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Abstract: Inspired by the recent measurements of the ηc meson production at LHC experiments, we investigate

the relativistic correction effect for the fragmentation functions of gluon/charm quark fragmenting into ηc, which

constitute the crucial nonperturbative element for the ηc production at high pT. Employing three distinct methods,

we calculate the next-to-leading-order (NLO) relativistic correction to g→ηc fragmentation function in the NRQCD

factorization framework, as well as verifying the existing NLO result for the c→ ηc fragmentation function. We also

study the evolution behavior of these fragmentation functions with the aid of the DGLAP equation.
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1 Introduction

Heavy quarkonium production and polarization in
various collider experiments has long been a topic of
great interest in QCD, and has triggered intensive ex-
perimental and theoretical investigation in the past few
decades (for a recent review, see [1]).

Thus far, the modern theoretical method to tackle
heavy quarkonium (exemplified by J/ψ(ψ′) and Υ) pro-
duction and decay is represented by the effective-field-
theory approach dubbed nonrelativistic QCD (NRQCD)
factorization [2]. For the production of a charmonium
state H from colliding beams composed of particles of
type A and B, NRQCD factorization allows one to,
schematically, express the corresponding production rate
as

dσ[A+B→H+X ] =
∑

n

dσ̂n[A+B→ cc̄(n)+X ]〈OH
n 〉, (1)

where n signifies the color/angular-momentum quantum
number of the cc̄ pair produced in the hard scattering. In
(1), dσ̂n are the perturbatively-calculable short-distance

coefficients, and 〈OH
n 〉 represent the nonperturbative, yet

universal, vacuum expectation values of the NRQCD
production operators that are sensitive to H and n. The
power series in (1) is governed by the expansion in the
characteristic velocity v of the c(c̄) quark inside a char-
monium (the nonrelativistic nature of quarkonium im-
plies that v � 1), since each nonperturbative NRQCD
production matrix element has definite power counting
in v.

As an important step in theoretical progress in the
past decade, various short-distance coefficients dσ̂n rele-
vant to J/ψ production in virtually all the commission-
ing collider programs have been gradually made available
to next-to-leading order (NLO) accuracy in the strong
coupling constant, for both color-singlet and octet chan-
nels [1]. By comparing these NLO-accuracy NRQCD
predictions with the various measurements conducted at
B factorties, HERA, the Tevatron and the LHC, there is
satisfactory agreement in some cases, but also alarming
discrepancies in other cases, notoriously for J/ψ polar-
ization in hadroproduction [1]. Unfortunately, current
computational techniques limit our capability to further
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address the next-to-next-to-leading order (NNLO) per-
turbative corrections, so the viability of the NRQCD ap-
proach still awaits a sharper and more critical examina-
tion.

Very recently, for the first time, the LHCb collabo-
ration measured the differential production rate of the
pseudoscalar charmonium state ηc in the range pT(ηc)>
6.5 GeV, tagged via the decay channel ηc→ pp̄ [3]. This
is an important supplement to our knowledge on char-
monium production, since ηc production is an even more
ideal test-bed for NRQCD than J/ψ, owing to its sim-
plicity as a spin-zero meson. Very recently, the NLO
perturbative corrections to ηc hadroproduction have
been investigated in the NRQCD factorization approach
[4–6].

Besides NRQCD factorization, there is another fa-
mous first-principle approach to tackle inclusive sin-
gle hadron production, the so-called perturbative QCD
(collinear) factorization, whose applicability is not con-
fined merely to heavy quarkonium. According to
the collinear factorization theorem [7], at sufficiently
high pT, the inclusive production rate of a specific
hadron H is dominated by the following fragmentation
mechanism:

dσ[A+B→H(pT)+X ] =
∑

i

dσ̂[A+B→ i(pT/z)+X ]⊗Di→H(z,µ)+O(1/p2
T).

(2)

where i stands for a QCD parton (quark or gluon), and
z is the light-cone momentum fraction carried by H with
respect to the parent parton. dσ̂[A + B → i +X ] is
the perturbatively-calculable partonic hard cross section,
and Di→H is the nonpertubative yet universal fragmenta-
tion function, characterizing the probability distribution
for the parton i to hadronize into H carrying momen-
tum fraction z. ⊗ indicates that the hard partonic cross
section ought to be convoluted with the corresponding
fragmentation function over z.

