SES

problem in a SMF. Their results show that, as a conse-
quence of the field dependence of the screening potential,
magnetic fields can significantly increase nuclear reaction
rates [30]. Using the electron screening model of Ref. [30]
(the FGP model) in a SMF, Fig. 2(b) shows the ESP as
a function of B12 under some typical astrophysical con-
ditions. The ESP increases greatly when B12<103 and
gets to a maximum value of 0.0188 MeV at B12 =580.7
and ρ7 = 0.1. The ESP then decreases by around two
orders of magnitude when 103<B12<2×103 at ρ7=0.1.
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tial as a function of B12 in the LJ model, for some
typical astronomical conditions.
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Fig. 2. (color online) The electron screening potential as a function of B12 in the LD and FGP models, for some
typical astronomical conditions.
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Fig. 3. (color online) The resonant SEF for the LD
model as a function of B12 in the case with SES
and SMF.

The influence of SES in a SMF on nuclear reactions is
mainly reflected by the SEF. We discuss the influence of
SES on SEF by three models (LD, FGP, LJ) from Fig. 3
to Fig. 4. The SEF of the LD model is a sensitive pa-
rameter for SMF and temperature. The maximum value
of the SEF is about 1.632 for B12 =78.17 and T9 =0.2,
as shown in Fig. 3, where T9 is the temperature in units
of 109 K. For B12>219.3, however, the SEF is less than
1.001. Figure 4 presents the SEF as a function of B12

for the FGP and LJ models. From Fig. 4(a) and 4(b),
the shift of SEF in the FGP model is in good agreement
with that of the LD model at low density (e.g. ρ7=0.01).
The maximum value of SEF for the FGP model is about
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Fig. 4. (color online) The resonant SEF for the FGP and LJ models as a function of B12 in the case with SES and SMF.
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Fig. 5. (color online) Comparisons of the resonant SEF for the LJ, LD, and FGP models, in the case with SES and
SMF, for some typical astronomical conditions.

1.66 for B12 = 84.18 and ρ7 = 0.01. However, the SEF
increases with increasing B12 at relatively high density
(e.g. ρ7 = 1), then reaches a maximum value of 5.166
at T9 =0.2. Sub-figures 4(c) and 4(d) show that in the
LJ model the SEF increases with increasing B12, and

reaches a maximum at 5.056 for B12=1000, T9=0.2 and
ρ7=0.01.

In Figure 5, the resonant SEF is compared for the
LJ, LD, and FGP models for typical astronomical condi-
tions in a SMF. The results of the LD model agree well
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with those of the FGP model for relatively low density
(e.g., ρ7 6 0.01). However, the SEF of our model de-
creases smoothly with increasing B12 and T9, until it is
comparable with those of LD and FGP.

The SES problem always plays an important role in
stellar evolution. Based on a statistical mechanical the-
ory for the screening function, Dewitt et al. [16] investi-
gated the influence of electron screening on nuclear reac-
tions. Based on a mean-field model, Liolios et al. [17] also
studied the effect of screened nuclear reactions. However,
they neglected the influence of SMFs on SES. We com-
pare the SEF of these two models (Dewitt and Liolios
models) with those of LD, FGP, and LJ. We conclude
that the SEF of the Dewitt model is larger than that of
the other three SES models for B12<140, ρ7 =0.01 and
T9<0.17, as shown in Fig. 6. However, when T9<0.18,
ρ7 =0.01, the results of our model are larger than those
of Dewitt and Liolios. At a relatively high density (e.g.,

ρ7 =0.1), the SEFs of the LD, FGP and LJ models de-
crease due to SMFs and are lower than that of the Dewitt
model. The results obtained by Ref. [16] amount to an
overestimation of the screening effect because they ne-
glect the spatial dependence of the screening function.

