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Simulation of the fission dynamics of the excited compound nuclei
206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm
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Abstract: A two-dimensional dynamical model based on the Langevin equation was used to study the fission

dynamics of the compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm, respectively.

The fission cross section and average pre-scission neutron multiplicity were calculated for the compound nuclei206Po

and 168Yb, and results of the calculations compared with the experimental data. The elongation coordinate was

used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K,

considered as the second dimension in the Langevin dynamical calculations. In the two-dimensional calculations, a

constant dissipation coefficient of K and a non-constant dissipation coefficient have been used to reproduce the above-

mentioned experimental data. It is shown that the two-dimensional Langevin equation can satisfactorily reproduce

the fission cross section and average pre-scission neutron multiplicity for the compound nuclei 206Po and 168Yb by

using constant values of the dissipation coefficient of K equal to γK =0.18(MeV zs)−1/2 and γK = 0.20(MeV zs)−1/2

for the compound nuclei 206Po and 168Yb, respectively.
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1 Introduction

Study of the fission of highly excited nuclei produced
in fusion reactions remains a topic of great interest. In
the last three decades, much theoretical attention has
been directed towards understanding the dynamics of fis-
sion (see for example Refs. [1–22]). Many researchers, in
their calculations for the description of different features
of fusion-fission reactions, have assumed that compound
nuclei have zero spin about the symmetry axis. This
assumption is not consistent with a dynamical treat-
ment of the orientation degree of freedom (K coordi-
nate), as first pointed out by Lestone in Ref. [23]. The
authors in Ref. [10] also stressed that a large volume
of heavy-ion-induced fission data needs to be reanalyzed
using a dynamical treatment of the orientation degree
of freedom. Consequently, in the present investigation
we use a two-dimensional dynamical model based on the
Langevin equation to study the fission dynamics of the
compound nuclei 206Po and 168Yb produced in the reac-
tions 12C + 194Pt and 18O + 150Sm, respectively. In the
two-dimensional dynamical model we consider the dy-
namical evolution of the orientation degree of freedomK.
Furthermore, in the two-dimensional dynamical calcu-
lations we use a constant dissipation coefficient of K,
and a non-constant dissipation coefficient to reproduce

the fission cross section and average pre-scission neutron
multiplicity for the compound nuclei 206Po and 168Yb.

This paper has been arranged as follows. In Section 2
we describe the model and basic equations. The results
of the calculations are presented in Section 3. Conclud-
ing remarks are given in Section 4.

2 Description of the model

A stochastic approach based on the two-dimensional
Langevin equation is used to describe the fission dynam-
ics of the excited compound nuclei 206Po and 168Yb pro-
duced in the reactions 12C+ 194Pt and 18O+ 150Sm, re-
spectively. In the stochastic approach the shape param-
eters c, h and α as suggested by Brack et al. [24] are
taken as the collective coordinates for the fission degree
of freedom. However, for simplicity we use only the elon-
gation parameter c, while the parameters h and α are
assumed to be zero. Consequently, the one-dimensional
over-damped Langevin equation take the form [25]

dc

dt
=

T

Mβ(c)

dS

dc
+

√

T

M β(c)
Γ (t), (1)

where T is the nuclear temperature, S is the entropy of
the system and M is the inertia parameter [26]. β = n/M
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is the reduced friction coefficient and n is the friction co-
efficient. The driving force of the Langevin equation is
calculated from the entropy:

S(c,E∗) = 2
√

a(c)[E∗−V (c)], (2)

where E∗ is the excitation energy of the system and V (c)
is the potential energy. The coordinate dependent level
density parameter can be considered as

a(c) = avA+asA
2/3Bs(c), (3)

where A is the mass number of the compound nucleus,
and Bs is the dimensionless functional of the surface en-
ergy in the liquid drop model. The values of the param-
eters av=0.073 MeV−1 and as=0.095 MeV−1 in Eq. (3)
are taken from the work of Ignatyuk et al. [27].