The fragmentation functions, such as a gluon frag-
menting into π and p, are genuinely nonperturbative ob-
jects, which so far can only be extracted from exper-
iments [8]. In contrast, the situation becomes greatly
simplified if H is a heavy quarkonium. In this case, the
fragmentation function Di→H(z,µ) contains several dis-
tinct energy scales: heavy quark mass m, typical three-
momentum of quark mv, and even smaller scales such
as mv2 and ΛQCD. Owing to the fact m � ΛQCD, it
is conceivable that the hard scale m should be explic-
itly factored out from Di→H(z,µ). As a matter of fact,
by demanding the equivalence of two factorization theo-
rems (1) and (2), one concludes that the fragmentation
function itself must be subject to the following NRQCD

factorization theorem:

Di→H(z) =
∑

n

d(n)(z)〈OH
n 〉. (3)

Here d(n)(z) are the perturbatively calculable coefficient
functions, and 〈OH

n 〉 are the same NRQCD matrix ele-
ments as appear in (1).

In passing, it is worth noting that, for heavy quarko-
nium production, the NLO power correction (the order-
1/p2

T contribution in (2)) has also recently been system-
atically developed. As a consequence, a new set of non-
perturbative functions, dubbed double-parton fragmen-
tation functions, must be introduced [9, 10]. Analogous
to (3), they are also subject to a similar NRQCD factor-
ization procedure, with various LO short-distance coeffi-
cient functions having been recently calculated [11, 12].

The physical picture underlying (3) was first eluci-
dated and pursued in the NRQCD context by Braaten
and collaborators in the early 1990s (note there was
earlier work along this direction in the pre-NRQCD
era [13]). In those studies, various quarkonium fragmen-
tation functions were computed to lowest order in both
αs and v, e.g. gluon/charm quark fragmentation into S-
wave quarkonium has been computed [14, 15]. Recently,
the relativistic corrections have been investigated for the
g→ J/ψ fragmentation function [16, 17], as well as for
the c → J/ψ,ηc fragmentation functions [18]. Very re-
cently, the order-αs correction has also been addressed
to the g→ηc fragmentation function [19].

The aim of the present work is to fill a missing gap,
i.e., to compute the leading relativistic correction to the
g→ηc fragmentation function. This piece of knowledge,
in supplement with the recently available radiative cor-
rection [19], might be helpful to interpret the recent LHC
measurements on ηc production at high pT .

From a theoretical perspective, there are many equiv-
alent ways to calculate the quarkonium fragmentation
functions. Originally, Braaten and collaborators in-
vented a trick to directly extract the fragmentation func-
tions in a process-independent fashion. This method is
simple and efficient for a LO calculation, but may become
cumbersome if one proceeds to higher order in αs and v.
Soon after, Ma pointed out [15] that the NRQCD factor-
ization of a quarkonium fragmentation function can be
conveniently calculated starting from the operator defini-
tion of fragmentation function introduced by Collins and
Soper [20]. This elegant approach has the advantage that
it preserves manifest gauge invariance, and allows one to
systematically address the higher-order corrections, as
was illustrated in Refs. [16, 19].

In this work, we will use three different approaches to
compute the order-v2 correction to the g→ηc fragmenta-
tion function: the Collins-Soper definition, the Braaten-
Yuan method, and extracting from a specific physical
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process involving ηc production. After obtaining the de-
sired expressions, we also attempt to study the evolution
behavior of the fragmentation functions of g → ηc and
c→ηc.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a short review of the factorization of
the fragmentation function for g→ηc in NRQCD frame-
work, and briefly outline our matching strategy. In Sec-
tion 3, we compute the short-distance coefficients for the
gluon fragmenting into the spin-singlet state ηc through
relative order-v2 by employing three different methods,
and confirm that all of them yield the same answer. In
Section 4, we revisit the c quark fragmenting into ηc

and verify the previous results through relative order-v2.
We also employ the DGLAP equation to evolve both the
fragmentation functions of g→ ηc and c→ ηc to higher
energy scales. Finally we summarize in Section 5.