Table 1 shows the SEF for the five typical models
under some astronomical conditions. The results of LD,
FGP, and LJ are always lower than those of Liolios and
Dewitt, due to the SMF. The SEF of our model decreases
greatly with increasing density and temperature when
B12=103. This is because the ESP increases very rapidly
as the SMF increases. The higher the ESP, the larger the
influence on SES becomes. On the other hand, the SEF
of LD decreases with increasing magnetic field because
ESP is reduced. The SEF of the FGP model reaches a
maximum of 1.929 when B12 = 103,ρ7 = 1,T9 = 0.5 and
then decreases slowly as the density and temperature in-
crease.
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Fig. 6. (color online) Comparisons of the resonant SEF for the Liolios and Dewitt models with those of the LD,
FGP, and LJ models.

Table 1. Comparisons of the resonant SEFs for Dewitt, Liolios, LD, FGP and LJ models in several typical astro-
nomical conditions. The former two models do not include SES and SMFs, while the latter three models do include
SES and SMFs.

ρ7 T9 F 0
r (Lios) F 0

r (Dew)
B12=10 B12=103

FB
r (LD) FB

r (FGP) FB
r (LJ) FB

r (LD) FB
r (FGP) FB

r (LJ)

0.01 0.1 1.7475 3.8973 1.6956 1.6964 0.1749 1.0725e-15 1.3472e-13 25.5680

0.05 0.1 1.7475 10.9451 1.6956 1.7013 8.4513e-4 1.0725e-15 0.6045 19.5717

0.1 0.2 1.3219 4.3605 1.3021 1.3045 0.0022 3.2750e-8 2.4894 3.8848

0.1 0.3 1.2051 2.5873 1.1922 1.1941 0.0174 1.0221e-5 1.8371 2.4713

0.2 0.3 1.2045 3.3934 1.1924 1.1939 9.1604e-4 1.0236e-5 2.4990 2.1361

0.3 0.4 1.1497 2.8170 1.1411 1.1422 7.7822e-4 1.8097e-4 2.1178 1.6055

1.0 0.5 1.1181 3.5124 1.1113 1.1122 6.2630e-7 0.0011 1.9290 0.9512

10 0.7 1.0830 7.2692 1.0780 1.0791 6.2012e-9 0.0072 1.6142 0.0894
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The Thomas-Fermi screening wave-number KTF is a
key parameter which strongly depends on the electron
number density and ESP. In consequence, the electron
number density and ESP will play important roles in a
SMF. Lai et al. [29] analyzed in detail the electron Fermi
energy and electron number density in a SMF based
on the works of Canuto et al. [41, 42], Kubo. [43], and
Pathria [44]. By using the uniform electron gas model
and linear response theory, Lai [27] discussed the elec-
tron energy (per cell) corrections due to non-uniformity
in a SMF. According to their theory, we study the ESP
and the SES model (i.e., LD model). The results show
that the ESP decreases as the magnetic fields increase
due to the diminution of electron chemical potential. The
LD model is valid only in the condition of KTFri � 1
at lower densities, because they investigated the non-
uniformity effect only through detailed electronic (band)
structure calculations.

The electron chemical potential is a pivotal parame-
ter, which is closely related to the electron number den-
sity and exchange energy. Based on the Thomas-Fermi-
Dirac approximation, it is given as [30]

UF=Ue=
∂wex

∂ne

=
rcyc

πa0

~ω0nI(n), (48)

where wex is the exchange energy and I(n) can be found
in Ref. [30]. By using the linear response theory, Fushiki
et al. [30] discussed the exchange energy and electron
chemical potential in the lowest Landau level for non-
uniform electron gas in a SMF. They analyzed the SES
problem in a SMF and their results showed that in a
SMF only the lowest Landau level is occupied by elec-
trons on the condition of re > (3π/8)1/3rcyc or equiv-

alently ρ < 7.04×103B3/2
12 (A/z)g/cm3. The cyclotron

radius in the lowest Landau level orbital is give by
rcyc = (2~c/eB)1/2 ' 3.36×10−10B−1/2

12 . FGP used the
expression of ne∂ne/∂UF = (3/2)ne/UF in dealing with
∂ne/∂UF. In the FGP model, they thought that at high
density the exchange correction is very small, thus they
neglected the exchange correction to ∂ne/∂UF and had
ne∂ne/∂UF=(1/2)ne/UF in a SMF. Due to different ways
of dealing with exchange correction under this condition,
the SEF of the FGP model has some differences com-
pared with other SES models.

