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1 Introduction

In the last decade the development of holographic
techniques has given new insights into hydrodynamics
with strong couplings. One celebrated achievement is
the Kovtun-Son-Starinets (KSS) bound for the ratio of
shear viscosity to entropy density [1]

η

s
>

1

4π

, (1)

which is considered as a fundamental bound for near-
perfect fluid with strong interactions. However, in recent
years counter-examples which violate the KSS bound
(1) have been found in holographic literature, includ-
ing higher derivative gravity [2, 3], anisotropic systems
[4–7], and isotropic systems without translational invari-
ance [8–15]. In the latter case, shear viscosity loses
its hydrodynamical interpretation because of the non-
conservation of momentum and is usually defined by the
Kubo Formula

η = lim
ω→0

1

ω
ImGR

T̂ xy T̂ xy (ω,k = 0), (2)

where GR
T̂ xy T̂ xy is the retarded Green function of the

energy-momentum tensor operator T̂ xy in the dual
boundary theory. Nevertheless, it is still instructive to
investigate the temperature behavior of the ratio of shear
viscosity to entropy density in general holographic mod-
els without translational invariance.

Historically, the breaking of translational invariance
is introduced in holography to study the transportation
of the dual system with momentum dissipation [8, 16–
30]. In this setup, new geometries in the IR may emerge
and often be accompanied by new scaling relations, lead-
ing to new scaling behavior of thermodynamic quantities
or Green functions with temperature T or frequency ω
[31–39].

In particular, by virtue of recent progress in Ref. [9],
it has been learned that when the translation symmetry
breaking is relevant in the far IR, the ratio exhibits a
power law behavior with temperature

η

s
∼T κ, (3)

which reflects the scaling symmetry emerging in the IR
region. Moreover, a new bound for the exponent κ was
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proposed as κ 6 2 there, which might be supported by
a heuristic argument based on the bound for the rate of
entropy production,

~

kBT

d log(s)

dt
& 1. (4)

Other holographic models have been investigated in
[8, 10–12, 14, 15], which also satisfy the bound κ 6 2.
In Ref. [13], however, we find κ > 2 is possible when the
Lifshitz scaling [40–42] or hyperscaling violation [22, 43–
57] emerges in the IR. The bound for the rate of entropy
production (4) is not violated, since the origin of the
power law (3) should be understood as the nontrivial
anomalous dimensions of (2) under the rescaling of the
IR solution [9, 13].

Furthermore, in Ref. [13] we have analytically de-
rived a formula for κ in a general Einstein-Maxwell-
Dilaton-Axion (EMD-Axion) model with spatial dimen-
sion d, dynamical critical exponent z as well as hyper-
scaling violating exponent θ. Specifically, we find

η

s
∼T

d+z−θ
z

(

−1+

√

8(z−1)

(d+z−θ)(1+e2)
+1

)

, (5)

where e2 is defined as the ratio of the Maxwell term and
one of the lattice terms in the Lagrangian. However, in
[13] only for the case of e2 =0 has this formula (5) been
justified by numerical calculation on neutral background.
In this paper we intend to extend this to verify the valid-
ity of (5) on a charged background within EMD-Axion
models. Schematically, the case of e2 6= 0 can be real-
ized by relevant currents. We will numerically construct
specific charged backgrounds with ultraviolet (UV) com-
pletion and then compute the power law of the ratio of
shear viscosity to entropy density. As a result, we will
show that the formula for the ratio η/s in (5) which was
previously proposed in Ref. [13] based on the scaling
analysis can indeed be justified even for e2 6= 0.

In this paper, we adopt the statement about
‘(marginally) relevant’ and ‘irrelevant’ in Ref. [32]: the
current or the axion being (marginally) relevant means
that the Maxwell or the axion terms are the same or-
der as the curvature term and the dilaton potential in
the Lagrangian in the power of the radial coordinate;
the current or the axion being irrelevant means that the
Maxwell or the axion terms are subleading comparing to
the curvature term and the dilaton potential. Roughly
speaking, a field being (marginally) relevant or irrelevant
depends on whether or not it would strongly deform the
IR geometry.

