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representation *
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Abstract: Resonance research is a hot topic in nuclear physics, and many methods have been developed for reso-

nances. In this paper, we explore resonances by solving the Schrödinger equation in complex momentum representa-

tion, in which the bound states and resonant states are separated completely from the continuum and exposed clearly

in the complex momentum plane. We have checked the convergence of the calculations on the grid numbers of the

Gauss-Hermite quadrature and the Gauss-Legendre quadrature, and the dependence on the contour of momentum

integration. Satisfactory results are obtained. 17O is chosen as an example, and we have calculated the bound and

resonant states to be in excellent agreement with those calculated in the coordinate representation.
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1 Introduction

Resonances are one of the most interesting phenom-
ena, and occur widely in nature [1]. There are many
types of resonance, including mechanical, acoustic, elec-
tromagnetic, nuclear magnetic, electron spin resonance
and quantum wave function resonances. Resonances play
an important role in the formation of many physical phe-
nomena, such as haloes [2–4], giant haloes [5, 6], de-
formed haloes [7], and quantum haloes [8]. Therefore,
it is very meaningful to study resonances in different
fields.

So far, many methods have been developed for res-
onances. These include the R-matrix method [9], the
real stabilization (RSM) method [10], the S -matrix
method [11], the J -matrix method [12], the analytic
continuation in the coupling constant (ACCC) ap-
proach [13], the K -matrix method [14], the Jost function
approach [15, 16], and Green’s function method [17, 18].
These methods have gained success in handling unbound
problems. Even so, physicists hope to establish a unified
theory, which can deal with bound states and resonant
states on the same footing. The complex scaling method
(CSM) introduced in Ref. [19] has partly satisfied this
requirement.

In the CSM, the wave functions adopted for reso-

nant states are square-integrable, so it is not necessary
to use the asymptotic boundary conditions. Moreover,
the complex scaled equation can be solved by using the
bound-state methods, in which the bound states and res-
onant states are processed equally. These advantages en-
able the application of the CSM to different theoretical
frameworks, including combinations with the few-body
model [20], shell model [21, 22], and Hartree-Fock the-
ory [23, 24]. More applications of the CSM can be found
in Refs. [25–27]. Recently, we have applied the CSM
to the relativistic framework [28], and explored the res-
onant states in spherical nuclei [29, 30] and deformed
nuclei [31]. The results are compared with those ob-
tained by other methods and found to have satisfactory
agreement [32, 33].

Although the CSM can provide a unified description
for bound states and resonant states, there are still some
shortcomings. To determine accurately the resonance
parameters, repeated diagonalization of the Hamiltonian
is required in the complex scaling calculations. The cal-
culated results are not completely independent of the
complex rotation angle, which is an unphysical param-
eter. In addition, the CSM is applicable to only the
dilation analytic potential. For systems like nuclei, the
mean-field for nucleon movement is similar to a Woods-
Saxon potential. There is a singularity when the complex
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rotation angle θ=tan−1 (πa/R). Hence, the CSM is only
effective in the interval of 0 < θ <tan−1 (πa/R) for res-
onances in nuclei, which confines the application of the
CSM to very broad resonances.

In order to keep the advantages of the CSM with-
out its shortcomings, a complex momentum represen-
tation (CMR) method has been established for reso-
nant states [34–36], in which the Schrödinger equation
is represented in momentum space. The bound states
can be obtained by solving the Schrödinger equation in
real momentum space [37, 38]. When the Schrödinger
equation is solved in the complex momentum space, all
the bound and resonant states can be obtained simul-
taneously. This method has avoided all the defects of
the CSM, and can describe bound states and resonant
states on an equal footing. In addition, this method
is a bound-state-type method, and can conveniently be
applied to other fields. With these advantages, this
method has been applied to the investigation of exotic
nuclei [39, 40]. Recently, we have combined the rela-
tivistic mean field (RMF) with the complex momentum
representation (CMR) and established the RMF-CMR
method for resonances in nuclei [41].