2 Fragmentation function in NRQCD

In line with the NRQCD factorization (3), through
the relative order-v2, the fragmentation function of a
gluon fragmenting into the pseudoscalar quarkonium ηc

reads

Dg→ηc(z) = d(0)(z)〈Oηc
1 〉+d(2)(z)

〈Pηc
1 〉
m2

+O(v3), (4)

where d(0)(z) and d(2)(z) are the corresponding short-
distance coefficient functions. Oηc

1 and Pηc
1 are color-

singlet NRQCD production operators:

Oηc
1 =

∑

X

χ†ψ|ηc +X〉〈ηc +X |ψ†χ, (5a)

Pηc
1 =

1

2

∑

X

[

χ†ψ|ηc+X〉〈ηc+X |ψ†
(

− i

2

←→
D

)

2χ+h.c.
]

,

(5b)

where ψ, χ are Pauli spinor fields in NRQCD, and

ψ†
←→
Dχ ≡ ψ†(Dχ) − (Dψ)†χ, and Dµ is the gauge-

covariant derivative.
The involved nonperturbative matrix elements in (4)

are the vacuum expectation values of those color-singlet
NRQCD production operators as specified in (5b). Un-
der the vacuum saturation approximation, which is ac-
curate up to O(v4), the LO matrix element can be ap-
proximated well by the Schrödinger wave functions at
the origin for the ηc in the potential model:

〈Oηc
1 〉≈

Nc

2π
|Rηc(0)|2, (6)

where Nc = 3 is the number of colors in QCD.
Rather than cope with the order-v2 matrix element

itself, it is more convenient to introduce a dimensionless
ratio of the following NRQCD matrix elements:

〈v2〉ηc =
〈Pηc

1 〉
m2〈Oηc

1 〉
≈
〈ηc|ψ†(−

i

2

←→
D )2χ|0〉

m2〈ηc|ψ†χ|0〉
, (7)

where the second equality is again obtained by invok-
ing the vacuum saturation approximation. It is often
useful to estimate the 〈v2〉ηc from the so-called Gremm-
Kapustin relation [22]:

Mηc

2m
= 1+

1

2
〈v2〉ηc +O(v4). (8)

If the charm quark mass is taken as the one-loop pole
mass, m= 1.4 GeV, then 〈v2〉ηc ≈ 0.13.

Our central goal is to determine the short-distance
coefficient functions d(0)(z) and d(2)(z). To this purpose,
we will use the standard matching technique. Namely,
since the short-distance coefficients are independent of
the long-distance dynamics, we can freely replace the
physical hadron ηc by a free c(p)c̄(p̄) pair carrying the
following momenta:

p=
P

2
+q, p̄=

P

2
−q, (9)

where P 2 = 4E2, P · q = 0 and q2 = m2 −E2, so that
p2 = p̄2 = m2. In the cc̄ pair (quarkonium) rest frame,
one has P µ = (2E,0), qµ = (0,q), so E =

√
m2 +q2. We

can further enforce the cc̄ pair to bear quantum number
1S(1)

0 .
We then substitute this fictitious ηc state into the

factorization formula (4):

D
g→cc̄(1S

(1)
0 )

(z) = d(0)(z)〈O
cc̄(1S

(1)
0 )

1 〉+d(2)(z)
〈P

cc̄(1S
(1)
0 )

1 〉

m2
+O(v3),

(10)

Since both the left-hand side and right-hand side in
(10) can now be computed in perturbation theory, we
can readily solve for d(0)(z) and d(2)(z).

Firstly, one can trivially deduce the NRQCD matrix
elements that appear in (10):

〈Occ̄(1S
(1)
0 )

1 〉= 2Nc, (11a)

〈Pcc̄(1S
(1)
0 )

1 〉= 〈Occ̄(1S
(1)
0 )

1 〉q2. (11b)

Note that the c(c̄) state in the NRQCD matrix elements
obeys the nonrelativistic normalization.

