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Polarization of gamma-ray burst afterglows in the synchrotron
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Abstract: Linear polarization has been observed in both the prompt phase and afterglow of some bright gamma-ray

bursts (GRBs). Polarization in the prompt phase spans a wide range, and may be as high as & 50%. In the afterglow

phase, however, it is usually below 10%. According to the standard fireball model, GRBs are produced by synchrotron

radiation and Compton scattering process in a highly relativistic jet ejected from the central engine. It is widely

accepted that prompt emissions occur in the internal shock when shells with different velocities collide with each other,

and the magnetic field advected by the jet from the central engine can be ordered on a large scale. On the other hand,

afterglows are often assumed to occur in the external shock when the jet collides with interstellar medium, and the

magnetic field produced by the shock through, for example, Weibel instability, is possibly random. In this paper, we

calculate the polarization properties of the synchrotron self-Compton process from a highly relativistic jet, in which

the magnetic field is randomly distributed in the shock plane. We also consider the generalized situation where a

uniform magnetic component perpendicular to the shock plane is superposed on the random magnetic component.

We show that it is difficult for the polarization to be larger than 10% if the seed electrons are isotropic in the jet

frame. This may account for the observed upper limit of polarization in the afterglow phase of GRBs. In addition, if

the random and uniform magnetic components decay with time at different speeds, then the polarization angle may

change 90◦ during the temporal evolution.
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1 Introduction

Gamma-ray bursts (GRBs) are one of the most vi-
olent types of explosion occurring in the deep universe.
For recent reviews, see e.g. Refs. [1–3]. Since their ac-
cidental discovery in 1967 by the Vela satellites, signifi-
cant progress has been made in the past few decades in
understanding the properties of GRBs. Thanks to the
combined contributions from various ground-based and
space-borne instruments, the time resolved spectra and
light curves can be observed with high precision in wide
energy bands. However, several models can explain the
observed spectra and light curves equally well. The emis-
sion mechanism of GRBs remains a mystery after about
half a century of research. The polarimetric observa-

tions, on the other hand, provide a useful supplement to
the spectra and light curves to reveal the central engine.

Recently, it has been found that photons in the
prompt phase of some bright GRBs are highly linearly
polarized, and may be as high as & 50% [4–9]. For ex-
ample, Coburn & Boggs [4] claimed to have detected
a polarization of 80%± 20% in GRB 021206, although
a later reanalysis found no significant polarization sig-
nal in this same burst [10]. Kalemci et al [5] analyzed
the data of GRB 041219A and obtained a polarization
fraction 98%± 33%, in spite of the large statistical un-
certainty. A detailed analysis of GRB 041219A showed
that the polarization degree is anti-correlated with pho-
ton energy [6]. The temporal evolution of polarization
has also been detected [7, 8]. Interestingly, it was found

Received 2 November 2016

∗ Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund
of China (11375203, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical
Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

1) E-mail: linhn@ihep.ac.cn

2) E-mail: lixin1981@cqu.edu.cn

3) E-mail: changz@ihep.ac.cn
©2017 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

045101-1



Chinese Physics C Vol. 41, No. 4 (2017) 045101

with high confidence that the polarization angle of GRB
100826A changes ∼ 90◦ between two time periods [8].
Photons in the afterglow can also be linearly polarized.
However, polarization in the afterglow is in general much
smaller than that in the prompt phase, and it is usually
below 10%. For example, Hjorth et al [11] found an up-
per limit of 2.3% on the polarization of optical afterglow
of GRB 990123. Covino et al [12] found a 3σ upper limit
of P < 2.7% in the optical afterglow of GRB 011211.
Bersier et al [13] reported a 9.9% polarization in the op-
tical afterglow of GRB 020405. Steele et al [14] showed
that the early optical afterglow of GRB 090102 was po-
larized at 10%± 1%. Mundell et al [15] reported the
detection of polarization 28%±4% in the immediate af-
terglow of GRB 120308A, which decreased to ∼ 16% over
the subsequent ten minutes. Circular polarization is also
possible, but it is very small, especially in the afterglow
phase [16–18].

