
Chinese Physics C Vol. 41, No. 9 (2017) 093106

Gaupta-Bleuler triplet for massless spin-3
2

field in de Sitter space
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Abstract: Physicists have been interested in quantization of spinor and vector free fields in 4-dimensional de Sitter

space-time, in ambient space notation. The Gupta-Bleuler formalism has been extensively applied to the quantization

of gauge invariant theories. The field equation of the massless spin- 3
2

fields is gauge invariant in de Sitter space. In

this paper, we study the quantization of massless spin- 3
2

gauge fields in de Sitter space-time by the Gupta-Bleuler

formalism. This triplet carries an indecomposable representation of the de Sitter group.
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1 Introduction

The quantization of light was discovered in 1900 by
Max Planck [1]. Quantum field theory also applies to
the electromagnetic field, but some problems with neg-
ative norm and supernumerary degrees of freedom have
to be solved. As discussed in electrodynamics, a vector
field has four components that correspond to four sets
of generation and destruction operators. The field equa-
tion and requirements for relativity would imply states
with negative norm, which are unphysical. Moreover,
four sets of generation and destruction operators would
imply four degrees of freedom, i.e. four kinds of pho-
tons. But experimentally, only two kinds of photons, the
two polarization states, are found. Gupta and Bleuler
invented a procedure [2, 3] that declares just a subset of
the states as physical reality. It eliminates states with
negative norm and the supernumerary degrees of free-
dom in one shot.

De Sitter space is the solution to the Einstein equa-
tions with a positive cosmological constant and no other
matter sources. It was proposed in 1917 by W. de Sit-
ter [4]. Although this model is physically unrealistic, it
introduced the idea that the real Universe might be ex-
panding. An expansion phase which is very similar to
that in the de Sitter model also plays an important role
in modern theories of the inflationary universe. The as-
tonishing result of cosmic acceleration was discovered in
1998 employing a distance indicator method similar to
that used by Hubble, but using the very bright SNIa as
accurate standard candles to measure the evolution of
the expansion rate at large distances [5–11]. There is an
extensive body of literature on quantum field theory in

de Sitter space-times [12–16].
In supergravity theories, combining general relativity

and supersymmetry, the gravitino is the gauge fermion
supersymmetric partner of the hypothesized graviton.
It has been suggested as a candidate for dark mat-
ter [17]. The gravitino is the fermion mediating super-
gravity interactions, just as the photon mediates electro-
magnetism, and the graviton presumably mediates grav-
itation. Whenever supersymmetry is broken in super-
gravity theories, it acquires a mass which is determined
by the scale at which supersymmetry is broken.

According to Wigner [18], identifying elementary par-
ticles as unitary irreducible representations (UIRs) of the
de Sitter group is important. The UIRs of the de Sit-
ter group were completely extracted by Takahashi [19].
Particles should be described by irreducible positive en-
ergy representation of the Poincaré group. In fact, they
are the indecomposable building blocks of those multi-
localized asymptotically stable objects in terms of which
each state can be interpreted and measured in counter
coincidence in the large time limit.

The field equation of massless spin- 3
2

fields is gauge
invariant in de Sitter space, as well as that of massless
fields in Minkowski space for s > 1. The quantization
of gauge invariant theories usually requires the Gupta-
Bleuler quantization . Let us now define the Gupta-
Bleuler triplet Vg ⊂V ⊂Vc carrying the indecomposable
structure for the unitary irreducible representations of
the de Sitter group appearing in our study. Vc and Vg

are the spaces of the gauge dependent states and the
pure gauge states, respectively. In this formalism, V
stands for the space of solutions with the divergenceless-
ness condition [20, 21]. This subspace V is invariant but
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not invariantly complemented in Vc. The space V/Vg is a
vector space containing the physical states, which is the
Hilbert space constructed by the corresponding UIR of
the de Sitter group. The structures of unphysical states
Vg and Vc are obtained by employing the gauge invari-
ant transformation and the gauge fixing field equation,
respectively. The gauge invariant field equation and the
gauge invariant transformation are obtained by using the
Casimir operator of the de Sitter group.

In this paper, we explicitly work out some of the cal-
culations which appear in Ref. [21]. In Section 2, we
briefly recall the notation of de Sitter ambient space.
The Gupta-Bleuler triplet is presented in Section 3. Fi-
nally, a brief conclusion and outlook are given in Section
4. In the appendices, some useful relations are presented.