We briefly describe our strategy of computing the
left-hand side of (10). After writing down the QCD am-
plitude to produce the free c(p) and c̄(p̄), ū(p)Av(p̄),
we have to project out the c(p)c̄(p̄) pair onto the desired
1S(1)

0 state. We employ the standard covariant trace tech-
nique [23], with the aid of the following projector:

Π(1)
1 =

(p̄/−m)γ5(P/+2E)(p/+m)

8
√

2E2(E+m)
⊗ 1C√

Nc

. (12)

Thereby we extract the singlet amplitude by the opera-
tion M = ū(p)Av(p̄)→ Tr(AΠ(1)

1 ), where the cc̄ pair is
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in the spin/color-singlet state. We emphasize that, by
using the above projection operator in (12), we have tac-
itly assumed that the quark and antiquark in the QCD
side are normalized nonrelativistically.

We need to further single out the S-wave orbital an-
gular momentum contribution. We first truncate the
amplitude M to quadratic order in qµ, then take the
following procedure:

MS−wave =M0 +
q2

m2
M2 +O(q4), (13)

where

M0 = lim
q→0

M, (14a)

M2 =
m2

6

(

−g
αβ +

P αP β

4E2

)

lim
q→0

(

∂
2
M

∂qα ∂qβ

)

.(14b)

TheM0 andM2 are then the desired QCD amplitudes
to produce a cc̄ pair in the 1S(1)

0 state, accurate through
order-v2.

3 Perturbative calculation of short-

distance coefficients

In this section, we will employ several different meth-
ods to ascertain the short-distance coefficients associated
with the gluon fragmenting into ηc through order v2.
They all yield identical results, thus serving as a useful
consistency check.

3.1 From Collins-Soper definition

The rigorous operator definition of the fragmenta-
tion function was introduced by Collins and Soper in
1981 [20]. It is convenient to adopt the light-cone coor-
dinate, where xµ = (x+,x−,x⊥) with x± = (x0±x3)/

√
2,

and x⊥ = (0,x1,x2,0). We assume the parent (virtual)
gluon moves along the z axis, that is, kµ = (k+,k−,k⊥=
0), and the final-state hadron H carries the momen-

tum P µ =

(

P+,P−=
M 2

H +P2
⊥

2P+
,P⊥

)

, where MH is the

hadron mass. The corresponding g→ H fragmentation
function is defined as

Dg→H(z) =
−gµνz

d−3

2πk+(N 2
c −1)(d−2)

∫ +∞

−∞
dx−e−ik+x−

∑

X

〈0|G+µ
a (0)L [0,∞]

ab
|H(P+,P−,P⊥)+X〉

×〈H(P+,P−,P⊥)+X |L [∞,x−]bcG
+ν
c (x−)|0〉,

(15)

where d = 4 is the spacetime dimension, and G+µ
a

signifies the gluon field strength tensor. Specifi-
cally, the daughter hadron H carries the 4-momentum

(

P+ = zk+,P−=
M 2

H +P2
⊥

2zk+
,P⊥

)

. L [x−,y−]
ab

repre-

sents the gauge link:

L
[

x−,y−
]

ab
=

[

P exp

(

−igs

∫ y−

x−

dξ−n ·A(0, ξ−,0⊥)

)]

ab

, (16)

where Aµ =Aµ
aT

a is the matrix-valued gluon field, and
T a is the generator of the SU(Nc) group in adjoint repre-
sentation. P implies the path-ordering. The null vector
nµ = (0,1,0⊥) defines the “minus” light-cone direction,
so that n ·A=A+.

Fig. 1. One typical diagram for the fragmentation
function g → cc̄(1S

(1)
0 ) at the leading order in αs

in Feynman gauge. The double line represents the
eikonal line that originates from the gauge link,
the vertical dashed line implies imposing a cut.

Following the above definition, together with the
matching strategy outlined in Section 2, we can replace
the physical ηc by a fictitious free cc̄ pair. For the gluon
fragmenting into the cc̄(1S(1)

0 ) state, in the Feynman
gauge one can draw four Feynman diagrams at the lead-
ing order in αs, one of which is depicted in Fig. 1. The
relevant Feynman rules can be found in Ref. [20]. After
some algebra, this perturbatively calculable fragmenta-
tion function can be expressed as

Dg→cc̄(1S0) =
α2

sE

N 2
c −1

∫

dl+d2l⊥

(2π)32l+

∫

dP+d2P⊥

(2π)32P+

2πδ(zk+−P+)δ(k+−P+− l+)×δ(2)(P⊥+ l⊥)