In Eq. (1), Γ(t) is a fluctuating force whose average
and correlation function are

< Γ (t) >= 0,

< Γ (t)Γ (t′) >= 2δ (t− t′) . (4)

The potential energy can be calculated on the basis of
the liquid drop model with a finite range of nuclear forces
[28] using the parameters from Ref. [29]

V (c,I,K)=(Bs(c)−1)E0
s (Z,A)

+(Bc(c)−1)E0
c (Z,A)+Erot(c,I,K), (5)

where I is the spin of a compound nucleus, K is the
projection of I onto the symmetry axis of the nucleus,
and Bs(c), Bc(c) are surface and Coulomb energy terms,
respectively. E0

s and E0
c are the surface and Coulomb

energies of the corresponding spherical system as deter-
mined by Ref. [30, 31] and Erot is the rotational energy of
the nucleus. Figure 1 shows the potential energy surface
calculated for the compound nucleus 206Po as a function
of the coordinate c and for different combinations of I
and K.

Fig. 1. (color online) Potential energy surface for
the compound nucleus 206Po as a function of the
coordinate c, for different combinations of I and
K.

In the dynamical calculations, dissipation is gener-
ated through the chaos weighted wall and window fric-
tion formula [32, 33]

n(c) =

{

µ(c)nwall(c) c < cwin

µ(c)nwall(c)+nwin(c) c > cwin,
(6)

where µ(c) is chaoticity and cwin is the elongation co-
ordinate at which the nucleus has a binary shape. The
wall and window friction formula can be considered as
follows:

nwall(c < cwin)=
1

2
πρmv̄

{
∫ zmax

zmin

(

∂ρ2

∂c

)2

×
(

ρ2 +

(

1

2

∂ρ2

∂z

)2
)−1/2

dz

}

,

nwall(c > cwin)=
1

2
πρmv̄

{
∫ zN

zmin

(

∂ρ2

∂c
+

∂ρ2

∂z

∂D1

∂c

)2

×
(

ρ2 +

(

1

2

∂ρ2

∂z

)2
)−1/2

dz

+

∫ zmax

zN

(

∂ρ2

∂c
+

∂ρ2

∂z

∂D2

∂c

)2

×
(

ρ2 +

(

1

2

∂ρ2

∂z

)2
)−1/2

dz

}

, (7)

nwin(c) =
1

2
ρmv̄

{

(

∂R

∂c

)2

∆σ

}

, (8)

where ρm is the mass density of the nucleus, v̄ is the av-
erage nucleon speed inside the nucleus, ∆σ is the area
of the window between the two parts of the system, R is
the distance between the centers of masses of the future
fission fragments, ρ2 is the surface of the nucleus, zmin

and zmax are the two extreme ends of the nuclear shape
along the z axis, zN is the position of the neck plane and
D1, D2 are the positions of the centers of mass of the
two parts of the fissioning system relative to the center
of mass of the whole system. The chaoticity µ is a mea-
sure of chaos in the single particle motion and depends
on the shape of the nucleus. It can be given as the aver-
age fraction of the nucleon trajectories which are chaotic
and it can be evaluated by sampling over a large number
of classical trajectories for a given shape of the nucleus.
Each such trajectory is identified either as a regular or
a chaotic one by considering the magnitude of its Lya-
punov exponent and the nature of its variation with time
[34]. The magnitude of chaoticity µ changes from 0 to
1 as the nucleus evolves from a spherical to a deformed
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shape. Figures 2 and 3 show the calculated values of the
chaoticity and reduced friction coefficient as a function of
elongation coordinate for the compound nucleus 206Po.

Fig. 2. (color online) The magnitude of chaotic-
ity as a function of elongation coordinate for the
compound nucleus 206Po.

Fig. 3. (color online) The reduced friction coeffi-
cient as a function of elongation coordinate for
the compound nucleus 206Po.

