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Abstract: Hannay’s angle is a classical analogue of the “geometrical phase factor” found by Berry in his research on

the quantum adiabatic theorem. This classical analogue is defined if closed curves of constant action variables return

to the same curves in phase space after an adaibatic evolution. Adiabatic evolution of Yang-Mills cosmology, which

is described by a time-dependent quartic oscillator, is investigated. Phase properties of the Yang-Mills fields are

analyzed and the corresponding Hannay’s angle is derived from a rigorous evaluation. The obtained Hannay’s angle

shift is represented in terms of several observable parameters associated with such an angle shift. The time evolution of

Hannay’s angle in Yang-Mills cosmology is examined from an illustration plotted on the basis of numerical evaluation,

and its physical nature is addressed. Hannay’s angle, together with its quantum counterpart Berry’s phase, plays a

pivotal role in conceptual understanding of several cosmological problems and indeed can be used as a supplementary

probe for cosmic inflation.
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1 Introduction

After the advent of the inflation paradigm for the ex-
panding universe, various cosmological models that are
governed by homogeneous and isotropic fields in addition
to gravity have become an active research topic in cos-
mology. While most traditionally accepted fields for such
a paradigm are a single or several multiple scalar fields,
a large number of cosmological models employ sophisti-
cated cosmological theories based on reliable candidates
for dark energy, which is responsible for the inflation.
A class of potential theories of cosmology is those as-
sociated with non-minimally coupled Yang-Mills (YM)
fields, suggested by Gal’tsov and his collaborators [1–5].
Extensive studies on YM or Einstein-Yang-Mills (EYM)
cosmology has been carried out for the last two decades
and longer, partly motivated by its suitability for ex-
plaining the origin of the current stage of accelerated
inflation [4].

The aim of this paper is to analyze analytical descrip-
tion of YM condensates in cosmology. In particular, we
investigate cosmic evolution of YM fields and find the
cosmological Hannay’s angle, which seems to shed light

on the process of cosmological evolution. Let us recall
briefly Hannay’s angle, which is, for some Hamiltonians,
a slight modification of the old classical adiabatic theo-
rem which makes statements only for integrable Hamilto-
nian systems expressed in an action-angle variable (I,θ).
It says that, in adiabatic evolution, the action variable

I(t,
−→
X (t)) is adiabatic invariant, while the angle can be

calculated by solving for the instantaneous frequency of

the system θ̇(t,
−→
X (t)) =

∂H (I,
−→
X (t))

∂I
. The existence of

the action variable I(t,
−→
X (t)) implies that the evolution

of the angle variables can be determined by making a
time-dependent canonical transformation of the phase
space variables to action-angle variables. Transforma-
tion to action-angle variables can be fulfilled by the gen-
erating function

S(q,I,
−→
X (t)) =

∫ ql

dq′p(q′, I,
−→
X (t)), (1)

where p = ∂S/∂q and θ = ∂S/∂I . Hannay discovered, for
some Hamiltonians, that an extra geometric shift ∆θ, in
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the angle variable θ that is conjugate to the action vari-
able I , can be determined from

∆θ =
∂

∂I

∫ t

0

〈

∂S(I,θ,
−→
X (t′))

∂t′

〉

dt′, (2)

where 〈 〉 denotes the average over θ at a fixed time.
Cai and Papini [6] showed that a covariant gener-

alization of Berry’s phase which is connected to Han-
nay’s angle leads to generating non-Abelian gauge fields
in the manner adopted by Wilczek and Zee [7] with
non-relativistic approximations. In fact, such covariant
formalism is not only very acceptable but also natu-
rally accompanies the theory of YM fields [6]. More-
over, through their further study, Cai and Papini [8]
extended the theory of such covariant generalization to
non-linearly evolving systems. Yang-Mills fields are vec-
tor fields that obey local gauge invariance. We can use
them to solve the isotropy problem via an SU(2) YM
configuration. A special feature of the YM cosmologies
driven by SU(2) gauge fields is that they are described
by quartic oscillators [1] that are composed of a time-
dependent quadratic plus quartic Hamiltonian. In the
YM cosmology description with this potential, the con-
formal invariance for the quadratic action of YM fields is
conserved without introducing a mass scale [4], enabling
us to solve the problem of vector inflation.

