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Abstract: In this paper, we investigate dynamical mass generation in (2+1)-dimensional quantum electrodynamics

at finite temperature. Many studies are carried out within the instantaneous-exchange approximation, which ignores

all but the zero-frequency component of the boson propagator and fermion self-energy function. We extend these

studies by taking the retardation effects into consideration. In this paper, we get the explicit frequency n and

momentum p dependence of the fermion self-energy function and identify the critical temperature for different fermion

flavors in the chiral limit. Also, the phase diagram for spontaneous symmetry breaking in the theory is presented in

Tc-Nf space. The results show that the chiral condensate is just one-tenth of the scale of previous results, and the

chiral symmetry is restored at a smaller critical temperature.
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1 Introduction

(2+1)-dimensional quantum electrodynamics
(QED3) has been long investigated for its many inter-
esting characteristics, like confinement and dynamical
chiral symmetry breaking (DCSB). Confinement and
DCSB are believed to be crucial in understanding Quan-
tum Chromodynamics (QCD). As a non-Abelian gauge
theory with asymptotic character, however, it is hard
to gain much insight into these features by conventional
methods, like perturbative methods. As a result, QED3

can be a good alternative to investigate these interesting
characteristics to help us understand QCD. Among these
studies, the Dyson-Schwinger equations (DSEs) are one
of the most widely used tools [1–4].

QED3 has also been studied for possible applica-
tions in condensed matter systems, like high-Tc cuprate
superconductors [5–16] and graphene [17–22]. High-Tc

cuprate superconductors have an unconventional d-wave
symmetry of the pairing condensate. There are nodes
on the pairing gap at the Fermi surface, and its low-
energy dispersion becomes linear and thus can be de-
scribed as massless fermions. The motion of the modes

is mainly confined within the two-dimensional copper-
oxygen planes, so it suggests the low-energy behavior
of these systems can be described in terms of a quan-
tum electrodynamics in two spatial dimensions with two
massless fermion flavors [11, 12, 14, 23, 24]. In this pic-
ture the antiferromagnetically ordered insulating state of
the cuprates would correspond to a state of broken chiral
symmetry. For this reason, it is also meaningful to study
DCSB in (2+1)-dimensional quantum electrodynamics.

In the past few decades, the chiral phase transition
in QED3 at zero temperature has aroused great interest
and been investigated intensively. T.W. Appelquist et
al. [25] first solved the DSE for the fermion self-energy
function, within the approximation that keeps only the
leading-order contribution in 1/Nf expansion, and found
that the chiral phase transition takes place only when
the number of fermion flavors is smaller than a criti-
cal N c

f =32/π2. D. Nash [26] gave a critical number of
fermion flavors N c

f =128/3π
2 by further taking into ac-

count the next-to-leading-order corrections to fermion
wave-function renormalization function. These results
have been questioned in Refs. [27, 28], where they argued
that the 1/Nf expansion is not an appropriate tool to ad-
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dress these nonpeturbative phenomena. Using a slightly
different truncation of the fermion DSE, they found that
chiral symmetry is broken for all values of Nf , although
the generated mass scale exponentially decreases for in-
creasing Nf . Later, P. Maris [29] investigated this prob-
lem in a different way by solving a set of coupled inte-
gral equations for the fermion wave-function renormal-
ization function, the fermion self-energy function, and
the boson vacuum polarization within a range of sim-
plified fermion-boson vertexes, and arrived at a critical
number of fermion flavors N c

f =3.3. This result puts an
end to the argument of the existence of a critical number
of fermion flavors. Subsequently, C.S. Fischer et al. [30]
employed an ansatz satisfying the Ward-Takahashi iden-
tity for the fermion-boson vertex to get a more accurate
numerical value of N c