According to statistical physics the microscopic
state number dxdydzdpxdpydpz can be given by
dxdydzdpxdpydpz/h

3 in a 6-dimensional phase-space.
The number of states occupied by completely degenerate
relativistic electrons per volume is calculated by [41, 42]

Nphase =
∑

px

∑

py

∑

pz

=
1

h3

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

dpxdpydpz

=
1

h3

∫ pF

0

dpz

∫
∞

0

p⊥dp⊥

∫ 2π

0

dθ=
πpF

h3

∫
∞

0

dp2
⊥
,

(49)

where θ = tan−1py/px, p
2
⊥
→m2c4 B

Bcr
2n, So,

∫
∞

0
dp2

⊥
→∑

∞

n=0
ωn, where ωn is the degeneracy of the n-th electron

Landau level in a relativistic magnetic field, and can be
calculated by [42–44]

ωn =
1

h2

∫ 2π

0

dφ

∫

k1<p2

⊥
<k2

p⊥dp⊥=
2π

h2

(k2−k1)

2

=
1

2π

(
~

mec

)−2
B

Bcr

=
b

2π

(
~

mec

)−2

, (50)

where k1=2nm2
ec

2 B
Bcr

=2nbm2
ec

2, and k2=2(n+1)bm2
ec

2.
Based on the works of Peng et al. [20], Gao et al. [22],

which introduced the Dirac δ-function and considered
the Pauli exclusion principle, we have discussed the SES
problem in a SMF. Our results show that the stronger
the magnetic field, the higher the Fermi energy of the
electrons becomes. The ESP increases with SMF and
the maximum value of ESP is 0.1 MeV in a SMF. The
SEF also increases greatly and its maximum approaches
5.0 MeV (e.g. ρ7=0.01,T9=0.2,B12=103 G).

4.2 Investigation of nuclear reaction rates

In explosive hydrogen-burning stellar environments,
the nuclear reaction 23Mg(p,γ)24Al plays a key role be-
cause of breaking out of the Ne-Na cycle to heavy nu-
clear species (i.e., the Mg-Al cycle). Therefore, it is
very important to accurately determine the rates for
the reaction 23Mg(p,γ)24Al. However, the resonance
energy has a large uncertainty due to the inconsistent
24Mg(3He,t)24Al measurements mentioned. This may
lead to a factor of 5 variation in the reaction rate
at T9 = 0.25 because of its exponential dependence
on Er [5]. Some authors have discussed the contribu-
tions from several important resonance states, including
Refs. [1, 3, 5, 45]. To reduce the uncertainty of the reac-
tion rates in this paper, we reference some information
about this reaction; the values of Eri

,Ex and correspond-
ing ωγi, and some average values of ωγi, are adopted and
listed in Table 2. Based on this data, we analyse the total
rates for the five SES models.

Tables 3 and 4 give a brief description of the factor
Si (i = 1,2,3) for the LD, FGP, and LJ models when
B12 = 10 and 103. As the density and temperature in-
crease, the results of the LD model are in good agree-
ment with those of FGP, but disagree with our results
at B12 = 10. This is because the electron Fermi energy
of our model is lower than those of LD and FGP in rel-
atively low magnetic fields. As the magnetic fields in-
crease from B12 = 10 to 103, the factor S3 increases by
about 2∼3 orders magnitude (i.e., from 0.1749 to 25.5680
and from 0.0022 to 3.8848) when ρ7 =0.01,T9 =0.1 and
ρ7 =0.1,T9 =0.2, respectively. When B12 =103 the fac-
tor S3 is about 39.74, 5.69, 1.56 times larger than S2