The time-dependent Hamiltonian and the corre-
sponding Langrangian for the quartic oscillator that de-
scribes the SU(2) YM field will be constructed from the
basic equation for the Higgs scalar. To facilitate the anal-
ysis of the system, we assume that the system evolves
adiabatically in time, i.e., the parameters of the sys-
tem are slowly varying. This assumption is mostly taken
for granted in actual mathematical tasks that are con-
sidered to tackle dynamical systems with computational
schemes. The treatment of the time-dependent quartic
oscillator may be not an easy task because of the time
dependence of the parameters as well as the presence
of the quartic term in the Hamiltonian [9]. To simplify
the problem, we perform a canonical transformation that
preserves the form of the Hamiltonian equations. Based
on this transformation, the time evolution of the sys-
tem will be investigated on the basis of a perturbative
way [10]. Phase properties of the system and Hannay’s
angle [11] will be derived and their physical natures will
be addressed. Hannay’s angle is the classical counter-
part of the additional quantum phase known as Berry’s
phase [12–15]. Among the many areas in which Han-
nay’s angle and Berry’s phase play important roles, cos-
mology [6,8,16–23] and celestial mechanics [24, 25] have
been actively investigated so far in connection with them.
Hannay’s angle (or Berry’s phase) can be applied in ex-
tracting useful information associated with the theoret-
ical interpretation of observational aspects of inflation-

ary perturbations, such as the dynamical evolution of
the quantum fluctuations [16], vacuum instability [17],
the symmetry breaking of cosmological time [18], and
energy conservation in a gravity-scalar system [19].

2 Yang-Mills condensates

One recently suggested potential candidate for the
dark energy component is the YM condensate [26–29].
The introduction of the YM gauge boson condensate in
Robertson-Walker spacetime is adequate to explain the
advent of an inflationary expansion after the Planck time
in the early universe [30]. The inflation of the Universe
in the early epoch has been verified by the recent analysis
of observational data carried out by a research group at
the Harvard-Smithsonian Center for Astrophysics using
the astronomical instrument BICEP2 (for details refer to
their announcement on March 17, 2014, and Ref. [31]).
They have discovered a faint but distinctive twisting
component (B-mode waves) in the polarization of CMB
radiation, which originated from primordial gravitational
waves. Such a signal is regarded as the imprint of large-
scale primordial cosmic inflation. However, the validity
of the experimental results and the relevant cosmolog-
ical consequences became controversial afterwards and
they should be reconfirmed by further observations by,
for example, the Keck Array [32].

Einstein-Yang-Mills-Higgs action in the gauge theory
associated with spontaneous symmetry breaking with
a SU(2) YM field can be described in terms of α =
MW/(gMPl) and β = MH/MW, where MPl is the Planck
mass, MW is the W-boson mass, and MH is the Higgs
mass. Gal’tsov and Davydov [1, 2] suggested the equa-
tion for the Higgs scalar q in YM cosmology as

q̈+3H(t)q̇ =− 3

2a2(t)
q[1+f(t)]2−β2(q2−α2)q, (3)

where H(t) is the Hubble parameter, a(t) is the scale
factor that appears in the FRW metrics, and f(t) is a
dimensionless single scalar function.

We suppose that the Higgs field varies much faster
than the YM field during some stage of cosmological evo-
lution [1, 2, 33, 34]. This allows a separate description
of the Higgs field via the quartic time-dependent oscil-
lator model described in terms of adiabatically varying
parameters. According to this, we consider a universe
that yields a non-trivial steady state with the parame-
ter [1]

f =

√
8β−

√
3√

8β +
√

3
, (4)

which satisfies the equations for fields associated with the
YM and Higgs scalar functions. Now, Eq. (3) becomes

q̈+3H(t)q̇+ω2(t)q =−β2q3, (5)
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where

ω2(t) =
3

2a2(t)

(√
8β−

√
3√

8β +
√

3
+1

)2

−β2α2. (6)

According to the value of β, there are stable and unstable
directions of cosmic evolution from a fixed point in the
phase space [1]. We are interested in the points which
are stable against small perturbations. The translation
of the long quasistable states may terminate during the
period of inflation. The time behavior of solutions of Eq.
(5) is essentially characterized by the parameters α and β
in this case. The evolution of the scale factor would then
be mainly dominated by the Higgs potential, inducing a
slow-roll regime.