2 EMD-Axion model and hyperscaling

violating metric

In this section we will present our holographic setup
and then outline the logic leading to the formula for the

exponent κ in (5) based on the scaling analysis. The ac-
tion of a general EMD-Axion model in d+2 space time
reads as

S =

∫

dtddxdr
√−g(R+Lm),

Lm =−1

2
(∂φ)2−J(φ)

2

d
∑

i=1

(∂χi)
2+V (φ)−Z(φ)

4
F 2, (6)

where χi(i = 1,2, · · · ,d) are axions and J(φ),Z(φ),V (φ)
are the coupling functions or potential of the dilaton field
φ. Given the above action, the equations of motion can
be derived as follows

Rµν +
1

d
gµνT −Tµν = 0,

Tµν =− 1√−g

δ(
√−gLm)

δgµν
=

1

2
gµνLm− δLm

δgµν
, (7a)

∇2φ− J ′(φ)

2

d
∑

i=1

(∂χi)
2 +V ′(φ)− Z ′(φ)

4
F 2 = 0, (7b)

∇ν(Z(φ)Fµν) = 0, (7c)

∇µ(J(φ)∂µχi) = 0, i = 1,2, · · · ,d. (7d)

For simplicity, we only consider isotropic solutions with
the following ansatz

ds2 =−gtt(r)dt2 +grr(r)dr2 +gxx(r)
d
∑

i=1

dx2
i ,

φ = φ(r), χi = kxi, A = At(r)dt, (8)

where translational invariance is broken by the axions
χi but the metric and energy-momentum tensor remain
homogeneous.

As stated above, we are interested in solutions inter-
polating between AdS in the UV and the hyperscaling
violating solution in the IR. It can be realized by the
process of UV completion [46]. Firstly, we construct a
hyperscaling violation solution with a running dilaton.
Secondly, we modify the local behaviors of potentials to
graft the solution onto AdS in the UV. Generally, solu-
tions with AdS exist when the dilaton reaches the ex-
tremal point of its potential and the Lorentz symmetry
is maintained [56].

Let us first find hyperscaling violating solutions.
When the potentials behave as

V (φ)∼V0e
αφ, J(φ)∼eβφ, Z(φ)∼eγφ, when φ→±∞,

(9)
it is found in Refs. [31, 32] that scaling solutions with hy-
perscaling violation exist, whose metric and matter fields
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read as

ds2 = r
2θ
d

(

−dt2

r2z
+

L2dr2

r2
+

∑d

i=1
dx2

i

r2

)

,

A = Qrζ−zdt, eφ = rε, χi = kxi, (10)

where k characterizes the scale of breaking translational
invariance and ζ is called the conduction exponent [57].
Parameters {z,θ,ζ,ε,k,Q} in ansatz (10) are determined
by the equations of motion (7). The solutions are found
to be classified into four classes [32], depending on the
parameters {α,β,γ,V0} in potentials (9). Among them,
the explicit solutions with (marginally) relevant axions
are shown in Appendix A. The metric in (10) can be
deformed into a black hole solution

ds2 = r
2θ
d

(

−f(r)dt2

r2z
+

L2dr2

r2f(r)
+

∑d

i=1
dx2

i

r2

)

, (11)

where the blackness function is

f(r) = 1−
(

r

r+

)δ0

, δ0 = d+z−θ. (12)

Then, the Hawking temperature and entropy density are
separately given by

T =
|δ0|
4π

r−z
+ , s = 4πrθ−d

+ = 4π

(

4πT

|δ0|

)
d−θ

z

. (13)

From Maxwell equation (7c), we have conserved charge
density

ρ =
√
−gZ(φ)F rt. (14)

It can be shown that there exists a scaling relation

x→ cx, r→ cr, t→ czt, ds→ cθ/dds, T → c−zT, s→ cd−θs.
(15)

We will come back to the UV completion and modify the
potentials in next section.