For starting a trajectory, a spin value is sampled from
the fusion spin distribution [35]

σ(I) =
2π

k2

2I +1

1+exp

(

I−Ic

δI

) , (9)

where δI is the diffuseness and Ic is the critical spin.
The parameters δI and Ic can be approximated by the
relations presented in Ref. [35].

In the present investigation, the projection of the to-
tal spin of the compound nucleus onto the symmetry
axis, K, is considered as the second dimension in the
Langevin dynamical calculations. The evolution of the
K collective coordinate can be determined by the follow-
ing formula [10]

dK =−γ2
KI2

2

∂V

∂K
dt+γKIΓ (t)

√
Tdt, (10)

where Γ (t) has the same meaning as in Eq. (1) and γK

is a parameter controlling the coupling between the ori-
entation degree of freedom K and the heat bath. The

authors of Refs. [10, 36], based on the works of Døssing
and Randrup [37, 38], have shown that in the case of
a dinucleus, the deformation dependence of γK can be
determined as

γK =
1

RNR
√

2π3n0

√

JR |Jeff |J||

J3
⊥

, (11)

where RN is the neck radius, R is the distance be-
tween the mass centers of the nascent fragments, n0 =
0.0263 MeV zs fm−4 is the bulk flux in the standard nu-
clear matter [37] and JR = M0R

2/4 for a reflection sym-
metric shape. J||, J⊥ are the parallel and perpendicular
moments of inertia to the symmetry axis and Jeff is the
effective moment of inertia. The inverse of the effective
moment of inertia is J−1

eff = J−1
|| −J−1

⊥ . The rigid body
moments of inertia, about and perpendicular to the sym-
metry axis can be determined as Ref. [39]. In the calcu-
lations to perform numerical integration of the Langevin
equation for the K coordinate, it is necessary to deter-
mine the value of γK for all possible nuclear deformations.
In the case of a dinucleus, γK can be determined from
Eq. (11) and for mononuclear shapes without a neck, we
can extrapolate the results of Eq. (11). Figure 4 shows
the results of the calculations for the dissipation coeffi-
cient of K as a function of elongation parameter c for
the compound nucleus 206Po.
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Fig. 4. (color online) The dissipation coefficient of
K as a function of elongation parameter c for the
compound nucleus 206Po.

It should be noted that the Langevin equation for the
K coordinate, Eq. (10), and the Langevin equation, Eq.
(1), are connected through the potential energy. The
rotational part of the potential energy is calculated by

Erot(c,I,K) =
~

2K2

2J||(c)
+

~
2[I(I +1)−K2]

2J⊥(c)
. (12)

By averaging Eq. (10), it can be shown that

d〈K〉
dt

=−γ2
KI2

2

〈

∂V

∂K

〉

. (13)
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From the expression for the rotational energy, Eq. (12),
it follows that

d〈K〉
dt

=−γ2
KI2

~
2

2Jeff

〈K〉. (14)

By assuming a constant γK , the solution of this equation
is

〈K(t)〉
K0

= K0 exp

[

−γ2
KI2

~
2

2Jeff

(t− t0)

]

. (15)

In the dynamical calculations, the Langevin trajectories
are simulated starting from the ground state of the com-
pound nucleus with the excitation energy E∗. During a
random walk along the Langevin trajectory the energy
conservation law is used in the form

Eint = E∗−Ecoll−V (c,I,K)−Eevap(t), (16)

where Eint, E∗ and Ecoll are the intrinsic energy, exci-
tation energy and the kinetic energy of the nucleus, re-
spectively. Eevap is the nucleus excitation energy that
light particles have carried away by time t. The de-
cay widths for emission n, p, α, γ are calculated at
each Langevin time step ∆t. The emission of a parti-
cle is allowed by asking whether, along the trajectory at
each time step ∆t, a random number ξ is less than the
ratio of the Langevin time step ∆t to the decay time
τ = ~/Γtot: ξ < ∆t/τ(0 6 ξ 6 1), where Γtot =