Notice that Eq. (5) is a kind of time-dependent quar-
tic oscillator equation. The Hamiltonian for this oscilla-
tor can be represented in the form

H=
1

2

[

e−3
∫

H(t)dtp2 +ω2(t)e3
∫

H(t)dtq2

+2β2e3
∫

H(t)dtq4
]

. (7)

This Hamiltonian is important for treating YM conden-
sates in cosmology [1]. From Hamilton’s equation

q̇ =
∂H
∂p

= e−3
∫

H(t)dtp, (8)

the canonical momentum of the system becomes

p = q̇e3
∫

H(t)dt. (9)

From a fundamental relation for the Lagrangian, L=pq̇−
H, we obtain

L=
1

2
e3
∫

H(t)dt [q̇2−ω2(t)q2−2β2q4] . (10)

In terms of a new variable Q that is defined as

Q = qe
3

2

∫

H(t′)dt′, the Lagrangian can be rewritten such
that

L(Q,Q̇,t)=
1

2

[

Q̇2−3H(t)QQ̇−Ω2 (t)Q2

−2β2e−3
∫

H(t′)dt′Q4
]

, (11)

where

Ω2 (t) = ω2(t)− 9

4
H2(t). (12)

The corresponding Hamiltonian in the transformed sys-
tem is given by

H(P,Q,t) = PQ̇−L(Q,Q̇,t). (13)

Considering P = ∂L/∂Q̇, we have

Q̇ = P +
3

2
H(t)Q. (14)

Then, the Hamiltonian is represented to be

H(P,Q,t) =
1

2
P 2 +

3

2
H(t)PQ+

1

2
ω2 (t)Q2

+β2Q4e−3
∫

H(t′)dt′ . (15)

For a particular case where the parameters are given by
H(t) = 2λ(t)/3, ω2(t) = ω2

0 , and β2 = ν/4, the Hamilto-
nian reduces to that in Eq. (30) of Ref. [10]:

HD (P,Q) =
1

2
P 2+λPQ+

1

2
ω2

0Q
2+

ν

4
e−3

∫

H(t′)dt′Q4. (16)

which corresponds to the Hamiltonian of the damped
quartic oscillator.

Since the description of the YM field in this model
yields the general quartic oscillator Hamiltonian, Eq.
(15), which is characterized by general time-dependent
parameters, a careful mathematical treatment is neces-
sary for a rigorous analysis of the system. From Hamil-
ton’s equations

Q̇= ∂H/∂P , Ṗ =−∂H/∂Q, (17)

we obtain the classical equation of motion as

Q̈+

(

Ω2− 3

2
Ḣ

)

Q+4β2e−3
∫

H(t′)dt′Q3 = 0, (18)

which is a somewhat complicated form. The concept of
effective YM condensate naturally allows a solution of
the coincidence problem in the dark energy model of a
flat expanding universe [27–29]. Based on the mathemat-
ical description associated with YM condensates given
here, the phase properties of YM fields and the relevant
Hannay’s angle shift will be investigated in the subse-
quent sections.