Several theoretical models have been proposed to ac-
count for the polarimetric observations, see e.g. Ref. [19]
for a recent review. One of the most promising mecha-
nisms is synchrotron radiation. It is well known that
photons produced by synchrotron radiation can be highly
polarized. The polarization properties of synchrotron ra-
diation strongly depend on the magnetic configuration.
There are three magnetic configurations that are widely
discussed in the literature: (1) ordered magnetic field
in the shock plane [20–23], (2) ordered magnetic field
perpendicular to the shock plane [21], and (3) random
magnetic field confined in the shock plane [23–26]. The
first two globally ordered magnetic fields can be carried
out by the jet from the central engine [27, 28], while
the random magnetic field can be produced by the shock
[29, 30].

An alternative mechanism able to produce highly po-
larized photons is the Compton scattering process. Laz-
zati et al [31] calculated the polarization properties of
an isotropic photon field upscattered by a relativistic jet,
and found that the polarization can be as large as in the
point-source limit. However, they only discussed in the
Thomson limit, and the seed photons were completely
unpolarized. In fact, the seed photons are very likely to
originate from synchrotron radiation, and thus be ini-
tially polarized. Krawczynski [32] calculated the polar-
ization properties of inverse Compton emission and syn-
chrotron self-Compton (SSC) emission using numerical
simulations, and found that large polarization is possi-
ble. In a series of recent papers [33–35], we presented
a detailed calculation on the polarization properties of
an initially polarized photon scattered by isotropic elec-
trons with arbitrary energy distribution. We found that
the final polarization spans a wide range, depending on
the initial polarization state of the incident photon and
the energy distribution of electrons. In this model, both

the energy dependence of polarization degree in GRB
041219A and the change of polarization angle in GRB
100826A can be naturally explained [36].

The magnetic-dominated jet model is gradually be-
coming one of the most popular models nowadays due to
its ability to explain a number of observational phono-
mania, such as spectra, light curves and polarization
[37–39]. More importantly, in the magnetic-dominated
jet model, the jet can be effectively accelerated to a
highly relativistic velocity, and the radiation efficiency
can be large compared to the baryon-dominated jet
model [27, 28, 40, 41]. The SSC process is a natural
result of the magnetic-dominated jet model. Accord-
ing to this model, GRB prompt emissions are produced
through synchrotron radiation and Compton scattering
process in a highly relativistic jet dominated by Poynt-
ing flux. The magnetic field ejected from the central
engine is likely to be ordered on a large scale, either par-
allel or perpendicular to the shock plane. Afterglows are
assumed to be produced through synchrotron radiation
in the external shock region when the jet collides with
the interstellar medium. The magnetic field produced by
the shock in the interstellar medium is possibly random.
In the early afterglow region, the electron density may
be still large enough such that Compton scattering may
play a role. In fact, Sari & Esin [42] have computed the
spectrum of the inverse Compton emission in the after-
glow and found that it can dominate the total cooling
rate of the afterglow for several months or even years af-
ter the prompt emission. The SSC radiation may occur
in the afterglow phase if the GRBs explode in a rea-
sonably dense medium. In a recent paper [43], we have
calculated the polarization properties of the SSC process
from a highly relativistic jet in two ordered magnetic con-
figurations. We found that in both cases, a maximum
polarization degree of & 20% is possible if the seed elec-
trons are isotropic. We also showed that the polarization-
luminosity relation in these two magnetic configurations
is very different, which can be used to constrain the mag-
netic configuration in the future when a large amount of
polarimetric data is available. There is another widely
discussed magnetic configuration in the literature which
we have not involved in our previous calculation, i.e.,
random magnetic field confined in the shock plane. It is
useful to calculate the polarization properties in such a
magnetic configuration, because GRB afterglows are of-
ten assumed to occur in the external shock region where
the magnetic field is likely to be random. In this pa-
per we will give a detailed calculation on the polariza-
tion properties of the SSC process in a random magnetic
field.