f and found a critical number of
fermion flavors N c

f ≈4.
Since many physical systems have interesting phe-

nomena and physical properties at finite temperature,
it is interesting to investigate DCSB in QED3 at finite
temperature. Due to the Coleman-Mermin-Wagner the-
orem [31, 32], continuous symmetries cannot be spon-
taneously broken at finite temperature in systems with
sufficiently short-range interactions in dimensions D62.
Furthermore, as mentioned above, many experimental
results show that high-Tc cuprate superconductors have
plane conducting characteristics, which means the mo-
tion of the carriers is mainly in the CuO2 plane. More
accurate experiments show that the critical temperatures
for high-Tc cuprate superconductors with different num-
bers of layers are different. With the number of layers
increasing from one to a certain number, the critical tem-
perature increases. When the number of layers reaches a
certain value, the critical temperature shows a tendency
to decrease as the number of layers increases [33, 34].
This shows that in reality the inter-layer coupling has a
practical effect on the in-plane physical systems. As a
matter of fact, the inter-layer coupling can easily drive
the system into a true ordered state once the in-plane
correlations are already strong, e.g., below the mean field
transition temperature. Usually, the DCSB in QED3 at
finite temperature is studied by a self-consistent calcu-
lation of DSE in the rainbow approximation in QED3,
which is like the mean field theory in condensed mat-
ter physics. In such a theory, the correlation between
fluctuations of the order parameter is ignored. Never-
theless, the mean field transition temperature provides a
correct energy scale below which the amplitude of the or-
der parameter becomes finite and its spatial correlation
becomes strong and rather long-ranged. In this sense,
the mean field transition marks a crossover in the ther-
modynamic properties. In particular, for a U(1) or O(2)
symmetry to be broken, there is in fact an algebraic or-
der below the so-called Kosterlitz-Thouless (KT) transi-

tion temperature (the transition can be found in several
2-D systems in condensed matter physics that are ap-
proximated by the XY model, including Josephson junc-
tion arrays and thin disordered superconducting granular
films; more recently, the term has been applied by the
2-D superconductors insulator transition community to
the pinning of Cooper pairs in the insulating regime, due
to similarities with the original vortex KT transition), a
temperature not far from the mean field one.

In this paper, we mainly concentrate on dynamical
gap generation in QED3 at finite temperature. Many
studies have been done in related areas. In 1987, Kocic
first found that there is a critical temperature Tc above
which chiral symmetry is restored, using a very sim-
ple approximation solving the finite temperature Dyson-
Schwinger equations (DSEs) [35]. Later, N. Dorey et al.
had made some improvements on investigating DCSB
in QED3 at finite temperature and discussed the rele-
vance to high-Tc superconductors [36, 37]. This prob-
lem was carried out by solving the DSEs of fermions
within the formalism of the imaginary time Matsubara
Green’s function. For simplicity, their work was carried
out with a few approximations to get a qualitative re-
sult. These included replacing the full fermion-boson
vertex Γν by the bare fermion-boson vertex and neglect-
ing the fermion wave-function renormalization effect, and
the photon polarization function was calculated consid-
ering only the one-loop contribution. Since this trun-
cation scheme helps to keep the gauge-invariance of the
DSEs, it is widely used in investigating DCSB at zero
temperature [25–30]. In order to avoid the computation
complexity, the fermion self-mass Σ was taken to depend
on temperature only, not on momentum and energy ex-
plicitly. They got the temperature dependence of the dy-
namically generated mass gap, and found that dynamical
mass gap generation is suppressed at finite temperature
and the dynamically generated mass gap vanishes above
a certain critical temperature Tc (Tc = 4.9×10−2α for
Nf =1). The fermion self-mass varies as the momentum
and energy change, so it is hard to know to what extent
the result is reliable.