×Fc

2
∑

i,j=1

Tr
[

Lσα
i Gρσαβ(Lρβ

j )†
]

,

(17)

where Fc = Tr(T aT b)Tr(T aT b) =
N 2

c −1

4
is the corre-

sponding color factor, and lµ stands for the 4-momentum
of the gluon recoiling against the cc̄ pair. The rank-4
tensor Gρσαβ = gαβg

µν(gµρk
+−kµnρ)(gνσk

+−kνnσ) stems
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from the product of two vertices of the gluon interacting
with the eikonal line, while Li (i = 1,2) represents the
remaining ordinary quark-gluon amplitudes:

Lσα
1 =

Tr

[

γσ

(

1

2
P/+q/+ l/+m

)

γαΠ(1)
1

]

(

P

2
+q+ l

)2

−m2

, (18a)

Lρβ
2 =

Tr

[

γβ

(

−1

2
P/+q/− l/+m

)

γρΠ(1)
1

]

(

P

2
−q+ l

)2

−m2

, (18b)

where the projector Π (1)
1 has been given in (12).

The S-wave amplitudes are extracted following the
recipe given in (13) and (14). After squaring the S-wave
amplitudes, carrying out the phase-space integration to
get rid of all the δ-functions in (17), and finally perform-
ing the trivial angular integration in P⊥, we end up with
the following one-fold integral:

D
g→cc̄(1S

(1)
0 )

=α2
s

∫ ∞

0

dρ

(

A0 +
q2

m2
A2 +O(q4)

)

, (19)

where ρ= P2
⊥ is the modulus of the transverse momen-

tum of the cc̄ pair, and

A0 =
8z(1−z)

(

ρ2
(

z2 +(1−z)2
)

+8ρm2(1−z)3 +16m4(1−z)4
)

mNc (4m2(1−z)+ρ)2 (4m2(1−z)2 +ρ)2
,

(20)

and

A2=−
4z(1−z)

3Ncm(4m2(1−z)+ρ)3(4m2(1−z)2 +ρ)3
[

5ρ4 (z2+(1−z)2)−4ρ3m2(1−z)(34z3−100z2+81z−32)

+16ρ2m4(1−z)3(80z2−117z+66)−64ρm6(1−z)5

×(51z−56)+4352m8(1−z)7
]

.

The integral over ρ can be transformed into a more
conventional phase-space integral through

ρ= (1−z)(zs−4E2), (21)

where s is the squared invariant mass of the final-state
cc̄+g system. ρ> 0 then implies that s> 4E2/z. If we
replace ρ by s in (19), and replace the lower boundary
to s> 4m2/z, we can fully recover the corresponding LO
expression in Ref. [19].

After fulfilling the integration over ρ, and matching
(10) onto (19), we can obtain the corresponding short-
distance coefficient functions accurate through order-v2:

d
(0)(z)=

α2
s

4N2
c m3

[

3z−2z
2+2(1−z)ln(1−z)

]

, (22a)

d
(2)(z)=−

11

6
d
(0)(z). (22b)

Equation (22a) recovers the well-known LO re-
sult [14, 15]. Equation (22b) is the central result of this
work. The relativistic correction tends to dilute the LO
fragmentation contribution. A curious feature is that,
although the integrand in (21) does not resemble (20) at
all, d(2)(z) turns out to bear the exactly identical func-
tional dependence on z as d(0)(z). It is interesting to
observe, although likely to be only a coincidence, that
for the short-distance coefficient function associated with
g → cc̄(3S(8)

1 ), the ratio of the order-v2 term and the

order-v0 term also turns out to be −11

6
[16].

We have also redone the calculation in the light-cone
gauge A+ = 0, where the gauge link in Fig. 1 is absent.
We again reproduce the results listed in (22). Hence, we
have explicitly checked the gauge invariance of this frag-
mentation function according to the Collins-Soper defi-
nition.

Substituting these short-distance coefficients (22)
into the NRQCD factorization formula (4), we then ob-
tain the fragmentation function of g → ηc. It is inter-
esting to deduce the total fragmentation probability of
g → ηc (the 1st Mellin moment of the fragmentation
function):

∫ 1

0

dzDg→ηc(z) =
α2

s〈Oηc
1 〉

12N 2
cm

3

(

1− 11

6
〈v2〉ηc

)

, (23)

Obviously, provided that 〈v2〉ηc is positive, incorporat-
ing the relativistic correction decreases the fragmenta-
tion probability of g→ηc.