2 Notation

The most symmetric vacuum solution to Einstein’s
equation is flat space-time. If we now add the cosmolog-
ical constant as the only source of curvature in Einstein’s
equation, the resulting space-time is also highly symmet-
ric and has an interesting geometrical structure. In the
case of a positive cosmological constant, this is the de Sit-
ter manifold. De Sitter space-time is best visualized as
a 4-dimensional hyperboloid embedded in 5-dimensional
flat Minkowski space-time:

XH ={x∈IR5|x·x=ηαβx
αxβ=−H−2}, α,β=0,1,2,3,4,

(1)
where ηαβ=diag(1,−1,−1,−1,−1). The metric in de Sit-
ter space-time is as follows:

ds2=ηαβdxαdxβ |x2=−H−2 =gdS
µνdXµdXν , µ=0,1,2,3,

(2)

gdS
µν =

∂xα

∂Xµ

∂xβ

∂Xν
θαβ (3)

where the de Sitter intrinsic coordinate is denoted by
Xµ and the five dimensional Minkowski space-time by
xα. θαβ = ηαβ +H2xαxβ is the projection tensor that
projects a vector in ambient space notation orthogonal
to xα. The de Sitter group has ten infinitesimal genera-
tors Lαβ=Mαβ+Sαβ[14]. The orbital part Mαβis defined
by:

Mαβ=−i(xα∂β−xβ∂α)=−i(xα∂
>
β −xβ∂

>
α ), (4)

where ∂>
β =θα

β ∂α is the transverse derivative (x.∂> =0).
The form of the spinorial part Sαβ for a spin 1

2
field

is [14, 22] :

Sαβ=−
i

4
[γα,γβ], (5)

where the γ-matrices have to satisfy the basic Clifford
algebra relation:

γαγβ+γβγα=2ηαβ , γα†=γ0γαγ0. (6)

The de Sitter group has two Casimir operators:

Q(1)=−
1

2
LαβL

αβ, α,β=0,1,2,3,4, (7)

Q(2)=−WαW
α ,Wα=

1

8
εαβγδηL

βγLδη, (8)

where εαβγδη is the usual antisymmetrical tensor. The
Casimir operators are simple to manipulate in ambient
space notation. Since Q(1) is a second order derivative
operator, it is convenient to use for obtaining the field
equation. The action of the Casimir operator Q(1)

j on a
vector-spinor field Ψα(x) is [14]:

Q(1)
j Ψ(x) =

(

−
1

2
MαβM

αβ+
i

2
γαγβM

αβ−
11

2

)

Ψα(x)

−2∂αx·Ψ(x)+2xα∂·Ψ(x)+γα(γ·Ψ(x)). (9)

The Casimir operators commute with the generators of
the group and as a consequence, they are constant on
each UIR of the de Sitter group.

3 Gupta-Bleuler triplet

One can construct the Gupta-Bleuler triplet for a
massless spin- 3

2
field according to the method below. The

gauge fixing field equation for a massless spin- 3
2

field can
be given in the following form [21]

(

Q(1)
3

2

+
5

2

)

Ψα(x)+c∇>
α∂

>·Ψ(x)=0, (10)

where ∇>
α =(∂>

α +γα/x−xα)[21], c is the gauge fixing pa-
rameter, and

Q(1)
3

2

Ψα=Q(1)
0 Ψα+/x/∂

>
Ψα+2xα∂

>·Ψ−
11

2
Ψα+γα /Ψ, (11)

where Q(1)
0 =−∂>

α ∂
α> is the “scalar” Casimir operator.

The elements of the subspace Vg are the gauge solu-
tions [21]. This is an invariant subspace, but not a com-
plement, of V . Putting Ψ g

α=∇>
αψ

p (where p stands for a
pure gauge state) into Eq. (10):

Q
(1)
3

2

∇>
αψ

p+
5

2
∇>

αψ
p+c∇>

α∂
>·∇>

αψ
p=0 (12)

Here, ψp is a spinor field. By using the following identi-
ties [15, 21, 23]:

Q(1)
3

2

∇>
α =∇>

αQ
(1)
1

2

,∂>·∇>ψ=−

(

Q(1)
1

2

+
5

2

)

ψ, (13)

we have

∇>
α

(

Q(1)
1

2

ψp+
5

2
ψp+c∂>·∇>

αψ
p

)

=0, (14)

or
(

Q(1)
1

2

+
5

2

)

ψp+c∂>·∇>
αψ

p=0, (15)
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where the second term is:

∂>·∇>ψp = ∂>α∇>
αψ

p=∂>α
[

∂>
α ψ

p+γα/xψ
p−xαψ

p
]

= −Q0ψ
p−/x/∂

>
ψp. (16)

The second order Casimir operator for spin- 1
2

is given
by [14, 22]

Q(1)
1

2

ψ=

(

Q0+/x/∂
>
−

5

2

)

ψ. (17)

Therefore, Eq. (15) can be written
(

Q(1)
1

2

+
5

2

)

ψp+c
(

−Q0−/x/∂
>
)

ψp=0. (18)

Otherwise, according to Equations (17) and (18) we have

(1−c)
(

Q0+/x/∂
>
)

ψp=(1−c)

(

Q(1)
1

2

+
5

2

)

ψp=0, (19)

which is reduced to

(1−c)∇>
α (Q0+/x/∂

T
)ψp=0, (20)

or

(1−c)∇>
α

(

Q(1)
1

2

+
5

2

)

ψp=0. (21)

At this stage one must distinguish the two cases c= 1
and c 6=1 [21]. In the first case, c=1, the spinor field ψp

is arbitrary and unlimited and the gauge state space is
given by vector-spinor fields of the form ∇>

αψ
p. In the

second case, c 6=1, ψp obeys the following field equation
(

Q(1)
1

2

+
5

2

)

ψp=0, (22)

which carries the representation Π 1

2
,− 1

2

which is unphys-

ical [15].
The spinor states belong to the quotient space Vc/V . In
order to characterize them, let us take the divergence of
Eq. (10)

∂>α

[(

Q(1)
3

2

+
5

2

)

Ψα(x)+c∇>
α∂

>·Ψ(x)

]

=0. (23)

Applying the Casimir operator Q(1)
3

2

to the vector-spinor

field, we have

∂>α

[

Q0Ψα+/x/∂
>
Ψα−

11

2
Ψα+2xα∂

>·Ψ

]

+
5

2
∂>·Ψ+c∂>α(∇>

α∂
>·Ψ)=0. (24)

By the supplementary identities [Appendix A]

∂>α(Q0Ψα)=(Q0−6)∂>·Ψ, (25)

∂>α(/x/∂
>
Ψα)=

(

1+/x/∂
>
)

∂>·Ψ, (26)

c∂>α(γα/x∂
>·Ψ)=4c∂>·Ψ−c/x/∂

>
∂>·Ψ, (27)

c∂>α(xα∂
>·Ψ)=−4c∂>·Ψ, (28)

one can write Eq. (23) in the form

Q0∂
>·Ψ−6∂>·Ψ+∂>·Ψ+/x/∂

>
∂>·Ψ−3∂>·Ψ+8∂>·Ψ

−cQ0∂
>·Ψ+4c∂>·Ψ−c/x/∂

>
∂>·Ψ−4c∂>·Ψ=0

(1−c)Q0∂
>·Ψ+(1−c)/x/∂

>
∂>·Ψ=0

(1−c)
(

Q0+/x/∂
>
)

∂>·Ψ=0

which can be written in terms of the Casimir operator
as

(1−c)

(

Q 1

2

(1)+
5

2

)

∂>·Ψ=0

Again one must distinguish between c=1 and c 6=1 [21].
For c = 1, ∂> ·Ψ ≡ ψs, s stands for spinor, and ψis an
arbitrary spinor field. For c 6= 1, it again corresponds
to a massless spinor field associated with the representa-
tion Π 1

2
,− 1

2

, which is unphysical [15]. So, ψs satisfies the
following eigenvalue equation:

(

Q(1)
1

2

+
5

2

)

ψs=0. (29)

Finally, the quotient spaces V/Vg are the physical states
Π±

3

2
, 3

2

which are associated with the UIR of the discrete

series representation of the de Sitter group [15, 20, 21]

4 Conclusions

Supergravity, the supersymmetric generalization of
Einstein’s theory of gravity, is a fundamental tool in cur-
rent research in theoretical physics. There has recently
been renewed interest in supergravity in de Sitter space-
time. The motivation for our study of massless spin- 3

2

fields in de Sitter space-time originates in supergravity.
The Gupta-Bleuler scheme is required to quantize the
gauge invariant theory and we have indicated how this
technique can be used to find the Gupta-Bleuler triplet.
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Appendix A

Supplementary identities

Here, we prove the supplementary identities Eqs. (25), (26), (27) and (28), respectively:

∂>α(Q0Ψα) = −∂>α∂>
β ∂>βΨα=−[∂>

β ∂>α
−xα∂>

β +xβ∂>α]∂>βΨα

= −∂>
β ∂>α∂>βΨα+xα∂>

β ∂>βΨα−xβ∂>α∂>βΨα

= −∂>
β (∂>β∂>α+xβ∂>α

−xα∂>β)Ψα+xα∂>
β ∂>βΨα−xβ∂>α∂>βΨα

= −∂>
β ∂>β∂>α

−∂>
β xβ∂>α+∂>

β xα∂>βΨα+xα∂>
β ∂>βΨα−xβ∂>α∂>βΨα

= Q0∂
>
·Ψ−4∂>

·Ψ+(δα
β +xβxα)∂>βΨα+xα∂>

β ∂>β
−xβ∂>

α ∂>βΨα−xαQ0Ψα

= Q0∂
>
·Ψ−3∂>

·Ψ−2xαQ0Ψα−xβ(xβ∂>
α −xα∂>

β +∂>α∂>β)Ψα

= Q0∂
>
·Ψ−3∂>

·Ψ−2xαQ0Ψα+∂>
·Ψ+xαx·∂>Ψα−x·∂>∂>

·Ψ

= Q0∂
>
·Ψ−2∂>

·Ψ−2(Q0x·Ψ+2∂>αΨα+4x·Ψ)=Q0∂
>
·Ψ−6∂>

·Ψ.

∂>α(/x/∂
>

Ψα) = ∂>α(γρx
ργλ∂>λΨα)=γργλ∂>α(xρ∂>λΨα)

= γργλ[(∂>αxρ∂>λΨα)+xρ∂>α∂>λΨα]

= γργλ[(ηαρ+xαxρ)∂>λΨα+xρ∂>α∂>λΨα]

= γαγλ∂>λΨα+xα
/xγλ∂>λΨα+γργλ(xρ∂>α∂>λΨα)

= (2δα
λ−γλγα)∂>λΨα+xα

/x/∂
>

Ψα+γργλ(xρ(∂>λ∂>α+xλ∂>α
−xα∂>λ)Ψα)

= 2∂>
·Ψ+xα

/x/∂
>

Ψα+/xγλ∂>λ∂>
·Ψ+γρxρ

/x∂>
·Ψ−/xxα /∂

>
Ψα

= 2∂>
·Ψ+/x/∂

>
∂>

·Ψ+/x/x∂>
·Ψ =∂>

·Ψ+/x/∂
>

∂>
·Ψ.

c∂>α(γαxργρ∂>
·Ψ) = cγαγρ∂>α(xρ∂>

·Ψ)

= cγαγρ[(η
ρα+xαxρ)∂>

·Ψ+xρ∂>α∂>
·Ψ ]5c∂>

·Ψ+c/x/x∂>
·Ψ+cγα/x∂>α∂>

·Ψ

= 4c∂>
·Ψ+c(2xα−/xγα)∂>α∂>

·Ψ

= 4c∂>
·Ψ−c/x/∂

>
∂>

·Ψ.

−c∂>α(xα∂>
·Ψ)=−c[(∂>αxα)∂>

·Ψ+xα∂>α∂>
·Ψ =−4c∂>

·Ψ.

We have used the following conditions in the calculation : x·Ψ =0, γ·Ψ =0 and x·∂>=0 [14].

Appendix B

Some useful relations

In this appendix, some useful relations are given which are used in this paper:

[∂>
α ,∂>

β ]=xβ∂>
α −xα∂>

β , [∂>
α ,xβ]=θαβ ,

[xα, /∂
>

]=−γ>
α , [γ>

α ,∂>
α ]=−4/x,

[Q0,/x]=−4/x−2/∂
>

, [xα,Q0]=2∂>
α +4xα,

[/x, /∂
>

]=4−2/∂
>

/x, γ>
α =γα+xαx·γ,

[/x,∂>
α ]=−γ>

α , [/x,γ>
α ]=2xα−2γα/x,

[∂>
α , /∂

>
]=/x∂>

α −xα /∂
>

, [γ>
α ,∂>

α ]=−4/x,

[∂>
α ,Q0]=−6∂>

α −2(Q0+4)xα, [6∂>,γ>
α ]=−2γ>

α /∂
>

+2∂>
α +γ>

α /x+4xα,

[Q0,γ
>
α ]=−8xα/x−2/x∂>

α −2γ>
α −2xα /∂

>
, ∂>

β xα=(δα
β +xβxα).
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