3 Time evolution of the Yang-Mills fields

To know how the Universe evolved from the early
epoch to today, it is necessary to study the time evolu-
tion of the Universe regarding its constituent fields and
matters. To study the time behavior of the YM fields,
we introduce a complex variable Z and its complex con-
jugate Z̄ such that

Z =

√

Ω

2

[

Q− i

Ω

(

3

2
HQ+P

)]

, (19)

Z̄ =

√

Ω

2

[

Q+
i

Ω

(

3

2
HQ+P

)]

. (20)

Equivalently, Q and P can be read as

Q=
1√
2Ω

(

Z + Z̄
)

, (21)

P =
iΩ− 3

2
H

√
2Ω

Z−
iΩ+

3

2
H

√
2Ω

Z̄. (22)
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From the first of the Hamilton’s equations given in
Eq. (17), we have

˙̄Z =
Ω̇

2Ω

(

Z + Z̄
)

+iΩZ− iΩZ̄− Ż. (23)

The evaluation of the second Hamilton’s equation, Eq.
(17), leads to

Ż =iΩZ +
4iβ2

4Ω2
e−3

∫

H(t′)dt′
(

Z + Z̄
)3

−
3i

2
Ḣ

2Ω
Z +

Ω̇− 3i

2
Ḣ

2Ω
Z̄. (24)

This equation can be solved perturbatively using its
canonical reduction to a normal form, provided that the
system is weakly nonlinear [(4β2/ω2)Q2 � 1] in addi-
tion to the supposition that the parameters, H , ω, and
β, vary adiabatically, i.e., slowly in time. The previous
supposition that the Higgs field varies much faster than
the YM one during some stage of cosmological evolution
allows us to assume that the system is weakly nonlinear.
Thus Eq. (24) can be solved perturbatively using its
canonical reduction to normal form. Under these con-
ditions, let us take advantage of the following near to
identity transformation

Z = u+δū, (25)

where δ is sufficiently small so that u � δū. Then, Eq.
(24) can be rewritten in terms of u and ū as

u̇=iY u+iY δū+
iβ2

Ω2
e−3

∫

H(t′)dt′ (u+ ū)
2

×[
(

1+3δ̄
)

u+(1+3δ)ū]+
Ω̇− 3i

2
Ḣ

2Ω

×(ū+ δ̄u)− δ̇ū−δ ˙̄u. (26)

where Y = Ω− 3

2
Ḣ/(2Ω). Using the complex conjugate

of the above equation:

˙̄u=−iY ū− iY δ̄u− iβ2

Ω2
e−3

∫

H(t′)dt′ (u+ ū)2

×
[

(1+3δ) ū+
(

1+3δ̄
)

u
]

+
Ω̇ +

3i

2
Ḣ

2Ω
(u+δū)− ˙̄δu− δ̄u̇, (27)

we can eliminate ū in Eq. (26). Then, Eq. (26) becomes

u̇=iY u+iY δū+
iβ2

Ω2
e−3

∫

H(t′)dt′ (u+ ū)
2

×
[(

1+3δ̄
)

u+(1+3δ) ū
]

+
Ω̇− 3i

2
Ḣ

2Ω

(

ū+ δ̄u
)

−δ̇ū+iY δū+
iβ2

Ω2
e−3

∫

H(t′)dt′δ (u+ ū)
2

×
[

(1+3δ) ū+
(

1+3δ̄
)

u
]

−
Ω̇ +

3i

2
Ḣ

2Ω
δu. (28)

Now, for the case that δ and its complex conjugate have
the form

δ =

3

2
Ḣ +iΩ̇

4Ω2
δ̄ =

3

2
Ḣ− iΩ̇

4Ω2
, (29)

Eq. (28) becomes

u̇=iY u+
iβ2

Ω2
e−3

∫

H(t′)dt′ (u+ ū)
2

×
[(

1+δ+3δ̄
)

u+(1+4δ) ū
]

. (30)

For further study of the nonlinear correction, it is
necessary to introduce a second change of the variable,
which is near to identity, such that [10]

u = v+αv3 +ρvv̄2 +γv̄3, (31)

where α, ρ, and γ are time-dependent coefficients that
are real. By inserting this in Eq. (30), the equation for
the new variable v can be obtained as

(1+3αv2 +ρv̄2) v̇

=iY (v+αv3 +ρvv̄2 +γv̄3)

+
iβ2

Ω2
e−3

∫

H(t′)dt′ (v+ v̄)2 [(1+δ+3δ̄)(v

+αv3 +ρvv̄2 +γv̄3)+(1+4δ)(v̄+αv̄3

+ρv̄v2 +γv3)]−(2ρv+3γv̄2) ˙̄v− α̇v3

−ρ̇vv̄2− γ̇v̄3. (32)