For the latter use, we are also interested in the 2nd
Mellin moment of the fragmentation function, which
might be interpreted as the average momentum fraction
of the ηc meson in the g fragmentation process:

∫ 1

0

dz zDg→ηc(z) =
α2

s〈Oηc
1 〉

18N 2
cm

3

(

1− 11

6
〈v2〉ηc

)

. (24)

3.2 Extraction from Higgs boson decay

In this section, we attempt to extract the g→ηc frag-
mentation function from a specific process, say, inclusive
ηc production from Higgs boson decay, h→ g∗g→ηc+gg.

The Higgs coupling to two gluons plays a crucial role
in discovering the Higgs boson at the LHC experiment.
In the Standard Model, it can be represented by an

effective operator −λ
v
hGa

µνG
a,µν , where v signifies the

Higgs vacuum expectation value, and the effective cou-

pling λ =
αs

12π
+O(α2

s) receives the major contribution

from the top quark loop. From this effective operator,
one can readily deduce the Higgs boson hadronic width
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Γ0 =
2λ2M 3

h

πv2
.

We are interested in inferring the energy spectrum
of the ηc meson in h(K) → ηc(P ) + g(k1)g(k2). It is
convenient to introduce the three dimensionless energy
fraction variables:

z≡ 2P ·K
K2

=
2P 0

Mh

, (25a)

x1≡
2k1 ·K
K2

=
2k0

1

Mh

, (25b)

x2≡
2k2 ·K
K2

=
2k0

2

Mh

, (25c)

which is subject to the energy conservation condition
x1 + x2 + z = 2. For convenience, we also introduce a

dimensionless ratio r ≡ Mη2
c

M 2
h

. We then expect that the

gluon fragmentation function can be read off from

Dg→ηc(z) = lim
Mh→∞

1

Γ0

dΓ [h→ηc(z)+gg]

dz
, (26)

while holding Mηc fixed.
In accordance with the matching ansatz, our goal is

again to compute the process h→ cc̄(P, 1S(1)
0 )+gg. At

the lowest order in αs, there are four Feynman diagrams,
one of which is depicted in Fig. 2.

Fig. 2. One typical diagram for h→ cc̄(P, 1S
(1)
0 )+

gg. The cross denotes the hGa
µνGa,µν vertex. We

suppress the additional three diagrams, which can
be obtained by reversing the quark line and per-
mutating the final state gluons.

After truncating the S-wave amplitude through order
q2, we then obtain the squared amplitude according to
|M|2 = |M0|2 + q2

m2 (M0M∗
2 +M2M∗

0). Accordingly, the

decay rate of h→ cc̄(1S(1)
0 )+gg can be put in the form:

Γ [h→ cc̄(z, 1S(1)
0 )+gg] =

Mh

256π3

∫ 1+r

2
√

r

dz

∫ x+
1

x−

1

dx1|M|2,

(27)

where we have replaced r by 4E2/M 2
h . The integration

boundaries of z are explicitly labeled. Obviously, its al-
lowed range reduces to 0 6 z 6 1 as Mh → ∞. The
boundaries for the energy fraction of gluon 1, dubbed
x±1 , read

x±1 =
2−z±

√
z2−4r

2
. (28)

After carrying out the phase-space integration over x1

and substituting (28), we can reshuffle the corresponding
expression to the second order in q. In line with (26),
dividing this expression by the hadronic decay width of
h→ gg, we only retain those terms that survive in the
r → 0 limit. By solving the matching equation (10),
we find the exactly identical expressions of d(0)(z) and
d(2)(z) as given in (22), which were previous obtained
via the Collins-Soper definition.

Alternatively, one can also apply the Braaten-Yuan
trick [14] to extract the gluon fragmentation function,
through order v2. In a similar spirit to the preceding
Higgs boson decay example, this approach also aims to
extract the fragmentation function from a physical pro-
cess. Nevertheless, the virtue of this method is that it
does not need specify any concrete process, and the only
required knowledge is the off-shell amplitude g∗→ ηc+g.
After some trick in factorizing the phase space integra-
tion, one ends up with a one-dimensional integral which
exactly resembles what is encountered in the Collins-
Soper approach. Not surprisingly, we again reproduce
the results for d0(z) and d2(z) as given in (22).