Now we turn to the study of shear viscosity η. From
the Kubo formula (2), η can be derived by perturbing
(δg)x

y = gxxδgxy = h(r)e−iωt, which is the dual field of

operator T̂ xy. The Einstein equations (7a) give rise to
the shear perturbation equation

1√−g
∂r(

√−ggrr∂rh(r))+(gttω2−m(r)2)h(r) = 0, (16)

with varying mass

m(r)2 = 2

(

gxxTxx−
δTxy

δgxy

)

. (17)

h(r) is required to be regular at the horizon and equal
to 1 at the conformal boundary r∂ . The varying mass is

supposed to satisfy the condition m(r)2 > 0 in the models
considered so far. Here, we have m(r)2 = J(φ)k2gxx.

η/s can be obtained by the weaker horizon formula
[9, 58]

η

s
=

1

4π

h0(r+)2, (18)

where h0(r) is the solution at ω = 0 and r+ is the location
of the horizon.

Following the analysis presented in Ref. [13], one can
calculate the exponent κ of η

s
∼ T κ. Here we present

a simpler derivation with the use of formula (18). If
the axion is (marginally) relevant, by using the Einstein
equations (7a) and the black hole metric (11), we have

m(r)2 = M 2r− 2θ
d , M 2 =

2δ0(z−1)

(1+e2)L2
, (19)

where

e(r)2 =−Z(φ)

4
F 2

/(

1

2
J(φ)(∂χx)2

)

> 0, χx = kx.

(20)
e(r)2 is just the ratio of the Maxwell term to one of the
axion terms in the Lagrangian (6). It goes to a nonzero
constant in the far IR if the current is also (marginally)
relevant, otherwise it goes to zero. Thus at leading order,
we just set e(r)2 = e2. If the axion is irrelevant, m(r)2

goes to zero in the far IR, then we set M 2 = 0, which is
valid at leading order.

By using (19) and metric (11), we rewrite the pertur-
bation equation (16) at ω = 0

∂r(r
1−δ0f(r)∂rh0(r))−M 2L2r−δ0−1h0(r) = 0. (21)

Solving this equation we can separately obtain the
asymptotic expansion of h0(r) near the boundary and
its value on the horizon as

h0(r→ ri) = c

[

(

r

r+

)δ0−δ
T̂

+ · · ·+G

(

r

r+

)δ
T̂

+ · · ·
]

,

h0(r+) = cH, (22)

where

δT̂ =
δ0

2



1+

√

1+

(

2ML

δ0

)2



 . (23)

We have abbreviated the series

(

r

r+

)δ0−δ
T̂

+nδ0

(n > 1)

following

(

r

r+

)δ0−δ
T̂

and the series

(

r

r+

)δ
T̂

+mδ0

(m >

1) following
(

r
r+

)δ
T̂

to ellipsis. G and H are some r+

independent constants, which only depend on δ0 and
δT̂ . Coefficient c should be determined by the bound-
ary condition h0(r∂) = 1. ri is the boundary of the re-
gion where the black hole with hyperscaling violation
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can be described by (11). When we consider the second-
order variation of the action in (6) over a fixed back-
ground with the perturbed metric h0(r), the bound-
ary part of the variation with the branch of rδ0−δ

T̂

(rδ
T̂ ) in (22) is divergent (finite), thus the branch of

rδ0−δ
T̂ (rδ

T̂ ) is non-normalizable (normalizable). Then

h0(ri)≈ c

(

ri

r+

)δ0−δ
T̂

is a good approximation when the

black hole is near-extremal.
Since the UV completion is taken into account, one

should be cautious that ri is just an intermediate scale
but not the conformal boundary r∂ . The region between
ri and r∂ is AdS deformed by matter fields. The bound-
ary condition requires h0(r∂) = 1. As explained in [9],
when going from r∂ to ri, h0(r) decreases monotonically
from 1 to a value Γ when m(r)2 > 0. We have introduced
a ‘tunneling rate’ Γ to characterize how h0(r) tunnels
from r∂ to ri. The tunneling rate Γ and intermediate
scale ri should be independent of T when the scale of T
is much less than other scales, such as the source of the
dilaton and k in the axion. This is because the scale T
is not the dominating scale driving the renormalization
group (RG) flow from AdS to the hyperscaling violating
solution. Scale T becomes important only when we go
into the far IR. Then we have