∑

ν
Γ

ν
with

ν = n,p,α,γ. After the particle type is randomly cho-
sen, the kinetic energy ε

ν
of the emitted particle is also

generated via a Monte Carlo procedure. Then the in-
trinsic energy, entropy, and temperature in the Langevin
equation are recalculated and the dynamics is contin-
ued. The spin of the compound nucleus is reduced only
in an approximate way by assuming that each neutron,
proton or gamma quanta carries away 1~ and each α
particle carries away 2~. A dynamical trajectory will ei-
ther reach the scission point, in this case it is counted
as a fission event, or if the excitation energy for a tra-
jectory which is still inside the saddle reaches the value
Eint + Ecoll < min(B

ν
,Bf) (B

ν
is the binding energy of

the particle ν and Bf is the fission barrier height), the
event is counted as an evaporation residue.

The particle emission width of a particle of kind ν

can be calculated by [40]

Γ
ν
=(2s

ν
+1)

m
ν

π2~2ρc(Eint)

×
∫ Eint−Bν

0

dε
ν
ρR(Eint−B

ν
−ε

ν
)ε

ν
σinv(εν

), (17)

where s
ν

is the spin of the emitted particle ν and m
ν

is its
reduced mass with respect to the residual nucleus. Eint

and B
ν

are the intrinsic energy and the separation energy
of particle ν, respectively. ρc(Eint) and ρR(Eint−B

ν
−ε

ν
)

are the level densities of the compound and residual nu-
clei. The variable ε

ν
is the kinetic energy of the evap-

orated particle ν. The inverse cross section, σinv, can

be calculated as Ref. [40]. The width of the gamma
emission can be calculated as in Ref. [41].

3 Results and discussion

In this investigation, a stochastic approach based
on two-dimensional Langevin equation has been used
to calculate the fission cross section and average pre-
scission neutron multiplicity for the compound nuclei
206Po and 168Yb produced in the reactions 12C + 194Pt
and 18O + 150Sm, respectively. Furthermore, the one-
dimensional Langevin equation has been also used to
calculate the above mentioned experimental data. The
results of one- and two-dimensional calculations have
been compared with the experimental data. In the two-
dimensional Langevin equation we used a constant dis-
sipation coefficient of K and a non-constant dissipation
coefficient based on Eq. (11). In the two-dimensional
calculations using a constant dissipation coefficient, the
magnitude of dissipation is considered as a free parame-
ter and its magnitude inferred by fitting measured data
on the fission cross section and average pre-scission neu-
tron multiplicity for the compound nuclei 206Po and
168Yb. Figures 5(a), 5(b), 6(a) and 6(b) show the results
of fission cross section and average pre-scission neutron
multiplicity as a function of excitation energy for the
compound nuclei 206Po and 168Yb. It can be seen from
Figs. 5(a), 5(b), 6(a) and 6(b) that the two-dimensional
Langevin equation can satisfactorily reproduce the fis-
sion cross section and average pre-scission neutron multi-
plicity for the compound nuclei 206Po and 168Yb by using
constant values of the dissipation coefficient of K equal
to γK = 0.18(MeV zs)−1/2 and γK = 0.20(MeV zs)−1/2

for the compound nuclei 206Po and 168Yb, respectively.
It is clear from Figs. 5(a), 5(b) that at higher excita-

