Influence of proton-skin thickness on the α decays of heavy nuclei

W. M. Seif ${ }^{1,1)}$ A. Abdurrahman ${ }^{2}$
${ }^{1}$ Cairo University, Faculty of Science, Department of Physics, Giza, Egypt
2 Misr University for Science and Technology (MUST), Faculty of Engineering, Department of Physics, Giza, Egypt

Abstract

We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutrondeficient nuclei belonging to the isotopic chains from $\mathrm{Te}(Z=52)$ to $\mathrm{Pb}(Z=82)$. The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness (Δ_{p}) of the daughter nucleus gives rise to a total α - daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the Q_{α}-value increases with $\Delta_{\mathrm{p}} . \alpha$-decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the β^{+}-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at $21 \%, 7 \%$, and 57%, respectively, of the investigated nuclei.

Keywords: alpha decay, half-life, proton-skin thickness, branching ratio
PACS: 23.60.+e, 27.60.+j, 27.70.+q DOI: 10.1088/1674-1137/42/1/014106

1 Introduction

The neutron distributions in finite nuclei normally form a "neutron skin". Formation of proton skins is less likely than neutron skins [1]. In addition to the emergence of proton skins in proton-rich nuclei, the repulsive Coulomb interaction gives rise to a proton skin in neutron-deficient nuclei. The difference between the proton and neutron root-mean-square (rms) radii of nuclei simply indicates their proton-skin thickness. In some nuclei, the sharp radius of the proton distribution exceeds that of neutrons while the surface width is wider for neutrons than for protons [2]. The proton (neutron) skin thickness can also be defined as the difference between two limiting radii $[1,3]$. The first radius is obtained when the ratio of the proton (neutron) density to the neutron (proton) density approaches a certain value (1% in Ref. [1]). The second radius is obtained when the proton (neutron) density turns into some percentage of the central density (1% in Ref. [1]). The proton (neutron) skin can be understood in terms of the equation of state of the asymmetric nuclear matter (ANM) and its pressure [4] as well as the density dependence of the nuclear symmetry energy $[5,6]$. The pressure of ANM and neutron matter has been used to link the neutron skin in finite nuclei to the radius of neutron stars [7], and to other re-
lated observables. The impact of the proton skin on the structure, decays, and reactions of neutron-deficient and neutron-rich nuclei remains a matter of discussion.

Since the observation of α-decay by Rutherford and Geiger [8], and its subsequent interpretation by Gamow [9] as a quantum tunneling phenomenon, comprehensive experimental and theoretical studies have been performed on it to probe the nuclear structure. The exotic nuclei of extreme isospin asymmetries are of special interest. The study of such nuclei is relevant to the production of new exotic isotopes such as ${ }^{63} \mathrm{Se},{ }^{67} \mathrm{Kr},{ }^{68} \mathrm{Kr},{ }^{59} \mathrm{Ge}$ [10], ${ }^{73} \mathrm{Mn},{ }^{76} \mathrm{Fe},{ }^{77,78} \mathrm{Co},{ }^{78,80,81,82} \mathrm{Ni},{ }^{83} \mathrm{Cu}[11]$ and ${ }^{178} \mathrm{~Pb}$ [12]. This also helps to investigate an expected island of α-emitters exhibiting short half-lives towards the $N=Z$ line and to estimate the borders of the proton-rich and neutron-deficient isotopes that could be produced in future experiments. The stability of nuclei is principally governed by the released energy and the change of the ground state properties from parent to daughter nuclei. For instance, the isospin asymmetry [13] and incompressibility [14] of nuclei, their deformation [15, 16], and the closed shell effect [17, 18] are essential factors affecting a possible decay mode. Also, the presence of unpaired nucleons in open shells $[18,19]$, the spin and parity assignments of these unpaired nucleons [20, 21], and the collective vibrational excitations [22] influence the com-

[^0]peting decay modes. These properties control the preformation probability of the emitted cluster inside the parent nucleus, the knocking frequency, the penetration probability, and finally the decay half-life [23, 24].