The rest of the paper is organized as follows. In Sec-
tion 2, we calculate the power spectrum and polarization
properties of the synchrotron radiation in a random mag-
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netic field. In Section 3, we briefly review the polariza-
tion of a photon scattered by electrons with any spectral
distribution. In Section 4, we calculate the polarization
properties of the SSC process from a highly relativistic
jet, in which the magnetic field is randomly distributed
in the shock plane. Finally, discussion and conclusions
are given in Section 5.

2 Synchrotron radiation in random mag-

netic field

In this section, we calculate the power spectrum and
polarization properties of synchrotron radiation in the
case of a random magnetic field. We assume that the
magnetic field is uniform in strength but random in di-
rection, and it is fully confined in the shock plane. We
further assume that the length scale of magnetic field
is larger than the Larmor radius such that the classical
synchrotron radiation formulae are applicable.
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Fig. 1. Geometrical representation of the syn-
chrotron radiation in random magnetic field con-
fined in the Ox̂ŷ plane. We choose a Cartesian
coordinate such that the line-of-sight (n̂) is in the
Ox̂ẑ plane. b̂ is an arbitrary direction in the Ox̂ŷ

plane, representing the direction of magnetic field.
l̂1 and l̂2 are two unit vectors in the Ob̂n̂ plane
and perpendicular to this plane, respectively, and
n̂ = l̂1×l̂2. The S l̂01l̂

0
2 frame is the S l̂1l̂2 frame ro-

tated an angle χ with respect to the n̂ direction,
such that l̂01 is in the Ox̂ẑ plane, therefore l̂02 is
perpendicular to the Ox̂ẑ plane.

We first briefly review the properties of synchrotron
radiation in a uniform magnetic field. The geometry of
synchrotron radiation is depicted in Fig. 1. The mag-
netic field is along the x-axis, and the electron velocity
is along the n̂ direction. The Cartesian coordinate is
chosen such that n̂ is in the Ox̂ẑ plane. l̂01 and l̂02 are
two unit vectors in the Ox̂ẑ plane and perpendicular to
this plane, respectively, and n̂ = l̂01 × l̂02. Recall that for
a relativistic electron moving in the uniform magnetic

field B, the radiation is mainly confined in a small cone
centering on the direction of electron velocity. The ra-
diating power spectrum of a single electron is given by
[44]

P (ω) =

√
3e3B sinα

2πmec2
F

(

ω

ωc

)

, (1)

where F (x) ≡ x

∫

∞

x

K5/3(ξ)dξ, K5/3(ξ) is the modified

Bessel function of order 5/3, ωc ≡ 3γ2
eeB sinα/2mec is

the critical frequency, γe is the Lorentz factor of the elec-
tron, me is the rest mass of electron, and α is the pitch
angle, i.e., the angle between the electron velocity and
the magnetic field.

The radiating power spectrum can be divided into
two parts of different polarization states, P (ω) = P1(ω)+
P2(ω), where
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Here G(x) ≡ xK2/3(x), where K2/3(ξ) is the modified
Bessel function of order 2/3. P1(ω) and P2(ω) represent

the power polarized along l̂01 and l̂02 directions, respec-
tively. The polarization degree is defined by

Πsyn(ω) =
P2(ω)−P1(ω)

P2(ω)+P1(ω)
. (3)

For power-law electrons, N (γe)dγe ∝ γ−p
e dγe, we can

integrate over the electrons to obtain the total radiating
power. Through a straightforward calculation we obtain
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)

(B sinα)
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2 ω−
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(4)

The polarization degree is obtained from Eq. (3) by the
following replacements: P1(ω) → P PL

1 (ω), and P2(ω) →
PPL

2 (ω). Thus we have

ΠPL
syn =

p+1

p+7/3
. (5)