4 Evolution of fragmentation functions

Recently LHC has measured ηc production with
pT 6 16 GeV [3], which is already considerably greater
than the charm quark mass. One may worry that

the large collinear logarithms

(

αs ln
p2

T

m2
c

)n

could po-

tentially ruin the fixed-order prediction. These large
logarithms are most conveniently resummed by in-
voking the famous Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation:

µ
∂

∂µ
Di→ηc(z,µ)

=
αs(µ)

π

∑

j∈(g,c)

∫ 1

z

dy

y
Pj←i

(

z

y
,µ

)

Dj→ηc(y,µ), (29)

where Pj←i is the splitting kernel for parton i splitting
into parton j. Therefore, in order to understand the evo-
lution of g → ηc fragmentation function, inevitably we
also need knowledge of the c→ ηc fragmentation func-
tion, due to the non-vanishing off-diagonal splitting ker-
nel Pj←i. For simplicity, we neglect the contribution from
the light quark/antiquark fragmenting into ηc, since they
are suppressed by additional powers in αs.
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The LO splitting kernels read:

Pc←c(z) =
4

3

[

1+z2

(1−z)+
+

3

2
δ (1−z)

]

, (30a)

Pg←c(z) =
4

3

[

1+(1−z)2
z

]

, (30b)

Pc←g(z) =
1

2

[

z2 +(1−z)2
]

, (30c)

Pg←g(z) = 6
[(1−z)

z
+

z

(1−z)
+

+z (1−z)

+

(

11

12
− nf

18

)

δ (1−z)
]

, (30d)

where nf is the number of active light quark flavors.
The LO fragmentation function of the c quark into ηc

was known long ago [15, 21]. The first-order relativistic
correction has been computed recently [18]. Through or-
der v2, the corresponding short-distance coefficient func-
tions read

d(0)
c→ηc

(z) =
16α2

sz(1−z)2(48+8z2−8z3 +3z4)

243m3(2−z)6 , (31a)

d(2)
c→ηc

(z) =− 8α2
sz(1−z)2

729m3(2−z)8 (2112−2496z+80z2−128z3

+268z4−148z5+15z6). (31b)

We have confirmed both the order-v0 and order-v2 re-
sults given in (31), by utilizing two different approaches:
starting from the Collins-Soper definition, and extracting
from a specific process γ∗→ηc +cc̄.

The 1st Mellin moment of the fragmentation function
(fragmentation probability for c→ηc) is

∫ 1

0

dzDc→ηc(z) =

8α2
s〈Oηc

1 〉
81N 2

cm
3
×
[

2319

5
−666ln2+

(

1027

14
−109ln2

)

〈v2〉ηc

]

.

(32)

Here the relativistic correction also tends to dilute the
fragmentation probability.

We also compute the 2nd Mellin moment (average
momentum fraction of ηc) for the c→ ηc fragmentation
function:
∫ 1

0

dz zDc→ηc(z)

=
8α2

s〈O
ηc
1 〉

81N2
c m3

[

9738

5
−2808 ln2+

(

67407

35
−2780 ln2

)

〈v2〉ηc

]

.

(33)

For the nonperturbative input parameters, we take
〈Oηc

1 〉 ≈ 0.244 GeV3, which is obtained from |Rηc(0)|2 =
0.512GeV3 [21] through (6). We also take 〈v2〉ηc = 0.13,
which is obtained through the Gremm-Kapustin rela-
tion [22] by choosing the one-loop charm quark pole mass
to be 1.4 GeV. The QCD coupling constants at initial
scales are set as αs(2mc) = 0.266, αs(3mc) = 0.233, as-
sociated with the gluon and the c quark fragmentation,
respectively.