Using the complex conjugate of this equation:

˙̄v (1+3αv̄2 +ρv2)

=−iY (v̄+αv̄3

+ρv̄v2 +γv3)− iβ2

Ω2
e−3

∫

H(t′)dt′ (v+ v̄)
2

×
[(

1+ δ̄+3δ
)

(v̄+αv̄3 +ρv̄v2 +γv3)

+
(

1+4δ̄
)

(v+αv3 +ρvv̄2 +γv̄3)
]

−v̇ (2ρv̄+3γv2)− α̇v̄3− ρ̇v̄v2− γ̇v3, (33)
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we can eliminate ˙̄v in Eq. (32). Then. Eq. (32) yields

v̇+ α̇v3 + ρ̇vv̄2 + γ̇v̄3

=iY v+
3iβ2

Ω2
e−3

∫

H(t′)dt′
[

1+2
(

δ+ δ̄
)]

v2v̄

+

[

2αiY +e−3
∫

H(t′)dt′ iβ
2

Ω2

(

1+δ+3δ̄
)

]

v3

+

[

2iρY +e−3
∫

H(t′)dt′ 3iβ2

Ω2

(

1+3δ+ δ̄
)

]

vv̄2

+

[

4iγY +
iβ2

Ω2
e−3

∫

H(t′)dt′ (1+4δ)

]

v̄3. (34)

Hence, we can confirm that, according to the nonlinear
change of variable u [Eq. (31)], the expression u̇ given in
Eq. (30) can be converted in terms of the new variable
v as Eq. (34), where the time derivatives of α, ρ, and γ
hold the equations

α̇ = 2αiY +
iβ2

Ω2
e−3

∫

H(t′)dt′
(

1+δ+3δ̄
)

, (35)

ρ̇ = 2iρY +
3iβ2

Ω2
e−3

∫

H(t′)dt′
(

1+3δ+ δ̄
)

, (36)

γ̇ = 4iγY +
iβ2

Ω2
e−3

∫

H(t′)dt′ (1+4δ) . (37)

Then, Eq. (34) becomes

v̇ = iY v+
3iβ2

Ω2
e−3

∫

H(t′)dt′
[

1+2
(

δ+ δ̄
)]

v2v̄. (38)

This formula will be used in the next section to inves-
tigate phase properties of the YM field and the corre-
sponding Hannay’s angle.

4 Phase properties: Hannay’s angle

Phase properties of the adiabatically evolving YM
field with time-dependent paramaters of the Hamilto-
nian will be investigated in this section. The discussion
of the non-vanishing Hannay’s angle in the evolution of
the YM field is necessary from a theoretical point of view
mainly because of its gauge-theoretical structure [2, 7].
By setting

v = Ae
3

2

∫

H(t′)dt′eiΘ, (39)

we can confirm from the use of Eq. (38) that the equa-
tions for the amplitude A and the angle Θ are read

Ȧ+
3

2
HA+iAΘ̇ = iY A+

3iβ2

Ω2

[

1+2
(

δ+ δ̄
)]

A3. (40)

By adding this equation with its complex conjugate,
which is

Ȧ+
3

2
HA− iAΘ̇ =−iY A− 3iβ2

Ω2

[

1+2
(

δ+ δ̄
)]

A3, (41)

we have
Ȧ+3HA = 0. (42)

The subtraction of Eq. (41) from Eq. (40) gives

Θ̇ = Y +
3β2

Ω2

[

1+2
(

δ+ δ̄
)]

A2. (43)

It is possible to obtain an explicit form of A(t) from Eq.
(42) provided that H(t) is known. Consequently, if A(t)
is known, we can also obtain Θ from Eq. (43). In this
way, we can identify a complete solution of v given in
Eq. (39).