Recently, cluster radioactivity has been suggested as a way to correlate the neutron skin with the slope of symmetry energy [25], in the framework of the densitydependent cluster model. To do so, the density independent M3Y-Reid type of the nucleon-nucleon (NN) effective interaction, along with Fermi parameterizations of the proton and neutron density distributions, have been used. The results emphasized the previously reported direct proportionality of the density slope of symmetry energy to the thickness of the neutron skin. In a more recent work [26], a correlation is indicated between the change of neutron (proton) skin thickness, from parent to daughter nuclei, and the α-decay half-lives $\left(T_{\alpha}\right)$. It was shown that the observed T_{α} consistently follow the change in the neutron (proton) skin thickness after α decays. It was indicated that the α-decays of nuclei with proton (neutron) skins preferably proceed to fulfill a significant decrease (very least increase) in the proton (neutron) skin thickness of their daughter nuclei. Explicitly, it was concluded that the neutron-skin thickness decreases the calculated T_{α} [27]. The effect of the protonskin thickness on the α decays of neutron-deficient nuclei still needs further investigation.

In the present paper we address the impact of the proton skin thickness on the α decay processes. We focus on the neutron deficient nuclei in the trans-tin region of the nuclear chart. The observed decay modes from neutron-deficient and neutron-rich nuclei in the transtin region were considered in Ref. [21]. Here, we investigate both the observed decays of neutron-deficient nuclei and those that have not yet been observed. Among the decays considered here, 135 decay modes were not addressed in Ref. [21]. In the next section, we outline the methodology used to investigate the α-decay process in the framework of the preformed cluster model. Section 3 is devoted to a discussion of the effect of the proton skin thickness of both the parent and daughter nuclei on the α-decay process, as well as a detailed investigation of α decays of the neutron-deficient nuclei with mass numbers $105 \leqslant A \leqslant 179(52 \leqslant Z \leqslant 82)$. The paper ends with a brief summary and conclusions presented in Section 4.

2 Theoretical formalism

In the framework of the double folding model [28] we can calculate, respectively, the direct nuclear $V_{\mathrm{N}}(r, \theta)$ and the Coulomb $V_{\mathrm{C}}(r, \theta)$ parts of the interaction potential between an emitted α particle and a deformed daughter nucleus as,

$$
V_{\mathrm{N}}(r, \theta)=\iint\left[\left(\rho_{\mathrm{p} \alpha}\left(\vec{r}_{1}\right)+\rho_{\mathrm{n} \alpha}\left(\vec{r}_{1}\right)\right) v_{00}\left(s=\left|\vec{r}+\vec{r}_{2}-\vec{r}_{1}\right|\right)\right.
$$

$$
\begin{align*}
& \times\left(\rho_{\mathrm{pD}}\left(\vec{r}_{2}\right)+\rho_{\mathrm{nD}}\left(\vec{r}_{2}\right)\right)+\left(\rho_{\mathrm{p} \alpha}\left(\vec{r}_{1}\right)-\rho_{\mathrm{n} \alpha}\left(\vec{r}_{1}\right)\right) \\
& \left.\times v_{01}(s)\left(\rho_{\mathrm{pD}}\left(\vec{r}_{2}\right)-\rho_{\mathrm{nD}}\left(\vec{r}_{2}\right)\right)\right] \mathrm{d} \vec{r}_{1} \mathrm{~d} \vec{r}_{2}, \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
V_{\mathrm{C}}(r, \theta)=\iint \rho_{\mathrm{p} \alpha}\left(\vec{r}_{1}\right) v_{\mathrm{C}}(s) \rho_{\mathrm{pD}}\left(\vec{r}_{2}\right) \mathrm{d} \vec{r}_{1} \mathrm{~d} \vec{r}_{2} \tag{2}
\end{equation*}
$$