Until now, we have not found the details of this
method regardless of the relativistic or non-relativistic
case. For simplicity and without loss of generality, we
choose the Schrödinger equation describing spherical nu-
clei as an example, with the theoretical formalism pre-
sented in detail. We then introduce the numerical details
for the bound states and resonant states, and check the
convergence of the calculations on several model param-
eters: the upper truncation of momentum integration
kmax, the grid number Nl in the Gauss-Legendre quadra-
ture, and the grid number Nh in the Gauss-Hermite
quadrature. Taking a particular nucleus as an example,
we calculate the energies of bound states and resonant
states in comparison with those obtained by the CSM
calculations in coordinate representation.

2 Formalism

To introduce the complex momentum representation
method for resonances, the Schrödinger equation is writ-
ten as

H |ψ〉=E|ψ〉, (1)

with the Hamiltonian

H =T+V, (2)

where T is the kinetic energy operator and V is the inter-
action potential. The kinetic energy operator T = p2/2m
with the massm and momentum ~p linked to the wavevec-
tor ~k= ~p/~. Similar to Ref. [42], the adopted interaction
potential V consists of the central potential

Vct(r) =V0f(r), (3)

and the spin-orbit coupling

Vsl(r) =−0.44V0

(

~l ·~s
)

r20
1

r

df(r)

dr
, (4)

where f(r) is a Woods-Saxon type

f(r) =
1

1+exp

(

r−R
a

) . (5)

For simplicity, the parameters of the Woods-Saxon
potential are taken from the standard ones [42, 43].
Namely, the diffuseness a = 0.67 fm and the radius
R= r0A

1/3, where r0 = 1.27 fm and A is the mass number
of the nucleus. The depth of the Woods-Saxon potential
V0 =−51+33(N−Z)/A (MeV), with the neutron num-
ber N and the proton number Z.

The solutions of Eq. (1) include the spectra of the
bound states, the resonant states and the continuum.
The bound states can be given by the usual methods.
For the resonant states, the momentum representation
is adopted with the Schrödinger equation:

∫

d3~k′〈~k|H |~k′〉Φ(~k′) =EΦ(~k), (6)

where Φ(~k) denotes the momentum wavefunctions, where

wavevector~k refers to momentum. For a spherically sym-
metric system, the wavefunctions Φ(~k) are written as

Φ(~k) =φ(k)Y m
l (Ωk), (7)

where φ(k) and Y m
l (Ωk) are respectively the radial and

angular parts of the momentum wavefunctions. Putting
the wavefunctions (7) into equation (6), the Schrödinger
equation becomes

k2

2m
φ(k)+

∫

dk′ k′2φ(k′)V (k,k′) =Eφ(k), (8)

with

V (k,k′) =
2

π

∫

dr r2jl(kr)jl(k
′r), (9)

where jl(kr) is the spherical Bessel function of order l. It
is difficult, however, to obtain the solution of the integral
equation (8). For this reason, we turn the integration in
Eq. (8) into a sum over a finite set of points kj and dk
with a set of weights wj . Because the sum with evenly
spaced dk and a constant weight wj converges slowly, we
replace the sum by the Gauss-Legendre quadrature with
a finite grid number Nl, which gives us a Nl×Nl matrix
equation

Nl
∑

j=1

Hi,jφ(kj) =Eφ(ki), (i= 1,2, · · · ,Nl) , (10)
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where

Hi,j =
k2

i

2m
δi,j +wjk

2
jVi,j , (11)

with

Vi,j =
2

π

∫

dr r2V (r)jl(kir)jl(kjr). (12)

The Hamiltonian matrix in Eq. (11) is not symmet-
ric. For simplicity in computation, we symmetrize the
matrix by performing the following transformation

φ′(ki) =
√
wikiφ(ki),H

′

i,j =

√

wi

wj

ki

kj

Hi,j . (13)

Putting Eq. (13) into Eq. (10), we obtain a symmetric
Hamiltonian matrix as

H ′

i,j =
k2

i

2m
δi,j +

√
wiwjkikjVi,j . (14)