Subsequently, many studies have made an effort to
improve the correctness of this calculation. In Ref. [38],
I.J. Aitchison et al. further take the momentum de-
pendence of the fermion self-energy and wave-function
renormalization function into consideration. They got a
non-physical result of Z>1, even when the temperature
approaches zero. They then proposed a modified equa-
tion and got a similarNf-T phase diagram as in Ref. [37].
Later, they took the retardation effects and other parts
of the photon propagator ∆µν into consideration, but ig-
nored the momentum dependence of fermion self-energy.
They got numerical results for the temperature depen-
dence of the dynamically generated mass [39]. Within
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the instantaneous approximation and adopting a similar
truncation scheme as in Ref. [37], one thorough study was
done by Aitchison et al.. They extended the analysis of
Ref. [36] by further considering the momentum depen-
dence of the fermion self-energy function, and gave the
temperature dependence of the fermion self-energy func-
tion and the chiral phase diagram at Nf-T space [40].
Later, Feng et al. [41–43] investigated various properties
of QED3 at finite temperature and/or finite density, and
made a thorough investigation of the phase structure of
finite temperature QED3.

Most recently, Yin et al. [44] extended this investiga-
tion and further considered the impurity potential effect
on the chiral phase transition in thermal QED3. They
got a critical temperature Tc=2.47×10−2, atNf=2. Some
other works concerning the temperature dependence of
fermion self-mass have also been carried out in QED3-like
systems [45, 46]. Ref. [45] worked in the real-time formal-
ism of finite field theory, and got a critical Tc=5.4×10−4,
at Nf = 2. However, the results varied with the lattice
size and cut-off change.

Some other studies concerning the temperature de-
pendence of fermion self-mass has also been carried out
in QED3 like systems [45, 46]. Ref. [45] worked in the
real-time formalism of finite field theory, and had given
a critical Tc=5.4×10−4, at Nf =2, but the results varied
as the lattice size and cut-off change.

It is widely believed that the instantaneous approx-
imation is valid at high temperature. But, as we know,
dynamical gap generation is a low-energy phenomenon,
so whether this approximation can give a reliable result
in investigating dynamical gap generation in QED3 re-
mains unknown. Including the retardation effect will
weaken the suppression effect of temperature or will fur-
ther suppress the gap generation at finite temperature.

The paper is organized as follows. In Section 2, we
discuss the DSE for the fermion self-energy function at fi-
nite temperature and then give the criteria for the chiral
phase transition. In Section 3, we briefly present some
critical details of the calculation and explore the finite
temperature behavior of the vacuum polarization func-
tion, fermion self-energy function. Then, we give the Nf

and T dependence of chiral condensate and chiral sus-
ceptibility and the phase diagram for spontaneous chiral
phase transitions at Nf-T . A brief summary and discus-
sion are given in Section 4.

2 Dyson-Schwinger equations at finite

temperature

2.1 Dyson-Schwinger equations in QED3

In Euclidean space, the Lagrangian density of QED3

with Nf flavors of massless fermions is given by

L=

Nf
∑

f=1

ψ̄f(6∂+ie 6A)ψf+
1

4
F 2

µν+
1

2ξ
(∂µAµ)2. (1)

The lowest rank irreducible representation of the
Lorentz group is of two dimensions in (2+1)-dimensional
space-time. In this representation, Dirac fermions are
described by two-component spinors and the γ-matrices
can be chosen as the usual Pauli matrices. However, as
the three Pauli matrices are a complete set of mutually
anticommuting 2×2 matrices, it is impossible to define
an extra 2×2 matrix that anticommutes with all three
γ-matrices. Consequently there is no extra matrix to
generate a chiral symmetry that would be broken by a
mass term mψψ, whether explicit or dynamically gen-
erated. In this paper, we employ the four-component
spinors and 4×4 matrix representation of the Lorentz
group. For the fermion propagator, the finite tempera-
ture version of DSE is given by

S−1(p) = S−1
0 (p)−

α

Nf

∑

∫

γµ×S(k)∆µν(q)Γν(p,k), (2)

S−1
0 (p) = i~γ·~p+iγ3p3, (3)

where p = (p3,~p) with p3 = (2m+1)πT and |~p| = P ,

k = (k3,~k) with k3 = (2n+ 1)πT and |~k| = K, and

q=(q3,~q)=p−k with q3=2(m−n)πT and |~q|=Q=|~p−~k|.