Note that the polarization degree is independent of pho-
ton energy, and it only depends on the power-law index
of incident electrons. The index p is usually in the range
2 . p . 3, thereby ΠPL

syn ≈ 70% [45].
Now consider that the magnetic field is along the di-

rection of azimuth angle ϕ in the Ox̂ŷ plane, i.e., the b̂

direction in Fig. 1. For power-law electrons moving in
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this magnetic field, the radiating power spectrum is also
given by Eq. (4). In this case, however, P1 and P2 are

defined in a new frame S l̂1 l̂2, which is the S l̂01 l̂
0
2 frame

rotated an angle χ with respect to the n̂ direction, such
that l̂1 is in the Ob̂n̂ plane, and therefore l̂2 is perpendic-
ular to this plane. Rotating P1 and P2 back to the S l̂01 l̂

0
2

frame and averaging over the direction of the magnetic
field, we obtain



















〈P1(ω)〉∝ 1

2π

∫ 2π

0

[PPL
1 (ω)cos2 χ+P PL

2 (ω)sin2 χ]dϕ,

〈P2(ω)〉∝ 1

2π

∫ 2π

0

[PPL
1 (ω)sin2 χ+P PL

2 (ω)cos2 χ]dϕ.

(6)

The squares of sinχ and cosχ arise from the fact that
the radiating power is proportional to the square of the
electric component of a photon. From geometrical con-
siderations, we have

cosα = sinθ cosϕ, cosχ =
cosθ cosϕ

√

1−sin2 θ cos2 ϕ
. (7)

The total radiating power seen at the viewing angle θ is
given by the summation of 〈P1(ω)〉 and 〈P2(ω)〉,

〈P (ω)〉∝ 2(p+7/3)

p+1

1

2π

∫ 2π

0

(B sinα)
p+1

2 dϕ ω−
p−1

2 . (8)

At the special viewing angle θ = 0, the total radiating
power is equivalent to that when the magnetic field is
uniformly distributed in the shock plane. In the special
case p = 3, Eq. (8) can be analytically integrated,

〈P (ω)〉∝ 2

3
B2(3+cos2θ)ω−1. (9)

Replacing P1(ω) with 〈P1(ω)〉, and P2(ω) with
〈P2(ω)〉 in Eq. (3), we obtain the polarization of syn-
chrotron radiation in a random magnetic field,

〈Πsyn(θ)〉=
〈P2(ω)〉−〈P1(ω)〉
〈P2(ω)〉+〈P1(ω)〉

=
p+1

p+7/3

∫ 2π

0

(sinα)
p+1

2 cos2χdϕ

∫ 2π

0

(sinα)
p+1

2 dϕ

. (10)

Note that the polarization degree is also independent of
photon energy, and it only depends on the viewing an-
gle and the power-law index of incident electrons. When
θ = π/2, Eq. (10) reduces to Eq. (5) up to a minus sign,
and it seems as if the magnetic field is globally ordered.

In the special case p = 3, Eq. (10) can be integrated
analytically, leading to the result

〈Πsyn(θ)〉=−3

2

sin2 θ

3+cos2θ
. (11)

The minus sign means that photons are polarized along
the l̂01 direction.

In a more general case, there may be a uniform
magnetic field component B̃ perpendicular to the shock
plane. The spectrum of synchrotron radiation from
power-law electrons in this uniform magnetic field com-
ponent can be derived from Eq. (4) by replacing B sinα
with B̃ sinθ. Therefore, the total radiating power in the
composite magnetic fields B + B̃, seen at the viewing
angle θ, is given by

〈Pt(ω)〉∝ 2(p+7/3)

p+1

[

1

2π

∫ 2π

0

(B sinα)
p+1

2 dϕ

+(B̃ sinθ)
p+1

2

]

ω−
p−1

2 . (12)

The polarization degree of synchrotron radiation in the
composite magnetic fields is given by

〈Πt(θ)〉=
p+1

p+7/3

1

2π

∫ 2π

0

(sinα)
p+1

2 cos2χdϕ+(R sinθ)
p+1

2

1
2π

∫ 2π

0

(sinα)
p+1

2 dϕ+(R sinθ)
p+1

2

,

(13)

where R≡ B̃/B is the ratio between the uniform and ran-
dom magnetic field components. When p = 3, Eq. (13)
reduces to