Γ = h0(ri)≈ c

(

ri

r+

)δ0−δ
T̂

. (24)

By working out c, we can determine the horizon value

h0(r+) = ΓH

(

r+

ri

)δ0−δ
T̂

. (25)

By virtue of Eq. (18), we finally obtain

η

s
=

Γ 2H2

4π

(

r+

ri

)2(δ0−δ
T̂

)

∝T
d−θ+z

z

(

−1+

√

1+
8(z−1)

(d−θ+z)(1+e2)

)

, when T → 0,

(26)

where (13) and (23) have been used. One can also em-
ploy UV-IR matching [38, 59, 60] to reproduce the same
result as was performed in Ref. [13]. As one can see,
when the axion is absent or irrelevant, we have m(r)2 = 0
at leading order, then η/s ∼ T 0 [61, 62]. Next we will
numerically verify this formula when e2 = 0 or e2 6= 0.

3 UV completion and numerical results

In this section we specifically construct the back-
ground interpolating hyperscaling violating solution (10)
in the IR and AdS solution in the UV with finite temper-
ature and charge density. As explained in Appendix A
or in [32], solution (10) can be constructed by choosing
exponential potentials (9) with a running dilaton. AdS
can be constructed by finding extremal points of a con-
stant dilaton with Lorentz symmetry. Here we adopt a
dilaton φ to interpolate the UV and the IR solutions. It
requires some special settings for the potential V (φ).

3.1 UV completion

In this paper, we focus only on θ < d since in this
region the entanglement entropy obeys the area to vol-
ume law, which is considered normal behavior for QFT
[13, 53]. In this situation the location of IR is r →+∞.
Following the discussion in [13, 56], the constraints about
(z,θ) are reduced to

(θ 6 0∧z > 1)∨
(

0 < θ < d∧z >
θ

d
+1

)

. (27)

Then it leads to δ0 > 0. We have excluded the two cases

of θ = d and z =
θ

d
+ 1, which cannot be reached by

the running dilaton, as shown in Appendix A or [32].
We choose the branch of φ > 0. From the requirement
of the potentials (9), one can see that our solution can
flow to the hyperscaling violating solution in the IR if
φ → +∞(r → +∞). It requires ε > 0 in (10). We con-
duct the UV completion by modifying the potential V (φ)
but fixing the other two coupling potentials

J(φ) = eβφ, Z(φ) = eγφ. (28)

From the analysis in Appendix A, we find a universal be-
havior of V (φ) ∼ r− 2θ

d in the coordinate of ansatz (10).
So, when approaching the UV (r → 0), the qualitative
behavior of V (φ) depends on the sign of θ. On the side
of the UV, AdS is allowable if axion and gauge field are
turned off and φ = φ∗ is an extremal point of V (φ), where
V (φ∗) stands for the cosmological constant. Without loss
of generality, we choose φ∗ = 0. Then a realistic strategy
is modifying V (φ) as

V (φ) =



























2d

α2
sinh2

(

αφ

2

)

+(d+1)d, V0 =
d

2α2
, for θ < 0

(d+1)d, V0 = (d+1)d, for θ = 0
(

d(d+1)− V0

2

)

(

1−tanh2(αφ)
)

+
V0

2cosh(αφ)
, V0 = 2d

(

1

α2
+2d+2

)

, for d > θ > 0

. (29)
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In Appendix A, we have αε =−2θ

d
. Then α has the

opposite sign of θ. So, each V (φ) approaches V0e
αφ when

φ→+∞ and approaches d(d+1) when φ→ 0. Without
loss of generality, we have chosen the AdS radius to be
1. However, the intermediate behavior is not very im-
portant.

AdSd+2 vacuum is always allowable. We choose the
first type quantization, and the scaling dimensions for
the dual source of the dilaton φ(0) and operator Oφ are
determined by the small φ expansion of V (φ). When
θ = 0, as the dilaton is massless, we have ∆φ(0) = 0 and
∆Oφ

= d + 1, which is marginal deformation. We ex-
pect it to be marginally relevant to drive the solution
away from AdS, as φ = 0 is not a stable point when
the axion and gauge field are turned on. When θ 6= 0,

as V (φ) = d(d + 1) +
d

2
φ2 + · · · , we have ∆φ(0) = 1 and

∆Oφ
= d, which is relevant deformation.