So far, the solution of the Schrödinger equation (6)
has become an eigensolution problem of the symmetric
matrix (14). To calculate the symmetric matrix, several
key points need to be clarified. At first, it is necessary
to determine a proper contour in order to expose all the
bound and resonant states concerned. Details can be
found in Ref. [41]. When the contour is confined, we need
to determine several unphysical parameters to reach sat-
isfactory results. As the integration in Eq. (8) is from
zero to infinity, the integration must be truncated to a
large enough momentum kmax. When kmax is fixed, the
integration can be calculated by a sum with an enough
grid number Nl in the Gauss-Legendre quadrature. In
calculating the potential matrix (12), the coordinate in-
tegration is replaced by the Gauss-Hermite quadrature
with a high enough grid number Nh for the required pre-
cision. In the following, we first discuss the choice of the
contour and the determination of parameters, and then
explore the bound and resonant states in a particular
nucleus.

3 Result and discussion

With the theoretical formalism, we explore the bound
and resonant states for a realistic physical system. Tak-
ing 17O as an example, we first choose an appropriate
contour for the momentum integration, and then deter-
mine the three unphysical parameters: the upper trunca-
tion of momentum integration kmax, the grid number Nl

in the Gauss-Legendre quadrature, and the grid number
Nh in the Gauss-Hermite quadrature.

To single out a proper contour of the momentum in-
tegration, we check the dependence of the calculated re-
sults on the contour. In Fig. 1, we show the calculations
in four different rectangle contours for the single particle
state 1d3/2. It can be seen that the resonant state 1d3/2

is separated from the continuum and exposed clearly in
the complex momentum plane. In every subfigure, the
contour is different. The continuum follows the contour,
while the position of the resonant state 1d3/2 remains
unchanged. That is, the resonance is independent of the
contour. The position of the resonant state 1d3/2 in the
complex momentum plane is located approximately at
the point with k= 0.2897− i0.0209 fm−1 in every subfig-
ure.

0
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Fig. 1. (color online) The complex momentum so-
lutions of the Schrödinger equation for the state
1d3/2 in the four different rectangle contours. The
red filled circle and the black open circles in ev-
ery subfigure represent the resonant states and
the continuum, respectively.

Besides the rectangle contour, we have also examined
the dependence of the calculated results on a triangular
contour. The results shown in Fig. 2 are similar to those
in Fig. 1. That is, the position of the resonant states is
independent of the contour. When the contour is small,
only a resonant state 1d3/2 is exposed in the complex mo-
mentum plane (see Fig. 2(a)). With the contour becom-
ing larger, more resonances are exposed in the complex
momentum plane. In Fig. 2(b), there are two resonant
states, 1d3/2 and 1f7/2, exposed in the complex momen-
tum plane. In Fig. 2(c), there are three resonant states,
1d3/2, 1f7/2, and 1g9/2, emerging in the complex momen-
tum plane. This is also observed in Fig. 2(d). For the
present system, there are three resonant states. When
the contour is added to k = 0 fm−1, k = 1.0− i0.4 fm−1,
k= 2.0 fm−1, and kmax = 5.0 fm−1, all the resonant states
concerned are exposed clearly in the complex momentum
plane. Although the contour is different, the position of
the resonant states does not move as they are exposed
in the complex momentum plane.
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Fig. 2. (color online) The complex momentum so-
lutions of the Schrödinger equation in the four
different triangle contours. The red filled circle,
blue filled diamond, and violet filled square rep-
resent the resonant states 1d3/2, 1f7/2, and 1g9/2,
respectively. The black open circles and olive solid
line represent respectively the continuum and the
contour of integration in the complex momentum
place.

As the resonant states are independent of the con-
tour, we can select a large enough contour to expose
all the resonances concerned. Using the triangular con-
tour with the four points k = 0 fm−1, k = 1.0 − i0.5
fm−1, k = 2.0 fm−1, and kmax = 5.0 fm−1, we check the
dependence of the calculated results on the three un-
physical parameters: the upper truncation of momen-
tum integration kmax, the grid number Nl in the Gauss-
Legendre quadrature, and the grid number Nh in the
Gauss-Hermite quadrature, in order to obtain the re-
quired precision.