〈Πt(θ)〉=−3

2

(1−2R2)sin2 θ

(3+cos2θ)+4R2 sin2 θ
. (14)

We plot the polarization degree as a function of view-
ing angle for different values of R (R = 0,0.5,1,2,10) in
Fig. 2. For each R, we choose three different values of
p, i.e. p = 2.0,2.5,3.0. Curves for different R are dis-
tinguished by color, and curves for different p are dis-
tinguished by line style. We plot only in the θ ∈ [0,π/2]
range because the polarization is symmetric with respect
to θ = π/2. From Fig. 2, the polarization as a function of
θ peaks at θ = π/2. The polarization is insensitive to p,
but it strongly depends on R. As R increases from 0, the
net polarization will firstly decrease. This is because the
uniform magnetic field is perpendicular to the random
magnetic field. The synchrotron radiation in these two
magnetic field components are polarized along two direc-
tions which are perpendicular to each other. For the ran-
dom magnetic field component, the radiation is polarized
along the l̂01 direction, while for the uniform magnetic

field component, it is polarized along the l̂02 direction.
Therefore the net polarization is cancelled out. When R
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reaches a critical value Rc, the polarization completely
vanishes. The concrete value of Rc can be obtained by
requiring that right-hand-side of Eq. (13) be zero, and it
depends on both θ and p. We plot Rc as a function of
θ for different values of p (p = 2.0,2.5,3.0) in Fig. 3. In
the specific case p = 3, Rc ≡ 1/

√
2. When R > Rc, the

uniform component dominates over the random compo-
nent, and the net polarization degree begins to increase
as R increases. However, the polarization angle rotates
90◦ with respect to the R < Rc case. When R→∞, the
random component is negligible, and Eq. (13) reduces to
Eq. (5). In this case, the polarization is independent of
viewing angle, and it seems as if the magnetic field is
uniform at large scale.

Fig. 2. (color online) The polarization degree of
synchrotron radiation as a function of viewing an-
gle for different values of R (R = 0,0.5,1,2,10) and
p (p =2.0,2.5,3.0) in composite magnetic fields.

Fig. 3. The critical value Rc as a function of θ for
different values of p (p =2.0,2.5,3.0) in composite
magnetic fields.

3 Compton scattering process

In this section, we shortly review the polarization
properties of the Compton scattering process. The de-

tails can be found in Refs. [34, 35]. We first calculate the
single scattering case in which a photon is scattered by
an electron with arbitrary momentum. The incident pho-
ton can be in an arbitrary polarization state. Then we
integrate over the electrons to obtain the polarization of
a photon scattered by isotropic electrons. Traditionally,
the calculation is first done in the electron-rest frame,
then is transformed to the laboratory frame. To avoid
the complex Lorentz transformation between these two
frames, we work directly in the laboratory frame.

We first consider the single scattering case. The ge-
ometry of Compton scattering process is illustrated in
Fig. 4. A photon with energy ε0 collides with an electron
traveling along arbitrary direction l̂0 at point O. After
that the photon is scattered to the n̂ direction. The
Lorentz factor of the electron is γe. We set a Cartesian
coordinate such that the z-axis is along the direction of
incident photon, and the y-axis is in the scattering plane.
The polar and azimuth angles of the incident electron are
denoted by θ2 and ϕ2, respectively. The scattering an-
gle is denoted by θsc, and the angle between l̂0 and n̂

is denoted by θ1. The energy of the scattered photon
can be obtained from the conservation of the energy and
momentum [46],

ε1 =
ε0(1−βe cosθ2)

ε0

γemec2
(1−cosθsc)+(1−βe cosθ1)

, (15)

where βe =
√

1−1/γ2
e is the velocity of the incident elec-

tron in units of light speed.