Here $r(\mathrm{fm})$ defines the separation distance between the centers of mass of the interacting nuclei. θ represents the orientation angle of the emitted α-particle relative to the symmetry axis of the deformed daughter nucleus. s denotes the relative separation of the interacting nucleons belonging to the two nuclei. $\rho_{\mathrm{p} \alpha(\mathrm{D})}\left(\vec{r}_{1(2)}\right)$ and $\rho_{\mathrm{n} \alpha(\mathrm{D})}\left(\vec{r}_{1(2)}\right)$ are the proton and neutron density distributions of the α-particle (daughter nucleus), respectively. v_{C} represents the standard proton-proton Coulomb interaction, e^{2} / s. The M3Y type of the nucleon-nucleon interaction, with a zero-range exchange part, reads

$$
\begin{equation*}
v_{\mathrm{N}}(s, E)=v_{00}(s)+v_{01}(s)+\hat{j}_{00} \delta(s) . \tag{3}
\end{equation*}
$$

The strengths of the central isoscalar (v_{00}) and isovector $\left(v_{01}\right)$ direct components of the M3Y effective interaction based on the G-matrix elements of the Reid [29] NN potential are given, respectively, as [30]

$$
\begin{equation*}
v_{00}(s)=7999.00 \frac{\mathrm{e}^{-4 s}}{4 s}-2134.25 \frac{\mathrm{e}^{-2.5 s}}{2.5 s} \mathrm{MeV} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{01}(s)=-4885.5 \frac{\mathrm{e}^{-4 s}}{4 s}+1175.5 \frac{\mathrm{e}^{-2.5 s}}{2.5 s} \mathrm{MeV} \tag{5}
\end{equation*}
$$

To account for the single nucleon exchange term in an approximate form simpler than its finite range expression, the energy-dependent zero-range pseudopotential of the form [31]

$$
\begin{equation*}
\hat{J}_{00}(E) \approx-276\left[1-0.005\left(\frac{E}{A_{\alpha}}\right)\right] \mathrm{MeVfm}^{3} \tag{6}
\end{equation*}
$$

is widely used. Here, E / A_{α} represents the energy per nucleon of the emitted α-particle, corrected for the recoil energy of the daughter nucleus, $E=A_{\mathrm{d}} Q_{\alpha} /\left(A_{\alpha}+A_{\mathrm{d}}\right)$. $Q_{\alpha}(\mathrm{MeV})$ defines the energy released in the decay. The detailed formalism used to perform the double-folding numerical calculations (Eqs. (1) and (2)) for sphericaldeformed interacting nuclei, based on the Fourier transformation of the density and the multipole expansion method, is given in Refs. [32-34].

The neutron (proton) density distribution of a deformed nucleus can be described by the two-parameter Fermi shape,

$$
\begin{equation*}
\rho_{\mathrm{n}(\mathrm{p})}(r, \theta)=\rho_{0 \mathrm{n}(\mathrm{p})}\left[1+e^{\left(r-R_{\mathrm{n}(\mathrm{p})}(\theta)\right) / a_{\mathrm{n}(\mathrm{p})}}\right]^{-1}, \tag{7}
\end{equation*}
$$

with the half-density radius

$$
\begin{equation*}
R_{\mathrm{n}(\mathrm{p})}(\theta)=R_{0 \mathrm{n}(\mathrm{p})}\left[1+\sum_{i=2,3,4,6} \beta_{i} Y_{i 0}(\theta)\right] . \tag{8}
\end{equation*}
$$

$\beta_{i}(i=2,3,4,6)$ represent the multipole deformations of the nuclear density $[35,36]$. For a nucleus of Z protons and N neutrons, the values of the radius $R_{0 \mathrm{n}(\mathrm{p})}$ and diffuseness $a_{0 \mathrm{n}(\mathrm{p})}$ parameters can be given as

$$
\begin{gather*}
R_{0 \mathrm{n}}(\mathrm{fm})=0.953 N^{1 / 3}+0.015 Z+0.774, \\
R_{0 \mathrm{p}}(\mathrm{fm})=1.322 Z^{1 / 3}+0.007 N+0.022, \\
a_{\mathrm{n}}(\mathrm{fm})=0.446+0.072(N / Z), \tag{9}\\
a_{\mathrm{p}}(\mathrm{fm})=0.449+0.071(Z / N) .
\end{gather*}
$$