The notation
∑

∫

denotes

+∞
∑

n=−∞

∫

d2
−→
k

(2π)2
. S−1(p) and

S−1
0 (p) are the inverse of full and free fermion propaga-

tors at finite temperature; Γν(p,k) is the full fermion-
boson vertex; ∆µν(q) is the full boson propagator at fi-
nite temperature. The coupling constant α=Nfe

2 has
dimension one, thus providing us with a mass scale. In
this paper the momentum, temperature and fermion self-
energy are all measured in unit of e2, namely, we choose
natural units in which e2=1.

Equation (3) forms an infinite hierarchy of integral
equations for the Green’s functions of the theory and
some approximations are required for numerical calcula-
tion .

As stated in the introduction, we take the rainbow
approximation, in which Γ ν is replaced by its bare value
eγν , work in the Landau gauge, and assume that the
wave function renormalization is neglected. As a result,
we can have S−1(p)=6p+B(p), where B(P,β) stands for
the fermion self-energy function. The trace of Eq. (3)
then yields a closed integral equation for B(p):

B(p)=
α

4Nf

∫

d3k

(2π)3
×

B(k)

k2+B2(k)
Tr[γµ∆µν(q)γν ], (4)

Subsequently, we can get the DSE for the fermion self-

073102-3



Chinese Physics C Vol. 41, No. 7 (2017) 073102

energy function at finite temperature:

Bm(p,β)=
α

Nfβ

∑

∫

∆(q,β)×
Bn(k,β)

k2+B2
n(k,β)

, (5)

with

∆(q,β)=
1

4
Tr[γµ∆µν(q,β)γν ]. (6)

For the boson propagator, the finite temperature version
of DSE is written as

∆−1
µν (q) = ∆0,−1

µν (q)+Πµν(q), (7)

∆0,−1
µν (q) = q2(δµν−qµqν/q

2), (8)

Πµν(q)=−NfT
∑

∫

Tr[γµS(k)Γν(p,k)S(p)], (9)

where∆0,−1
µν (q) is the inverse of the free boson propagator

and Πµν(q) is the vacuum polarization tensor.
As done in Ref. [37], we also decompose the vacuum

polarization tensor in terms of two independent trans-
verse tensors

Πµν(q)=ΠA(q)Aµν+ΠB(q)Bµν , (10)

where

Aµν =(δµ0−
qµq0
q2

)
q2

Q2
(δν0−

qνq0
q2

), (11)

and

Bµν =δµi(δij−
qiqj

Q2
)δjν , (12)

Aµν and Bµν are orthogonal and satisfy the following
relationship

Aµν+Bµν =δµν−
qµqν

q2
. (13)

The functions ΠA(q) and ΠB(q) are related to the tem-
poral and spatial components of the vacuum polarization
tensor Πµν(q) by the following expressions

ΠA=
q2

Q2
Π00(q), (14)

and

ΠB(q)=Πii(q)−
q2
0

Q2
Π00(q). (15)

Substituting Eqs. (8) and (10) into Eq. (7),we get an al-
ternative expression for the full finite temperature boson
propagator

∆µν(q)=
Aµν

q2+ΠA(q)
+

Bµν

q2+ΠB(q)
. (16)

Herein we follow Refs. [42–44] in retaining only the tem-
poral component of the boson propagator, and then we
get the approximate expression of the boson propagator:

∆µν(q,β)=
Aµν

q2+ΠA(q,β)
. (17)

Substituting Eq. (17) into Eq. (6), we can get the iter-
ation function for fermion self-energy function

Bm(p,β)=
2α

Nfβ

∑

∫

Bn(p,β)

k2+B2
n(p,β)

1

q2+ΠA(q,β)
, (18)

To the leading-order contribution of 1/Nf expansion, the
vacuum polarization function is given by

Πµν(q)=−NfT
∑

∫

Tr[γµS0(k)Γν(p,k)S0(p)]. (19)

Following the steps taken by Ref. [37], we can obtain the
explicit expression for the vacuum polarization function
at finite temperature:

ΠA(q,β) =
α

πβ

∫ 1

0

dx×ln[4cosh2(
1

2
qβ

√

x(1−x))

−4sin2(xmπ)]. (20)

2.2 Criteria for chiral phase transition

The chiral condensate is the vacuum expectation
value of the scalar operator ψ̄ψ. Its nonzero value indi-
cates that chiral symmetry reflected on the Lagrangian
level is spontaneously broken on the vacuum level and
the chiral symmetry gets restored when the chiral con-
densate vanishes for the chiral limit. Due to this charac-
teristic, chiral condensate is usually taken as the order
parameter for the chiral phase transition.

The chiral condensate is commonly given by the first-
order derivative of the generating functional with respect
to the current mass of the fermion

〈ψ̄ψ〉(T ) = −
∂ lnZ

∂m
=−T

∑

∫

Tr[S(p)]

= −4T

∞
∑

n=−∞

∫

d2k

(2π)2
Bn(k,β)

k2+Bn(k,β)2
, (21)

where the notation Tr denotes trace operation over Dirac
indices of the fermion propagator.

Susceptibility is defined as the first-order derivative
of the order parameter. Usually the divergent or some
other singular behaviors of the susceptibility are usu-
ally regarded as essential characteristics of phase transi-
tion [47–51].

Chiral susceptibility is defined as the first-order
derivative of the chiral condensate with respect to the
current mass of the fermion

χc=−
∂〈ψ̄ψ〉(T )

∂m
=
T

V

∂2 lnZ

∂m2
. (22)

In this paper, we follow the discussion of Ref. [52]
and adopt their expression for the chiral susceptibility
at finite temperature

χc = 4NfT
∑

n

∫

d2P

(2π)2
×

{

[$2
n+P 2−B2

n(P 2)]Dn(P 2)

[$n+P 2+B2
n(P 2)]2

−
1

$2
n+P 2

}

, (23)
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where

Dn(P 2)=
∂Bn(P 2)

∂m
|m→0. (24)

3 Numerical results

3.1 Retardation effects

Carrying out the integration of Eq. (20), we can get
the momentum and frequency dependence of ΠA at dif-
ferent temperatures, as presented in Fig. 1. It is obvious,
according to Eq. (20), that ΠA is an even function of fre-
quency, so we choose only the positive frequencies. As we
can see, the temporal part of vacuum polarization func-
tion varies both with momentum and frequency. The
numerical result shows that ΠA increases as the absolute
value of q0 increases. Thus it has a minimum at zero
frequency. At each frequency, ΠA(q0,~q) approaches to a
constant as the momentum decreases to zero. Comparing
the momentum and frequency dependence of ΠA at dif-
ferent temperatures, the momentum dependence of ΠA

has become less obvious, but the frequency dependence
is not negligible. So from the point of ΠA, it is doubt-
ful that the instantaneous exchange approximation is a
good approximation at high temperature.
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Fig. 1. Matsubara frequency q0 and momentum
|~q| dependence of the vacuum polarization func-
tion Πµν(q0,~q) at a) Nf = 1,T = 1.×103 and b)
Nf =1,T =1.

Subsequently, we calculate the fermion self-energy
function B(q0,~q). Theoretically, since we have consid-
ered the frequency dependence of the fermion self-energy
function, we should take the summation on the left side
of Eq. (18) from negative infinity to infinity. As a mat-
ter of fact, in the practical calculation, we have to take
a cutoff. Since the zero frequency mode of B(q0,~q) plays

a special role in investigating DCSB, we take the de-
viations of B(0,~q) for different frequency-cutoffs as the
criterion.

When the deviation is less than a given value (namely
0.1%), we take the according frequency as the cutoff.
Figure 2 shows how B(0,~q) varies as the frequency in-
creases. Eventually the cutoff is set as 128 at T=10−3,
and the numerical results converge to a stable curve.
Also, it is worth mentioning that the cutoff is not uni-
versal, but depends on temperature. As the temperature
increases, the proper frequency cutoff decreases.
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Fig. 2. (color online) Momentum dependence of
B(0,~q) at different frequency cutoffs.
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Fig. 3. Matsubara frequency q0 and momentum
|~q| dependence of the fermion self-energy func-
tion B(q0,~q) for Nf =1,T = 1.×10−3 and Nf =1,
T =4.6×10−3.