3.2 Numerical calculation and results

We use the following ansatz for the numerical calcu-
lation:

ds2 =
1

u2

(

−(1−u)U(u)e−S(u)dt2+
du2

(1−u)U(u)
+

d
∑

i=1

dx2
i

)

,

φ = φ(u), χi = kxi, A = (1−u)A(u)dt.
(30)

The conformal boundary is located at u = 0 while the
horizon is at u = 1. The temperature and the entropy

density are T =
1

4π

U(1)e−S(1)/2 and s = 4π.

The AdSd+2 vacuum corresponds to U = 1, S = φ =
A = 0. Boundary conditions at the horizon are regu-
lar conditions. Boundary conditions at the conformal
boundary should satisfy the scaling dimensions, which
depend on the potential V (φ) as well as the value of θ.

Explicitly, the asymptotic expansions near the con-
formal boundary are

U(u)= 1+ · · ·+εud+1+ · · · ,
e−S(u) = 1+ · · · ,
A(u) = µ+ · · ·+ρud−1 + · · · ,

φ(u) =

{

λ+ · · ·+νud+1 + · · · , θ = 0

λu+ · · ·+νud + · · · , θ 6= 0
(31)

where µ is the chemical potential and e−S(0) has been set
to 1 by rescaling t. The different boundary conditions
of φ(u) come from the different choices of V (φ) in (29).
We can work on either the grand canonical ensemble or
canonical ensemble.

3.2.1 Grand canonical ensemble

In the grand canonical ensemble, we control the value
of the chemical potential µ.

When θ = 0, the boundary conditions at conformal
boundary are U(0) = 1, S(0) = 0, A(0) = µ, φ(0) = λ.
We work in the unit of k. The dimensionless quanti-
ties parameterizing the family of black hole solutions are
{

T

k
,

µ

k
, λ

}

. When θ 6= 0, the boundary conditions are

U(0) = 1, S(0) = 0, A(0) = µ, φ′(0) = λ. The dimension-

less quantities are

{

T

k
,

µ

k
,

λ

k

}

.

We numerically construct the interpolating solutions
for φ > 0. When dropping down T/k, we should fix

the values of
{µ

k
,λ
}

(for θ = 0) or

{

µ

k
,
λ

k

}

(for θ 6= 0)

within an appropriate region respectively, in order to
reach the hyperscaling violating solution in the IR at low
T/k.

The dimensionless entropy density and charge den-
sity are s/kd and ρ/kd. We calculate η/s by using (18)

and find
η

s
6

1

4π

for all time, because of the breaking of

translational invariance.
At high T/k, the scaling relation is controlled by AdS

in the UV, which gives rise to the power laws of s∼ T d

and
η

s
∼ T 0. At low T/k, however, the hyperscaling vi-

olation emerges in the IR. The power laws of s ∼ T
d−θ

z

and
η

s
∼T κ are observed in the numerical results.

It is worth noticing that ρ/kd converges to a nonzero
constant at low T/k. When approaching the IR, e2(u)
converges to a nonzero constant for class I but goes to
zero as some power of radial coordinate u for class II.
Similarly, at low T/k, the horizon value e2

h = e2(1) con-
verges to a nonzero constant for class I but goes to zero
as some power law for class II, whose exponent is shown
in Appendix A. For the same {d,z,θ}, it is observed that
the appearance of a nonzero e2 always reduces the ex-

ponent κ of
η

s
∼ T κ, which is consistent with the prop-

erty that κ decreases monotonously with e2 in (26) when

κ > 0.
We conduct the numerical calculation for d = 2 and

θ =
4

3
, 0, − 4 as representives of three cases, namely

θ < 0, θ = 0 and 0 < θ < d. Different values of γ are cho-
sen to represent class I or class II. The specific results are
shown in Figs. 1, 2, 3. All the numerical results match
the analytical ones.
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Fig. 1. (color online) d = 2, θ = 0. Parameters are α = 0, β = −0.3, γ = 0.6 (blue) or 2 (orange), then z = 12.1.
Among them, γ = 0.6 belongs to class I; γ = 2 belongs to class II. Solid lines denote numerical results and dashed
lines denote analytical results from (13) and (26). Upper-left: Plot of e2(u) at rather low temperatures, where it
converges to a nonzero constant in the IR for γ = 0.6. Upper-right: Log-log plot of ρ/kd as a function of T/k,
where ρ/kd converges to a constant at low temperature. Lower-left: Exponent λ of s ∼ T λ as a function of T/k.
Lower-right: Exponent κ of η