y
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z

x

θ2

θ1θsc

φ

γ−ray

γ−ray

e−

n (θsc,π/2)^

l0 (θ2,φ )
^

Fig. 4. Geometrical representation of the Compton
scattering process in the laboratory frame. The
incident photon initially goes along the positive
z-axis, then is scattered by an electron moving
along the l̂0 direction at point O. After that the
photon travels along the line-of-sight direction n̂.
We choose a Cartesian coordinate such that the
y-axis is in the scattering plane.
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The polarization-dependent differential cross section
of the Compton scattering process in the laboratory
frame is given by [47]

dσ =
1

4
r2
edΩ

(

ε1

ε0

)2

[F0 +F3(ξ3 +ξ′

3)

+F11ξ1ξ
′

1 +F22ξ2ξ
′

2 +F33ξ3ξ
′

3], (16)

where re = e2/mec
2 is the classical electron radius, and

ξi and ξ′

i (i = 1,2,3) are the Stokes parameters standing
for the polarization states of the incident and scattered
photons, respectively. ξ3 represents the linear polariza-
tion along x- or y-axis, ξ1 represents the linear polariza-
tion along the direction with azimuth angle ±π/4 with
respect to the x-axis, and ξ2 characterizes the circular
polarization. The quantities Fa (a = 0,3,11,22,33) de-
pend on the kinematic states of the photon and electron,
which are given by [34, 35]
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(17)

where

A≡ 1

x
− 1

y
, B ≡ x

y
+

y

x
, (18)

x≡ 2γeε0

mec2
(1−βe cosθ2), y≡ 2γeε1

mec2
(1−βe cosθ1), (19)

Σ ≡ 4

γ2
e (1−βe cosθ2)2

(

1− βe sinθ2 sinϕ2

1−βe cosθ2

tan
θsc

2

)

.

(20)
In Eq. (17), we have explicitly written the arguments of
Fa for clarity. Note that F3, F11 and F33 are independent
of photon energy.

The polarimetric observation of GRBs in both the
prompt and afterglow phases shows that the circular po-
larization is very small. Hence we ignore it in the follow-
ing calculation. For a photon with linear polarization
degree Π0, we can write the Stokes parameters as

ξ1 = Π0 sin2χ0, ξ2 = 0, ξ3 = Π0 cos2χ0, (21)

where the polarization angle χ0 ∈ [−π/2,π/2] is the an-
gle between the polarization vector and the x-axis. After

the Compton scattering process, the Stokes parameters
of the secondary photon are given by [47]

ξf
1 =

ξ1F11

F0 +ξ3F3

, ξf
2 =

ξ2F22

F0 +ξ3F3

, ξf
3 =

F3 +ξ3F33

F0 +ξ3F3

.

(22)
As can been seen, the secondary photon is circularly po-
larized if and only if the incident photon is circularly
polarized. The polarization degree of the scattered pho-
ton can be conveniently written in terms of the Stokes
parameters as

Π =
√

(ξf
1)2 +(ξf

2)2 +(ξf
3)2. (23)

If a photon is scattered by isotropic electrons whose
energies follow the power-law distribution Ne(γe)dγe ∝
γ−p

e dγe, we can integrate over the electrons to obtain the
average contribution from each electron [34, 35],

〈Fa(ε0,θsc)〉≡
1

C

∫
(

ε1

ε0

)2

FaNe(γe)dγedΩ2, (24)

where C ≡
∫

Ne(γe)dγedΩ2 is the normalization factor,

and dΩ2 ≡ sinθ2dθ2dϕ2. The term (ε1/ε0)
2 in the in-

tegrand on the right-hand-side of Eq. (24) arises from
the average of the cross section in Eq. (16). The Stokes
parameters of the scattered photon can be derived from
Eq. (22) by replacing Fa with 〈Fa〉. The polarization of
the scattered photon is given by

〈Π(ε0,θsc)〉=
√

〈ξf
1〉2 +〈ξf

2〉2 +〈ξf
3〉2. (25)

In the Thomson limit, ε0 �mec
2, the formulae can be

extensively simplified. The polarization of the scattered
photon can be simply written as [35]

〈Π(θsc)〉= Π0

〈F11〉
〈F0〉

, (26)

where

F0 =
ε1

ε0

+
ε0

ε1

−sin2 θsc,
ε1

ε0

=
1−βe cosθ2

1−βe cosθ1

,F11 =
Σ

2
. (27)

An initially unpolarized photon remains unpolarized af-
ter scattering. The polarization of the scattered photon
is independent of photon energy.