The calculated results with the different upper trun-
cations of the momentum integration kmax are listed in
Table 1, with the parametersNl = 60 and Nh = 70. From
Table 1, the convergence of the calculations on kmax is
very good. With the increase of kmax from 2.5 fm−1 to
6.0 fm−1 by steps of 0.5 fm−1, there is a slight differ-
ence in the calculated energy. When kmax > 4.0 fm−1,
the calculated results are unchanged in the present pre-
cision, which implies that kmax = 5.0 fm−1 is enough in
the present calculations.

Table 1. The single particle energies for the bound and resonant states in 17O varying with the upper truncation kmax

of the momentum integration in the present calculations. Here, the grid number Nl = 60 for the Gauss-Legendre
quadrature of the momentum integration and the grid number Nh = 70 for the Gauss-Hermite quadrature in
Eq. (12). All energies are in units of MeV and kmax is in units of fm−1

1s1/2 2s1/2 1p1/2 1p3/2 1d5/2 1d3/2 1f7/2 1g9/2

kmax E E E E E Er ,Ei Er,Ei Er,Ei

2.5 −30.4259 −3.0227 −12.3987 −17.5208 −4.9607 1.8403, −0.2682 5.7737, −0.8611 16.3639, −5.4200

3.0 −30.4270 −3.0244 −12.3998 −17.5242 −4.9634 1.8395, −0.2679 5.7716, −0.8597 16.3678, −5.4016

3.5 −30.4270 −3.0250 −12.4001 −17.5244 −4.9642 1.8393, −0.2678 5.7706, −0.8592 16.3673, −5.4002

4.0 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

4.5 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

5.0 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

5.5 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

6.0 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

Table 2. The single particle energies for the bound and resonant states in 17O varying with the grid number Nl of
the Gauss-Legendre quadrature of the momentum integration. Here, the upper truncation kmax = 5.0 fm−1 for the
momentum integration and the grid number Nh = 70 for the Gauss-Hermite quadrature in Eq. (12). All energies
are in unit of MeV.

Nl 1s1/2 2s1/2 1p1/2 1p3/2 1d5/2 1d3/2 1f7/2 1g9/2

E E E E E Er,Ei Er,Ei Er,Ei

20 −30.4219 −2.9596 −12.3880 −17.5211 −4.9627 1.8286, −0.3148 5.7469, −0.8353 16.3524, −5.3732

30 −30.4270 −3.0251 −12.4001 −17.5244 −4.9643 1.8363, −0.2648 5.7700, −0.8601 16.3672, −5.4001

40 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8397, −0.2677 5.7706, −0.8592 16.3673, −5.4000

50 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

60 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

70 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

80 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

90 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000
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Table 3. The single particle energies for the bound and resonant states in 17O varying with the grid number Nh

of the Gauss-Hermite quadrature in Eq. (12). Here, the upper truncation kmax = 5.0 fm−1 for the momentum
integration and the grid number Nl = 60 for the Gauss-Legendre quadrature. All energies are in units of MeV.

Nh 1s1/2 2s1/2 1p1/2 1p3/2 1d5/2 1d3/2 1f7/2 1g9/2

E E E E E Er ,Ei Er,Ei Er,Ei

20 −30.4270 −3.0249 −12.4001 −17.5244 −4.9643 1.8397, −0.2673 5.7697, −0.8574 16.3678, −5.4228

30 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7705, −0.8592 16.3675, −5.3982

40 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3672, −5.4002

50 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3674, −5.4000

60 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

70 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

80 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

90 −30.4270 −3.0250 −12.4001 −17.5244 −4.9643 1.8392, −0.2678 5.7706, −0.8592 16.3673, −5.4000

Next, we check the dependence of the calculated re-
sults on the parameterNl in the Gauss-Legendre quadra-
ture with kmax = 5.0 fm−1 and Nh = 70. The results are
listed in Table 2. The convergence of the calculations on
Nl is very good. For every bound or resonant state, the
calculated energy tends to the same value with increasing
Nl. When Nl > 50, the calculated results are unchanged
with Nl at the present precision. This indicates that Nl