By calculating the DSE of B(q0,~q), we get the fre-
quency and momentum dependence of the B(q0,~q). They
are presented in Figs. 3 and 4. The result shows that
in the low momentum region the fermion self-energy
B(q0,~q) has a finite value and decreases slowly. Then

073102-5



Chinese Physics C Vol. 41, No. 7 (2017) 073102

as the momentum increases, B(q0,~q) decreases rapidly
and approaches zero in the ultraviolet region. This is
a common feature shared by all frequency modes. The
main difference among the different modes is that in zero
frequency mode, the fermion self-energy function has a
maximum as shown in Fig. 3, and B(q0,~q) diminishes as
the frequency increases. We can see that this is true for
different Nf .
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Fig. 4. Matsubara frequency q0 and momentum
|~q| dependence of the fermion self-energy function
B(q0,~q) for Nf = 1,T = 1.×10−4 and Nf = 2,T =
1.×10−4.

As the temperature increases, the magnitude of
the fermion self-energy function quickly decreases and
the spontaneously breaking symmetry gets restored at
smaller momentum and frequency. This shows that spon-
taneous symmetry breaking is suppressed at finite tem-
perature. From Fig. 3, we can see that, unlike the tem-
perature effects, the effect of Nf is mainly in minimizing
the scale of dynamical symmetry breaking.

As a check of our calculation, we take an approxi-
mation theoretically equivalent to the instantaneous ap-
proximation by just keeping the zero frequency part of
ΠA, and calculate the DSE of B(p). The results are
shown in Fig. 5. As we can see, the two results are ap-
proximately the same. The small difference comes from
the fact that we use a frequency cutoff instead of sum-
ming up to infinity and as the cutoff is increased, the
difference tends to diminish. Combining Figs. 2 and
5, we find that the magnitude of the zero-mode fermion
self-energy is much smaller than that obtained in the
instantaneous approximation. B(0,0) is just approxi-
mately one-tenth of the instantaneous approximation re-
sult, and B(0,~q) decreases to zero at smaller energy scale.

In some works, B(0,~q) is taken as an important crite-
rion for spontaneous chiral symmetry breaking [36, 40].
In this sense, the magnitude of chiral symmetry break-
ing obtained here is much smaller than the one obtained
in the instantaneous approximation, and the symmetry
restoration happens at a much smaller energy scale.
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Fig. 5. (color online) Momentum dependence of
B0(~q) for the instantaneous approximation results
and the zero limit results.

3.2 Phase structure of QED3

Substituting B(q0,~q) into Eq. ( 22), we can get the
explicit Nf and T dependence of 〈ψ̄ψ〉. It is shown in
Fig. 6. Also, we present the instantaneously approxima-
tion results as a comparison. The curves with fermion
numbers labeled N1 stand for the results considering the
retardation effects and the N2 curves stand for the in-
stantaneous approximation results.

〈ψ̄ψ〉=−
∂ lnZ

∂m
=−T

∑

∫

Tr[S(p)]. (25)

From Fig. 6, we can see that the chiral condensate
〈ψ̄ψ〉 decreases slowly at low temperature, and quickly
drops to zero as the temperature approaches a certain
critical temperature. Comparing the instantaneous ap-
proximation results and those considering the retarda-
tion effects, we find that both show a decrease of the
magnitude of spontaneous dynamical chiral symmetry
breaking as the fermion flavor numbers increase. The
difference is that the increase of Nf shows greater effects
on the suppression of DCSB, which means the magnitude
of the chiral condensate reduces more. Also, we can see
that the critical temperature is much smaller than in the
previous results. The results show that for a given num-
ber of fermion flavorsNf , the chiral condensate decreases
slowly as the temperature increases; when the tempera-
ture arrives at the critical temperature Tc (Tc=4.6×10−3

for Nf=1, Tc=2.2×10−4 for Nf=2), the chiral conden-
sate has a dramatic decrease and becomes zero as the
temperature further increases.
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Fig. 6. (color online) Temperature dependence
of chiral condensate (considering retardation ef-
fects).