(FGP model) at ρ7 = 0.03,T9 = 0.2, ρ7 = 0.05,T9 = 0.2
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and ρ7 =0.1,T9 =0.2, respectively. From what has been
discussed above, the LD model is perhaps only suitable
for a relatively low magnetic field and low density envi-
ronment. The FGP and LD models are both unsuited to
relatively low density and high magnetic field surround-
ings (e.g. ρ7<0.1,B12>102). However, our model is well
suited to relatively high magnetic field and low density
surroundings (e.g. B12>102,ρ7<0.05).

Summing up the above discussion, our calculations
show that this SES effect in a SMF can increase nu-
clear reaction rates of 23Mg (p,γ)24Al by several orders
magnitude. More precise thermonuclear rates of 23Mg
(p,γ)24Al will help us to constrain the determination of
nuclear flow out of the Ne-Na cycle, and production of
A ≥ 20 nuclides, in explosive hydrogen burning over a
temperature range of 0.2≤T≤1.0 GK.

Table 2. Resonance parameters for the reaction 23Mg (p,γ) 24 Al.

Ex/MeVa) Ex/MeVb) Jπ Eri
/MeVc) Γp Γγ ωγi/meVd) ωγi/meVe) ωγi/meVf)

2.349±0.020 2.346±0.000 3+ 0.478 185 33 25 27 26

2.534±0.013 2.524±0.002 4+ 0.663 2.5e3 53 58 130 94

2.810±0.020 2.792±0.004 2+ 0.939 9.5e5 83 52 11 31.5

2.900±0.020 2.874±0.002 3+ 1.029 3.4e4 14 12 16 14

a) is adopted from Ref. [46]; b) from Ref. [5]; c) from Ref. [47]; d) from Ref. [4]; e) from Ref. [45]; f) is adopted in this paper

Table 3. Comparison of the rates of λ0
r, without SES, with those of the LD (λscB

r (LD)), FGP (λscB
r (FGP)) and our

calculations λscB
r (LJ), with SES, for some typical astronomical conditions at B12=10. Si=λscB

ri /λ0
r , i=1,2,3 denote

the rates of LD, FGP, and LJ model, respectively.

ρ7 T9 λ0
r

B12=10
S1 S2 S3

λscB
r (LD) λscB

r (FGP) λscB
r (LJ)

0.01 0.1 1.0942e-19 1.8552e-19 1.8561e-19 1.9138e-20 1.6956 1.6964 0.1749

0.02 0.1 1.0942e-19 1.8552e-19 1.8598e-19 4.0569e-21 1.6956 1.6998 0.0371

0.03 0.1 1.0942e-19 1.8552e-19 1.8608e-19 1.0413e-21 1.6956 1.7007 0.0095

0.03 0.2 4.2967e-8 5.5949e-8 5.6034e-8 4.1916e-9 1.3021 1.3041 0.0976

0.04 0.2 4.2967e-8 5.5949e-8 5.6041e-8 2.2448e-9 1.3021 1.3043 0.0522

0.05 0.2 4.2967e-8 5.5949e-8 5.6044e-8 1.2491e-9 1.3021 1.3043 0.0291

0.1 0.2 4.2967e-8 5.5949e-8 5.6051e-8 9.3383e-11 1.3021 1.3045 0.0022

0.2 0.4 0.0163 0.0186 0.0186 8.5713e-5 1.1411 1.1422 0.0053

0.3 0.5 0.1925 0.2140 0.2141 6.2713e-4 1.1114 1.1122 0.0033

0.5 0.6 0.9764 1.0663 1.0669 8.5404e-4 1.0920 1.0927 8.7465e-4

0.7 0.8 7.2550 7.7500 7.7537 0.0079 1.0682 1.0687 0.0011

1.0 0.9 14.0604 14.9100 14.9162 0.0050 1.0604 1.0609 3.5785e-4

Table 4. Comparison of the rates of λ0
r , without SES and SMFs, with those of the LD (λscB

r (LD)), FGP (λscB
r (FGP))

and our calculations λscB
r (LJ), with SES, for some typical astronomical conditions at B12 = 103. Si = λscB

ri /λ0
r ,

i=1,2,3 denote the rates of LD, FGP, and LJ model, respectively.