We utilize the elaborate FORTRAN/C++ package
HOPPET [24] to numerically solve the DGLAP evolution
equation. We consider two types of evolution equations:
the evolution by only implementing the diagonal splitting
kernels (c→ c and g→ g) as the non-singlet (NS) (with-
out mixing), as well as the evolution incorporating the
off-diagonal splitting kernel as the singlet (S) (with mix-
ing effect). The starting scales for the non-singlet evolu-
tion are set as 3mc and 2mc, for c→ηc and g→ηc frag-
mentation functions, respectively, roughly corresponding
to the invariant masses of the final states of c→ηc+c and
g→ ηc +g. We choose the evolved scales to be 15 GeV
and 45 GeV, respectively.

The singlet evolution is a more delicate issue. In
the beginning we carry out non-singlet evolution for the
gluon fragmentation function from 2mc to 3mc. Subse-
quently, by incorporating the mixing effect, we perform
the singlet evolution for both fragmentation functions
from 3mc to the scales 15 GeV and 45 GeV.

In Fig. 3 and Fig. 4, we display the evolution of the
fragmentation functions with different energy scales, also
including relativistic correction effects. The effect of rel-
ativistic corrections at different scales is quantified by
the following factor:

∆c/g→ηc (µ)

=

∫ 1

0

dz zDc/g→ηc(z,µ)−
∫ 1

0

dz zD(0)

c/g→ηc
(z,µ)

∫ 1

0

dz zD(0)

c/g→ηc
(z,µ)

, (34)

where D(0) is the LO fragmentation function, and D rep-
resents the LO+NLO fragmentation function. The rea-
son we choose the second Mellin moments in (34), rather
than the first moments, is that upon evolution, the gluon
fragmentation function diverges as z→ 0. This renders
the numerical extrapolation unreliable, so we deliber-
ately multiply by a factor of z to suppress the contri-
bution from the small z region.

The numerical values of ∆ are listed in Table 1.
The magnitudes of the O (v2) corrections range from 8%
to 24% with respect to the LO results. It should be
noticed that ∆NS

g→ηc
(µ) is independent of the evolution

scale, which can be attributed to the fact that the NLO
correction to the g→ ηc fragmentation function is pro-
portional to the LO result. In particular, one predicts
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∆NS
g→ηc

=−11

6
〈v2〉ηc =−0.238.

Table 1. Numerical results of relative relativistic
corrections ∆c/g→ηc (µ).

µ =4.2 GeV µ = 15 GeV µ =45 GeV

∆NS
c→ηc

(µ) −0.108 −0.108 −0.108

∆NS
g→ηc

(µ) −0.238 −0.238 −0.238

∆S
c→ηc

(µ) −0.108 −0.093 −0.080

∆S
g→ηc

(µ) −0.239 0.154 0.165

After including the mixing effect, we observe that
at large evolution scale, a remarkable rise of the c→ ηc

fragmentation function occurs in the small z region. This
can be attributed to the singular behavior of the splitting
kernel of c→ g as z→ 0. Incorporating the mixing effect
leads to drastically different shapes of the fragmentation
functions with respect to those obtained from the non-
singlet evolution, especially for the c→ηc fragmentation
function.

Fig. 3. Fragmentation functions of g→ ηc and c→ ηcs at different energy scales (without mixing).

Fig. 4. Fragmentation functions of g→ηc and c→ηc at different energy scales (with mixing).

5 Summary

In this work, we have calculated the leading relativis-
tic correction to the fragmentation function for g→ ηc.
Curiously, the order-v2 fragmentation function shares the
same functional z dependence as the LO one, differing

only by an overall factor −11

6
〈v2〉. The relativistic cor-

rection appears to considerably suppress the g→ηc frag-
mentation probability. The effect of relativistic correc-

tion to this fragmentation function is opposite to the
NLO QCD radiative correction, which notably enhances
the fragmentation probability for g→ηc [19].

We have also confirmed the previous results of the
order-v2 correction to the c→ηc fragmentation function.
We further study the DGLAP evolution of the fragmen-
tation functions for g → ηc and c → ηc. We find that
incorporating the mixing effect in evolution has a strik-
ing impact on the small-z behavior of the fragmentation
function.
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When more copious ηc samples are collected at high-
pT in future LHC experiments, it will be interesting
to conduct comprehensive phenomenological analysis to
test our understanding of the g,c → ηc fragmentation

mechanism.
We are grateful to Wen-Long Sang for useful discus-

sions. X.-X wishes to thank Alessandro Bacchetta for

discussions of the HOPPET package.
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