4 SSC process from a highly relativistic

jet

In this section, we calculate the polarization proper-
ties of the SSC process from a highly relativistic jet. The
geometry is briefly illustrated in Fig. 5. A highly rela-
tivistic jet ejected from the central engine collides with
the interstellar medium and produces external shocks.
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The shocks magnify the magnetic field and at the same
time accelerate the electrons. Electrons moving in the
magnetic field produce photons through synchrotron ra-
diation. Then the synchrotron photons are scattered by
the seed electrons through the Compton scattering pro-
cess.

Fig. 5. Geometrical representation of the SSC pro-
cess from a highly relativistic jet. A photon pro-
duced by synchrotron radiation is initially moving
in the n̂0 direction, then is scattered by isotropic
electrons to the observer in the n̂1 direction. We
choose a Cartesian coordinate such that the z-axis
is along the jet direction, and the observer is in
the Oŷẑ plane. The magnetic field is random in
the Ox̂ŷ plane.

The energy of electrons, as is predicted by the shock
acceleration mechanisms, follows the power-law distribu-
tion. The magnetic field produced by shocks through the
Weibel instability is possibly random. We assume that
electrons are isotropic in the jet frame, and the mag-
netic field is fully confined in the shock plane. We set
a Cartesian coordinate such that the z-axis is in the jet
direction, and therefore the magnetic field is in the Ox̂ŷ

plane. We also allow the existence of a uniform magnetic
component perpendicular to the shock plane (i.e. along
the z-axis). The radiation is axis-symmetric with respect
to the z-axis. For simplicity we assume that the observer
is in the Oŷẑ plane. In such a configuration, the photon
spectrum produced by synchrotron radiation, according
to Eq. (12), is given by

Nγ(ε0,θ)∝
[

1

2π

∫ 2π

0

(sinα)
p+1

2 dϕ+(R sinθ)
p+1

2

]

ε
−

p−1

2

0 ,

(28)
where θ is the angle with respect to the z-axis, α is given
by Eq. (7), and p is the power-law index of electrons.
The photon initially moving in the n̂0 direction is scat-
tered by seed electrons to the observer in the n̂1 direc-
tion. The polarization degree of this photon seen by an
observer is given by Eq. (25), or in the Thomson limit
given by Eq. (26), where

cosθsc = sinθ sinϕsinθobs +cosθ cosθobs (29)

is the scattering angle, and θobs is the viewing angle, see
Fig. 5. Integrating over the photon spectrum, we ob-
tain the polarization of the SSC process as a function of
viewing angle,

〈〈Π(θobs)〉〉=

∫

〈Π(ε0,θsc)〉Nγ(ε0,θ)sinθdθdϕdε0

∫

Nγ(ε0,θ)sinθdθdϕdε0

.

(30)

The polarization measurement in GRB afterglow is
usually performed in the optical band, in which the
Thomson limit is applicable. Therefore, for simplicity
we just have to calculate in the Thomson limit. We nu-
merically integrate Eq. (30), and plot the polarization as
a function of viewing angle in Fig. 6. The figure is sym-
metric with respect to θobs = π/2 so we just plot in the
[0,π/2] range. Curves for different values of R are shown.
In the numerical calculation, the Lorentz factors of the
seed electrons are taken to be in the range γe ∈ [1,10], and
the power-law index of electrons is taken to be p = 2.5.
Electrons with Lorentz factor larger than 10 have little
contribution to the scattering process [34, 35]. A differ-
ent p value does not significantly affect the results. Due
to the isotropy of seed electrons and the randomness
of magnetic field, the net polarization degree is highly
suppressed. It is hard for the polarization degree to be
larger than 10%, unless the uniform magnetic component
is at least ten times stronger than the random component
such that the latter is negligible. The polarization degree
increases with the increasing of viewing angle and peaks
at θobs ∼ π/2. When the random component is at the
same order of magnitude as the uniform component, the
net polarization almost vanishes. The polarization angle

Fig. 6. (color online) Polarization of the SSC pro-
cess in the Thomson limit. The Lorentz factors
of the seed electrons are taken to be in the range
γe ∈ [1,10], and the power-law index of electrons
is taken to be p= 2.5.
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rotates 90◦ when the magnetic field changes from ran-
dom component dominated to uniform component dom-
inated.