ρ7 T9 λ0
r

B12=103

S1 S2 S3
λscB
r (LD) λscB

r (FGP) λscB
r (LJ)

0.01 0.1 1.0942e-19 1.1735e-34 1.4740e-32 2.7975e-18 1.0725e-15 1.3472e-13 25.5680

0.02 0.1 1.0942e-19 1.1735e-34 6.4612e-24 2.5883e-18 1.0725e-15 5.9052e-5 23.6555

0.03 0.1 1.0942e-19 1.1735e-34 1.5306e-21 2.4177e-18 1.0725e-15 0.0140 22.0969

0.03 0.2 4.2967e-8 1.4072e-15 5.0819e-9 2.0198e-7 3.2750e-8 0.1183 4.7007

0.04 0.2 4.2967e-8 1.4072e-15 1.7120e-8 1.9575e-7 3.2750e-8 0.3984 4.5559

0.05 0.2 4.2967e-8 1.4072e-15 3.3408e-8 1.9009e-7 3.2750e-8 0.7775 4.4240

0.1 0.2 4.2967e-8 1.4072e-15 1.0696e-7 1.6692e-7 3.2750e-8 2.4894 3.8848

0.2 0.4 0.0163 2.9459e-6 0.0324 0.0288 1.8097e-4 1.9876 1.7669

0.3 0.5 0.1925 1.9523e-4 0.3509 0.2812 0.0010 1.8227 1.4604

0.5 0.6 0.9764 0.0031 1.6579 1.1949 0.0032 1.6979 1.2237

0.7 0.8 7.2550 0.0976 10.8789 7.8159 0.0135 1.4995 1.0773

1.0 0.9 14.0604 0.3053 20.2526 13.6742 0.0217 1.4404 0.9725
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5 Conclusions

In this paper, based on relativistic theory in a SMF,
we have investigated the problem of SES, and the SES
influence on the nuclear reaction of 23Mg (p,γ)24Al by
LD, FGP, and LJ strong screening models in a SMF.
The results show that the SES thermonuclear reaction
rates have a remarkable increase in a SMF. The rates
can increase by around three orders of magnitude. For
example, when B12 increases from 10 to 103, the rates
increase from 0.1749 to 25.5680 at ρ7=0.01,T9=0.1, and
from 0.0022 to 3.8848 at ρ7 =0.1,T9 =0.2. The consid-
erable increase in the reaction rates for 23Mg (p,γ) 24Al
implies that more 23Mg will escape the Ne-Na cycle due
to SES in a SMF. Then it will make the next reaction
convert more 24Al (β+,ν) 24Mg to participate in the Mg-
Al cycle. It may lead to synthesis of a large amount of
heavy elements at the crust of magnetars. These heavy
elements, which are produced from the nucleosynthesis
process, may be thrown out due to the compact binary

mergers of double neutron star (NS-NS) or black hole
and neutron star (BH and NS) systems. Furthermore,
our model for the rates is in good agreement with those
of the LD and FGP models at relatively low density (e.g.,
ρ7<0.01) and B12<102. In relatively low magnetic fields
(e.g., B12<1), the SES of the LD and FGP models have
a strong influence on the rates compared to our model.
However, the rates in our model can be about 1.58 times
and three orders of magnitude higher than those of FGP
and LD, respectively, in relatively high magnetic fields
and low density surroundings (e.g., B12>102, ρ7<0.05).
The results we derived may have very important impli-
cations in some astrophysical applications for nuclear
reactions, thermal evolution, and numerical simulation
of magnetars.
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