Because

δ+ δ̄ =

3

2
Ḣ

2Ω2
, (44)

the derivative of the angle given in Eq. (43) can be
rewritten as

Θ̇ = Ω

(

1+
3β2

Ω3
A2

)

− 3Ḣ

4Ω

(

1+
6β2

Ω3
A2

)

. (45)

If we consider the fact that Eq. (42) implies that A is
given by A = A0e

3
∫

t

0
Hdt′ , this equation becomes

Θ̇ = Ω− 3Ḣ

4Ω
+

3β2

Ω2

(

1− 3Ḣ

2Ω2

)

A2
0e

6
∫

t

0
Hdt′ . (46)

In particular, for the limit that t is sufficiently small,
we can express Θ̇, under the assumption of the adiabatic
change of the parameters H and β, in the form

Θ̇ = Ω

(

1+
3β̃2

Ω3
A2

0

)

− 3Ḣ

4Ω

(

1+
6β̃2

Ω3
A2

0

)

, (47)

where β̃ is a renormalized parameter of the form β̃ =

β

(

1+3

∫ t

0

Hdt′
)

. The second term in Eq. (47) is the

time-dependent geometric one, i.e., Hannay’s part of Θ̇,
whereas the first term is the dynamical part. Thus, Han-
nay’s angle is obtained to be

ΘH(t) =−
∫ t

0

3Ḣ

4Ω

(

1+
6β̃2

Ω3
A2

0

)

dt+ΘH(0), (48)

where ΘH(0) is the initial Hannay’s angle. If we think
that it is difficult to know the amount of ΘH(0), the dif-
ference in Hannay’s angle between arbitrary two times
t0 and t (t0 < t) may be more useful:

∆ΘH(t) =−
∫ t

t0

3Ḣ

4Ω

(

1+
6β̃2

Ω3
A2

0

)

dt. (49)

The appearance of this angle holonomy is of purely ge-
ometrical origin. Figures 1-4 represent simple time evo-
lutions of Eq. (49) and their time derivatives where we
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have taken H = ȧ(t)/a(t) and a(t) = (t/a0)
a1 . Here, a0

and a1 are constants. In these figures, Hannay’s angle
slowly increases at first, but its increment becomes grad-
ually faster as time goes by. This is an extra angle shift
emerging via the angle variables in a classical system
along adiabatic or non-adiabatic changes of the parame-
ters through a closed path in the parameter space. Fig-
ure 1 shows that the accumulation of Hannay’s angle over
time becomes small as a0 increases. On the other hand,
from Figs. 2-4, we can conclude that the accumulation
of Hannay’s angle becomes large as the parameters such
as a1, α, and β increase. From the time derivatives of
Hannay’s angle in the figures, we can confirm the exact
ratio of the increment of geometric angle per unit time.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 2 3

ΔΘH (t) ; a0 = 1.00

d[ΔΘH (t)] /dt ; a0 = 1.00
d[ΔΘH (t)] /dt ; a0 = 1.05
d[ΔΘH (t)] /dt ; a0 = 1.10

ΔΘH (t) ; a0 = 1.05
ΔΘH (t) ; a0 = 1.10

4 5
t

H
an
n
ay
’s

 a
n
g
le

6 7 8 9 10

Fig. 1. (color online) Hannay’s angle shifts for sev-
eral different values of a0 and their time deriva-
tives represented as a function of t. This is plotted
on the basis of numerical evaluation of Eq. (49)
with the choice of t0 = 1, where all values are
taken to be dimensionless for the sake of conve-
nience (This convention will also be applied to all
the subsequent figures.). The values we used here
are a1 = 1, A0 = 1, α = 1, and β = 1.

Fig. 2. (color online) Hannay’s angle shifts for sev-
eral different values of a1 and their time deriva-
tives represented as a function of t. The values we
used here are a0 = 10, A0 =1, α =1, and β =1.
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Fig. 3. (color online) Hannay’s angle shifts for sev-
eral different values of α and their time derivatives
represented as a function of t. The values we used
here are a0 = 10, a1 =1, A0 = 1, and β =1.
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Fig. 4. (color online) Hannay’s angle shifts for sev-
eral different values of β and their time derivatives
represented as a function of t. The values we used
here are a0 = 10, a1 =1, A0 = 1, and α =1.