s
∼T κ as a function of T/k.
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Fig. 2. (color online) d =2, θ < 0. Parameters are α =0.471, β =−0.236, γ =0.943 (blue, class I) or 2 (orange, class
II), then z = 5 and θ =−4.
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Fig. 3. (color online) d = 2, θ > 0. Parameters are α = −1, β = −1.5, γ = 2 (blue, class I) or 4 (orange, class II),
then z =3 and θ =1.33.

Fig. 4. (color online) d = 3, θ = 0. Parameters are α = 0, β = −0.3, γ = 0.9 (blue, class I) or 2 (orange, class II),
then z = 8.41. In the lower-right plot, it is worth noticing that κ converges to a quantity which is greater than 2
at low temperature.

023104-7



Chinese Physics C Vol. 41, No. 2 (2017) 023104

Fig. 5. (color online) d = 3, θ < 0. Parameters are α =0.5, β =−0.25, γ =1.75 (blue, class I) or 3 (orange, class II),
then z =2.56 and θ =−6.

Fig. 6. (color online) d = 3, θ > 0. Parameters are α =−1, β = −1.5, γ = 2.5 (blue, class I) or 5 (orange, class II),
then z =2.56 and θ =2.

3.2.2 Canonical ensemble

In the canonical ensemble, we control the value of
charge density ρ. The t component of Maxwell equa-
tions (7c) can be replaced by (14).

When θ = 0, the three-parameter family of solutions

is characterized by

{

T

k
,

ρ

kd
, λ

}

. When θ 6= 0, it is char-

acterized by

{

T

k
,

ρ

kd
,

λ

k

}

. When lowering T/k, we fix
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the other two dimensionless parameters within an appro-
priate region. Then µ/k converges to a nonzero constant
at low T/k instead of ρ/kd as in the grand canonical en-
semble. The behaviors of η/s and e2 are similar to those
in the grand canonical ensemble. By using the method
in Appendix A, we can foresee the value to which e2

converges in the IR at low temperature for class I.
In a parallel manner, we conduct the numerical cal-

culation for d = 3 and θ =−6, 0, 2 to represent the three
regions of θ < 0, θ = 0 and 0 < θ < d. The specific results
are shown in Figs. 4, 5 and 6. All the numerical results
match the analytical ones.

4 Conclusion and outlook

In this paper we have numerically constructed
charged solutions with emerging hyperscaling violation
in the EMD-Axion model and investigated the temper-
ature behavior of the ratio of shear viscosity to entropy
density. We have found that the relevant axion, which
breaks the translational invariance, leads to the power
law of η/s ∼ T κ. In particular, the relevant current re-
duces the exponent κ. This reduction is characterized by
the quantity e2, which can be derived from the dimen-

sionless conserved charge density ρ/kd. Irrelevant cur-
rent does not affect the exponent κ since e2 → 0 in the
far IR at low temperature. Our analytical results for the
exponent κ coincide with our numerical calculation, in-
dicating that our proposed formula for κ in (5) is robust
at least for generic backgrounds within the EMD-Axion
model.

Especially, our results for the Lifshitz case verify that
κ > 2 can happen for d > 2, indicating that the hyper-
scaling violation is not the essential ingredient leading
to the exponent κ > 2. Moreover, as conjectured in [13],
the upper bounds for κ coincide with the behavior of
entanglement entropy.

Analytically, it is possible that irrelevant current or
axions can affect the temperature behavior of η/s at sub-
leading orders. One should consider their backreaction to
the background, then solve the shear perturbation equa-
tion (16). It is related to the issue whether the temper-
ature T is still the unique scale in entropy production,
as it is when the axion is relevant. This is worthy of
investigation in the future.