tion energies the fission cross section reaches a station-
ary value. This is because with increasing excitation en-
ergy the pre-scission particle multiplicity increases and
each emission of a light particle carries away spin and
excitation energy, therefore fission barrier height of the
residual nucleus increases and consequently the fission
event is less and less probable. It can also be seen from
Figs. 5(a), 5(b), 6(a) and 6(b) that the results of cal-
culations with a constant dissipation coefficient for ro-
tational degrees of freedom provide a better description
than that with a deformation-dependent dissipation co-
efficient. This discrepancy can be explained in terms of
Eq. (11). This equation was obtained assuming a dinu-
cleus (a system consisting of two nuclei connected by a
neck) and is only valid for systems with a well-defined
neck. The extrapolation to more compact configurations
should be considered with caution, and is only shown to
give some guidance on the possible nature of the coupling
between the orientation and thermal degrees of freedom.
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Fig. 5. (color online) Fission cross section calcu-
lated with one- and two-dimensional Langevin
equation for the compound nuclei 206Po and
168Yb. The experimental data (filled circles) are
taken from Ref. [42–44 ].

Fig. 6. (color online) Pre-scission neutron multi-
plicity as a function of excitation energy calcu-
lated with one- and two-dimensional Langevin
equation for the compound nuclei 206Po and
168Yb. The experimental data (filled circles) are
taken from Ref. [45–46].

By changing some of the assumptions used to obtain
Eq. (11), the magnitude of γK about the spherical shape
can be changed. It is likely that a more detailed and
accurate model for the motion in K will have a coupling
term γK that depends on deformation, the rate of change
of the deformation, and the nuclear orientation.

In this investigation, in order to obtain further in-
sight into the dynamics of fission, we have also calcu-
lated the percentage yield of the pre-scission neutrons as
a function of c for the compound nucleus 206Po. Figure 7
shows the percentage yield of the pre-scission neutrons as
a function of elongation parameter c calculated with the
one- and two-dimensional Langevin equations by using
γK = 0.18(MeV zs)−1/2.

Fig. 7. (color online) The histograms are the per-
centage yield of the pre-scission neutrons as a
function of elongation parameter c calculated with
the one-dimensional Langevin equation (dotted
histogram) and two-dimensional Langevin equa-
tion (solid histogram).

It is clear from Fig. 7 that the pre-saddle contri-
bution of neutron multiplicities in the two-dimensional
Langevin calculations (k 6= 0) increases relative to one-
dimensional Langevin calculations(k = 0). This can be
explained as due to the height of the potential energy sur-
face increasing when k 6= 0 (see Fig. 1). Consequently,
the number of evaporated pre-scission neutrons increases
in the two-dimensional Langevin calculations.

Finally, it should be stressed that a correlation may
exist between dissipation coefficients assumed for shape
and the rotational degrees of freedom which were used
in this investigation. In other words, a different dissi-
pation strength assumed for shape degrees of freedom
may affect the numerical value of the dissipation coeffi-
cient deduced for rotational degrees of freedom, which is
determined by comparing theory and experiment. This
issue will be investigated in future studies.

4 Summary and conclusions

A stochastic approach based on the two-dimensional
Langevin equation has been used to calculate the fission
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cross section and average pre-scission neutron multi-
plicity for the compound nuclei 206Po and 168Yb and
results of the calculations compared with the experi-
mental data. In the Langevin dynamical calculations
the elongation coordinate was considered as the first
dimension and the projection of the total spin of the
compound nucleus onto the symmetry axis considered
as the second dimension. In the two-dimensional cal-
culations, a constant dissipation coefficient K and a
non-constant dissipation coefficient have been used to
describe the fission dynamics of the compound nuclei
206Po and 168Yb. In the two-dimensional calculations
with a constant dissipation coefficient, the magnitude
of dissipation has been considered as a free parameter

and its magnitude inferred by fitting measured data on
the fission cross section and average pre-scission neu-
tron multiplicity. Comparison of the theoretical results
with the experimental data showed that the results of
calculations obtained by the two-dimensional Langevin
equation can satisfactorily reproduce the fission cross
section and average pre-scission neutron multiplicity for
the compound nuclei 206Po and 168Yb by using con-
stant values of the dissipation coefficient of K equal to
γK = 0.18(MeV zs)−1/2 and γK = 0.20(MeV zs)−1/2 for
the compound nuclei 206Po and 168Yb, respectively.
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