In order to gain more knowledge of the chiral phase
transition, we also calculated the chiral susceptibilities
for different fermion flavors. The results are presented
in Fig. 7. As we can see, the critical temperatures ob-
tained from the calculation of chiral susceptibility are
in accordance with the results of the chiral condensate.
Meanwhile from the behavior of the chiral susceptibility,
we can see that the chiral phase transition is of second
order, in accordance with previous calculations [52].
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Fig. 7. (color online) Temperature dependence of
chiral condensate and chiral susceptibility for dif-
ferent Nf .

Taking the zero temperature limit of Eq. (20), we can
get ΠA= α

8q
, just the zero temperature case, and Eq. 5 de-

generates back to Eq. (4) at T→0. Thus the critical N c
f ,

for T→0, is 32/π2, the same value as in Ref. [25]. Sub-
sequently, we get the phase diagram of the chiral phase
transition in Nf-Tc space. The result is shown in Fig. 8.
As we can see, there is a single critical line for Nf-Tc

separating the chiral symmetry breaking phase from the
chiral symmetry restored phase. Below the line, the chi-
ral symmetry is spontaneously broken,and above the line,

chiral symmetry is restored. Only theNf>0.667 region is
shown, but we find that as T→∞, N c

f approaches 0. The
increase of both T and Nf have the effect of suppressing
the generation of dynamical masses, and the relation be-
tween T and Nf is nontrivial. According to the shape of
the line, however, the effect of T and Nf is not equiva-
lent. We can get this conclusion by comparing the phase
diagram in Ref. [44] and Fig. 8.
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N
f

Fig. 8. Phase diagram for spontaneous chiral sym-
metry breaking in QED3 in Nf -Tc space.

4 Summary and conclusions

In this paper, the dynamical symmetry breaking of
QED3 at finite temperature has been investigated in a
gauge invariant truncation shceme. Many studies have
been carried out in this framework, but they have mainly
been done in the instantaneous approximation. We first
expanded this work by considering the momentum and
frequency dependence of the photon vacuum polarization
function and fermion self-energy function at the same
time, and found that the vacuum polarization function
has an evident dependence on frequency, so the retar-
dation effects may be non-negligible. Then we obtained
the momentum and frequency dependence of the fermion
self-energy function. Subsequently, the order parameter
and chiral susceptibility of the chiral phrase transition
for different temperatures and fermion flavors were cal-
culated. The results show that with fermion flavor in-
creasing, the dynamical chiral symmetry breaking gets
suppressed just like for the zero temperature case.

Compared with previous results in the instanta-
neous approximation, the critical temperature obtained
is much smaller and the scale of the chiral condensate is
just one-tenth of the results of the instantaneous approx-
imation. This shows that dynamical symmetry breaking
as a low-energy phenomenon is not appropriate for inves-
tigation using the instantaneous approximation. Some
recent works using a different method also gave a simi-
lar conclusion [53]. Finally, we gave the phase diagram
of spontaneous symmetry breaking. It gives the region
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in Nf-Tc space, where the spontaneously breaking chi-
ral symmetry gets restored, and the line shows that the
relation of Tc and N c

f is nontrival.
We work in the QED3 frame, and give a quantitative

result for the impact of retardation effects on dynamic
gap generation and chiral phase transition. The results
show that the retardation effect plays a critical role in

the finite temperature physics of QED3, and tempera-
ture has in reality a greater effect on suppression the
generation of mass gap. We expect this work will have
practical application to novel two-dimension materials.
This is a theoretical discussion without considering any
practical material properties, such as graphene and other
two-dimensional condensed systems.
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