Through a comparative study via the first order ap-
proximation of perturbation theory [10], we can easily
confirm that the damped quartic oscillator is canonically
equivalent to this generalized quartic oscillator with a
renormalized parameter β̃. Hence, both systems have
an identical Hannay’s angle. The Hannay’s angle shift
given in Eq. (49) provides fertile ground for applications
in analyzing the evolution of the Universe.

Because the amount of phase shift originating from
Hannay’s angle is in general very small compared to the
dynamical phase shift, the detection of Hannay’s angle
may be a somewhat cumbersome task and requires high
precision measurements or observations [35]. A simple
observation of Hannay’s angle is possible for an ellipti-
cally orbiting object in celestial mechanics by averaging
initial angles of the motion over the torus [35–38]. Such
measurability of Hannay’s angle can be extended to more
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general and complicated systems, such as circular three-
body gravitational systems [24, 25, 39], non-Abellian
gauge fields systems [40], interacting many-particle bo-
son systems [41], and systems undergoing noncyclic evo-
lution [42]. In cosmology associated with the theory de-
veloped here, the evolution of Hannay’s angle given in
Eq. (49) is represented in terms of observable parame-
ters. One can claim that the observation of Hannay’s an-
gle can serve as a demonstration of the validity of a given
cosmological theory. This is the physical significance of
analyzing the cosmological Hannay’s angle regarding its
theoretical and observational aspects.

5 Conclusion

The time behavior of YM cosmology has been inves-
tigated under the adiabatic evolution of time-dependent
parameters. Novel features of phase transition in the
early epoch can be explained by YM condensates which
accompany the description of dark energy responsible
for the inflation of the Universe. A rigorous evaluation
leads the equation for the YM field to that of a parti-
cle confined in the quartic potential. Although the usual
YM action is conformally invariant, YM fields associated
with a vector field for inflation violate conformal invari-
ance [3]. The phase properties of the system were ana-

lyzed and Hannay’s angle was derived. Hannay’s angle,
given in Eq. (48), is equivalent to that of a damped quar-
tic oscillator. We can confirm that the system acquires a
supplement angular shift as the system evolves in phase
space according to the adiabatic theorem. The smooth
dependence of the Hamiltonian associated with the YM
field on time-dependent parameters is responsible for the
emergence of this additional change of the angle. Han-
nay’s angle under a semiclassical approximation exhibits
a well-known natural relation with Berry’s phase in a
quantum system [13], which is necessary to understand
the quantum characteristics of the system. Hannay’s an-
gle and Berry’s phase play important roles in analyzing
several conceptual problems relevant to anomalies and
their related problems [17] and indeed can be used as
a supplementary measure to probe the inflation that is
typically introduced in inflationary cosmologies [16]. An
indirect route for estimating scalar or tensor spectral in-
dices and other observable parameters therefrom can be
achieved by measuring Hannay’s angle or Berry’s phase
of the cosmological perturbations. During slow roll in-
flation, the overall phase or angle accumulated by the
adiabatic limit of each mode along sub-Hubble oscilla-
tions is a new parameter made of the spectral indices of
the corresponding scalar or tensor.

References

1 D. V. Gal’tsov and E. A. Davydov, Int. J. Mod. Phys.: Conf.
Ser., 14: 316 (2012)

2 D. V. Gal’tsov and E. A. Davydov, Proc. Steklov Inst. Math.,
272: 119 (2011).

3 E. A. Davydov and D. V. Gal’tsov, Gravit. Cosmol., 21: 35
(2015)

4 D. V. Gal’tsov, Proceedings of the 43rd Rencontres de Moriond

La Thuile J08, Gal’tsov(1-16) (2008). [arXiv:0901.0115v1 [gr-
qc]]

5 V. V. Dyadichev, D. V. Gal’tsov, A. G. Zorin, and M. Yu.
Zotov, Phys. Rev. D, 65: 084007 (2002)

6 Y. Q. Cai and G. Papini, Mod. Phys. Lett. A, 4: 1143 (1989)
7 F. Wilczek and A. Zee, Phys. Rev. Lett., 52: 2111 (1984)
8 Y. Q. Cai and G. Papini, Class. Quantum Grav., 7: 269 (1990)
9 S. Albeverio and S. Mazzucchi, J. Funct. Anal., 238: 471

(2006)
10 O. V. Usatenko, J.-P. Provost, G. Vallée, and A. Boudine, Phys.