We are very grateful to Blaise Goutéraux, Peng Liu

and Xiangrong Zheng for helpful discussions and corre-

spondence.

Appendix A

The classification of IR solutions

We focus on relevant axion solutions, otherwise η/s just
converges to a non-zero constant at low temperature at lead-
ing order. We require that the solutions should have positive
specific heat, and the temperature deformation is the only
allowed relevant deformation. In addition, we give an extra
requirement of θ < d. The scaling solutions have been ob-
tained and classified in Ref. [31, 32].

A.1 Class I: marginally relevant current, marginally

relevant axion

If both the Maxwell and the axion terms are the same
order in the power of the radial coordinate as the curvature
term and the dilaton potential V (φ) in the Lagrangian (6),
the scaling solutions obtained form a one-parameter family

βε =−2, αε =−
2θ

d
, γ =α(d−1)−βd,

ε2 =
2(d−θ)(d(z−1)−θ)

d
,

ζ = θ−d, L2 =
2(δ0−1)δ0

2V0− (d−1)k2
,

Q2 =
2
(

k2(dz−θ)+2V0(1−z)
)

δ0 ((d−1)k2−2V0)
, (A1)

which can be parameterized by k in coordinates of (10). The
charge related quantities are

ρ2 =
δ2
0Q2

L2
=

k2(θ−dz)+2V0(z−1)

δ0−1
, (A2)

e2 =
δ2
0Q2

L2k2
=

k2(θ−dz)+2V0(z−1)

k2(δ0−1)
. (A3)

The mode analysis in Ref. [32] indicates that there are
three pairs of conjugate modes summing to δ0. Two pairs are
degenerate with β1,− = β2,− = 0 and β1,+ = β2,+ = δ0. β1,−

rescales the time. β1,+ is temperature deformation and is re-
sponsible for creating a small black hole (11). β2,− changes k
and shifts the solution along the one-parameter family. β2,+

changes the chemical potential and belongs to the transfor-
mation of gauge symmetry. The expression for the last pair
of β3,± is too tedious to show here. We require that β1,+ is
relevant and β3,− is irrelevant, with IR located at r → ∞.
Then the final allowed parameter space here is found to be
ρ2 > 0 and (27).

Since the quantity
ρ

kd
=

√

−gttgrrgd
xxZ(φ)F rt

(∂xχ)d
is con-

served and invariant under coordinate transformation within
(8), we can use it to connect UV with IR and determine the
solution in the one-parameter family by using (A2). Finally,

e2 can be obtained from
ρ

kd
by using (A3), which is rather

convenient in canonical ensemble.
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At zero temperature, one can integrate the three modes
of β2,−, β2,+ and β3,− to the UV and adjust them to satisfy
the boundary conditions specified by {λ,ρ,µ} at the confor-
mal boundary. A finite temperature solution can be driven
by β1,+.

A.2 Class II: irrelevant current, marginally relevant

axion

If only the Maxwell term turns to be subleading, a single
scaling solution at leading order is obtained as

βε =−2, αε =−
2θ

d
, ε2 =

2(d−θ)(d(z−1)−θ)

d
,

L2 =
δ0(dz−θ)

V0
, k2 =

2V0(z−1)

dz−θ
. (A4)

There are three pairs of modes, in which two pairs sum to δ0.
The first pair is β1,− = 0 and β1,+ = δ0 which are rescaling of
time and temperature deformation. The second pair is rele-
vant β2,+ and irrelevant β2,−. The third pair is gauge field
modes with

A(r)=A1 +A2r
ζ−z, ζ = d−θ+

2θ

d
−εγ. (A5)

The mode of A2 is irrelevant when δ0(ζ +d−θ)< 0. We find

e2(r) ∼ rζ−d+θ and ρ∼ T 0, e2
h ∼ T

ζ−d+θ
−z , when T → 0. Simi-

lar to class I, we can integrate β2,− and gauge field modes to
the UV.
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32 B. Goutéraux, JHEP, 1404: 181 (2014)
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