The above formulae are derived in the jet comoving
frame. The jet travels towards the observer with a large
bulk Lorentz factor Γ. The angle transformation between
the jet frame and the observer frame is given by

cosθobs =
cos θ̄obs−βjet

1−βjet cos θ̄obs

, (31)

where βjet = (1− 1/Γ 2)1/2 is the velocity of the jet in
units of light speed. The quantities in the observer frame
are denoted with a bar. Notice that the polarization is
Lorentz invariant [48], so we can easily transform the
polarization from the jet frame to the observer frame,
i.e.,

〈〈Π̄(θ̄obs)〉〉= 〈〈Π(θobs)〉〉. (32)

The net polarization degree as a function of viewing an-
gle in the observer frame is very similar to Fig. 6, except
that the x-axis is rescaled according to Eq. (31).

5 Discussion and conclusions

In this paper, we have presented a detailed calcula-
tion of the polarization properties of the the SSC pro-
cess from a highly relativistic jet in the case of a ran-
dom magnetic field. We assumed that the magnetic
field is confined in a plane perpendicular to the jet ve-
locity. This magnetic configuration is physically impor-
tant and has been extensively discussed in the literature.
Such a magnetic configuration may be produced by ex-
ternal shock through Weibel instability, while GRB af-
terglows are widely accepted to be produced in the ex-
ternal shock region. In addition to the random mag-
netic component, there may be a uniform component
perpendicular to the shock plane. This uniform mag-
netic field can be advected by jet from the central en-
gine. We first derived analytical formulae to calculate
the power spectrum and polarization of synchrotron ra-
diation in the composite magnetic fields. Starting from
the polarization-dependent differential cross section of
photon-electron scattering, we obtained the polarization

of a photon scattered by an electron. Then integrating
over the spectra of photons and seed electrons, the polar-
ization properties of the SSC process were derived. We
numerically calculated the polarization degree as a func-
tion of viewing angle in the Thomson limit. We found
that the maximum polarization degree is usually . 10%
if the seed electrons are isotropically distributed. This is
consistent with the observation fact that the polarization
of GRB afterglow is seldom larger than 10%.

Interestingly, if the two magnetic components (ran-
dom and uniform) decay with time at different speeds,
then the polarization angle may rotate 90◦ during the
temporal evolution. For example, flux conservation re-
quires that the transverse (random) component decays
as B ∝ r−1, and the radial (uniform) component decays
as B̃ ∝ r−2, where r is the distance to the central engine
[28]. At first, the uniform component dominates over the
random component, i.e. R ≡ B̃/B � 1. As the jet ex-
pands, both components decay. Since the uniform com-
ponent decays faster than the random component, after
a critical radius the latter will dominate over the former
and thus R� 1. The polarization angle will change 90◦

at a critical value R = Rc.
Note that the polarization measurements of GRB

afterglow are usually performed in the optical band.
In this low energy band, the cross-section of photon-
electron collision is small and therefore the Compton
scattering process is negligible. The Compton scatter-
ing is important in the gamma-ray and X-ray band, and
synchrotron radiation may be the main radiating mecha-
nism of optical afterglow. However, Compton scattering
can still play an important role in the optical afterglow
if the surrounding medium is dense [42]. Even if the
Compton scattering does not occur, the 90◦ change of
polarization angle can also happen if the two magnetic
components decay at different speeds. The polarization
degree of pure synchrotron radiation can vary over a
wide range, depending on the ratio between the uniform
and random magnetic components. The effect of Comp-
ton scattering is to suppress the polarization degree.

We are grateful to Y. Sang, P. Wang and Z. C. Zhao

for useful discussions.
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