= 60 is enough in the present calculations.
Finally, we check the dependence of the calculated re-

sults on the parameter Nh in the Gauss-Hermite quadra-
ture with kmax = 5.0 fm−1 and Nl = 60. The results are
listed in Table 3. Similar to Table 2, the convergence
of the calculations on Nl is excellent. With the increase
of Nh from 20 to 90 by steps of 10, the calculated en-
ergy tends to the same value for every bound or resonant
state. When Nh > 60, the calculated results no longer
change with Nh at the present precision, which means
that Nh = 70 is enough in the present calculations.
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contour

2.5
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 k
/f

m
−
1

Re k/fm−1

1g9/2

Nl=50

Nh=70

1f7/2

1d3/2

Fig. 3. (color online) The single-neutron spectra
for 17O in the complex momentum plane. The
red open diamond, blue open triangle, and black
open circles represent the bound states, the reso-
nant states, and the continuum, respectively. The
olive solid line is the contour of integration in the
complex momentum plane.

Table 4. The calculated results for the bound
states and resonant states in 17O by using the
complex momentum representation in comparison
with those obtained in coordinate representation
by the complex scaling method for resonances. E

represents the energy of bound states. Er and
Ei represent respectively the real part and imag-
inary part ofthe energy for resonant states. All
the units are MeV.

momentum representation coordinate representation

nlj E(Er,Ei) E(Er,Ei)

1s1/2 −30.4270 −30.4270

1p1/2 −12.4001 −12.4001

1p3/2 −17.5244 −17.5241

1d5/2 −4.9643 −4.9645

2s1/2 −3.0250 −3.0256

1d3/2 1.8392, −0.2678 1.8099, −0.2215

1f7/2 5.7706, −0.8592 5.8057, −0.8521

1g9/2 16.3673, −5.4000 16.2711, −5.3530

Based on these considerations, we explore the bound
and resonant states using the complex momentum rep-
resentation method with the contour k = 0 fm−1, k =
1.0−i0.5 fm−1, k= 2.0 fm−1, and kmax = 5.0 fm−1, and the
grid numbers Nl = 60 and Nh = 70. The results are plot-
ted in Fig. 3, where it can seen that all the bound states
are on the imaginary axis in the complex momentum
plane, while the resonant states are in the fourth quad-
rant. The continuum follows the contour. The bound
and resonant states are separated clearly from the con-
tinuum.

The numerical results for the bound states and res-
onant states in Fig. 3 are listed in Table 4, comparing
them with those obtained in the coordinate represen-
tation by the complex scaling method for resonances.
From Table 4, the two calculations are in good agree-
ment. The maximum relative deviation appears for the
resonant state 1d3/2, which is less than 1.6% for the en-
ergy. The deviation does not affect our evaluation of
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the resonance parameters. All these show that the re-
sults from the two methods are consistent in describing
nuclear bound states and resonant states. Even so, the
present result, as it is independent of any unphysical pa-
rameters, should be more accurate than those obtained
by other methods.

4 Summary

Many methods have been developed for the calcula-
tion of nuclear resonances. Here, we have explored reso-
nances by solving the Schrödinger equation in the com-
plex momentum representation. We have presented in
detail the theoretical formalism, and discussed the nu-
merical details. With 17O as an illustrative example,
we have checked the dependence of the calculated re-
sults on the contour and found that all the bound and
resonant states are independent of the contour as long
as they are exposed in the complex momentum plane.

We have demonstrated how to determine an appropri-
ate contour for the momentum integration in order to
obtain all the resonant states concerned. We have ex-
amined the dependence of the calculated results on the
three unphysical parameters: the upper truncation of
momentum integration kmax, the grid number Nl in the
Gauss-Legendre quadrature for momentum integration,
and the grid number Nh in the Gauss-Hermite quadra-
ture for coordinate integration. It is found that the con-
vergence of the calculations on kmax, Nl, and Nh is very
good. When kmax > 4.0 fm−1, Nl > 50, and Nh > 60, the
calculated results are unchanged at the present precision.
We have calculated the bound states and resonant states
in 17O in comparison with those obtained by the com-
plex scaling method in coordinate representation, and
satisfactory agreement is obtained. The present results
should be more accurate because they are independent
of any unphysical parameters.
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