Lett. A, 250: 99 (1998)
11 J. H. Hannay, J. Phys. A: Math. Gen., 18: 221 (1985)
12 D. H. Kobe and J. Zhu, Int. J. Mod. Phys. B, 7: 4827 (1993)
13 H. D. Liu, X. X. Yi, and L. B. Fu, Ann. Phys. (N.Y.), 339: 1

(2013)
14 A. K. Pati, Ann. Phys. (N.Y.), 270: 178 (1998)
15 O. V. Usatenko, J.-P. Provost, and G. Vallée, J. Phys. A: Math.

Gen., 29: 2607 (1996)
16 B. K. Pal, S. Pal, and B. Basu, Class. Quantum Grav., 30:

125002 (2013)
17 D. P. Datta, Phys. Rev. D, 48: 5746 (1993)
18 S. P. Kim, Phys. Lett. A, 191: 365 (1994)
19 D. P. Datta, Mod. Phys. Lett. A, 08: 601 (1993)
20 A. Mostafazadeh, Turk. J. Phys., 24: 411 (2000)
21 B. K. Pal, S. Pal, and B. Basu, J. Phys.: Conf. Ser., 405:

012025 (2012)
22 R. Brout and G. Venturi, Phys. Rev. D, 39: 2436 (1989)
23 H. Rosu, P. Espinoza, and M. Reyes, Il Nuovo Cimento B, 114:

1439 (1999)
24 A. D. A. M. Spallicci, Il Nuovo Cimento B, 119: 1215 (2004)
25 M. V. Berry and M. A. Morgan, Nonlinearity, 9: 787 (1996)
26 W. Zhao, Y. Zhang, and M. Tong, Quantum Yang-Mills con-

densate dark energy models, in Dark Energy: Theories, De-

velopments and Implications, K. Lefebvre and R. Garcia(eds.),
Ch. 5 (New York, Nova Science Publishers, Inc., 2010). pp.
89-110

27 Y. Zhang, T. Y. Xia, and W. Zhao, Class. Quantum Grav. 24:
3309 (2007)

28 T. Y. Xia and Y. Zhang, Phys. Lett. B, 656: 19 (2007)
29 S. Wang, Y. Zhang, and T. Y. Xia, J. Cosmol. Astropart. Phys.,

2008: 037 (2008)
30 Y. Zhang, Phys. Lett. B, 340: 18 (1994)
31 P. A. R. Ade et al, Phys. Rev. Lett., 112: 241101 (2014)
32 P. A. R. Ade et al, arXiv: 1603.05976v1 (2016)
33 J. J. van der Bij and E. Radu, Int. J. Mod. Phys. A, 18: 2379

(2003)
34 G. D. Moore, Phys. Rev. D, 62: 085011 (2000)
35 S. Golin, J. Phys. A: Math. Gen., 22: 4573 (1989)
36 S. Golin, A. Knauf, and S. Marmi, Commun. Math. Phys., 123:

95 (1989)
37 S. Golin and S. Marmi, Europhys. Lett., 8: 399 (1989)
38 S. Golin and S. Marmi, Nonlinearity, 3: 507 (1990)
39 A. D. A. M. Spallicci, A. Morbidelli, and G. Metris, Nonlinear-

ity, 18: 45 (2005)
40 C. A. Mead, Phys. Rev. Lett., 59: 161 (1987)
41 S. C. Li, J. Liu, and L. B. Fu, Phys. Rev. A, 83: 042107 (2011)
42 A. G. Wagh, V. C. Rakhecha, P. Fischer, and A. Ioffe, Phys.

Rev. Lett., 81: 1992 (1998)

065103-7