These expressions were obtained in a study [37] based on self-consistent Hartree-Fock (HF) calculations [38] using a Skyrme-SLy4 [39] effective NN interaction. The proton and neutron density distributions of the α-particle are also determined self-consistently [38]. The normalization of the neutron (proton) density to the number of neutrons (protons) gives the saturation density $\rho_{0 \mathrm{n}(\mathrm{p})}$ in Eq. (7), $\int \rho_{\mathrm{n}(\mathrm{p})}(r, \theta) \mathrm{d} \vec{r}=N(Z)$. The rms radius $R_{\mathrm{n}(\mathrm{p})}^{\mathrm{rms}}$ of the neutron (proton) density distribution is obtained as

$$
\begin{equation*}
R_{\mathrm{n}(\mathrm{p})}^{\mathrm{rms}}=\left\langle R_{\mathrm{n}(\mathrm{p})}^{2}\right\rangle^{1 / 2}=\left(\frac{\int r_{\mathrm{n}(\mathrm{p})}^{2} \rho_{\mathrm{n}(\mathrm{p})}(\vec{r}) \mathrm{d} \vec{r}}{\int \rho_{\mathrm{n}(\mathrm{p})}(\vec{r}) \mathrm{d} \vec{r}}\right)^{1 / 2} . \tag{10}
\end{equation*}
$$

The proton-skin thickness Δ_{p} can be expressed as the difference between the proton and neutron rms radii,

$$
\begin{equation*}
\Delta_{\mathrm{p}}(A, Z)=R_{\mathrm{p}}^{\mathrm{rms}}(A, Z)-R_{\mathrm{n}}^{\mathrm{rms}}(A, Z) . \tag{11}
\end{equation*}
$$

The ground state $\operatorname{spin}(J)$-parity (π) assignment of the even (Z)-even $(N) \alpha$-particle in its ground-state is $J_{\alpha}^{\pi}=0^{+}$. The unfavored α-decay modes from a parent nucleus in a state J_{P}^{π} to a daughter nucleus in a state $J_{\mathrm{D}}^{\pi} \neq J_{\mathrm{P}}^{\pi}$ require that the α-particle carries a non-zero angular momentum $\ell \neq 0$. In this case, the conservation rules of angular momentum and parity imply

$$
\begin{equation*}
\left|J_{\mathrm{P}}-J_{\mathrm{D}}\right| \leqslant l \leqslant\left|J_{\mathrm{P}}+J_{\mathrm{D}}\right| \text { and } \pi_{\mathrm{P}}=\pi_{\mathrm{D}}(-1)^{l} \tag{12}
\end{equation*}
$$

Based on the principle of least action, the α-particle carries the minimum allowed value $\ell_{\min }$ that fulfills the conditions given by Eq. (12). For such unfavored decays, the centrifugal potential can be considered in its Langer form [40],

$$
\begin{equation*}
V_{1}(r)=\frac{(l+1 / 2)^{2} \hbar^{2}}{2 \mu r^{2}} \tag{13}
\end{equation*}
$$

This modified formulation, which replaces $\ell(\ell+1)$ by $(\ell+1 / 2)^{2}$, is commonly used to guarantee the proper physical behavior of the potential and the scattered radial wave function close to the origin [13,41]. $\quad \mu=$ $m_{\alpha} m_{\mathrm{D}} /\left(m_{\alpha}+m_{\mathrm{D}}\right)$ is the reduced mass of the $\alpha\left(m_{\alpha}\right)$ daughter nucleus (m_{D}) system.

Based on Eqs. (1), (2) and (13), the α-daughter nucleus total potential $V_{\mathrm{T}}(r, \theta)$ reads,

$$
\begin{equation*}
V_{\mathrm{T}}(r, \theta)=\lambda V_{\mathrm{N}}(r, \theta)+V_{\mathrm{C}}(r, \theta)+V_{1}(r) \tag{14}
\end{equation*}
$$

The renormalization factor λ is usually inserted into the nuclear part of the interaction potential to guarantee the α-core quasistationary state. λ is determined through the Bohr-Sommerfeld [42] and Wildermuth [43] quantization conditions.

Within the preformed cluster model arising from the Gamow picture of the tunneling decay process, the decay width $\Gamma(\theta)$ is obtained at a particular orientation angle θ, with respect to the axis of symmetry of the deformed daughter nucleus, as

$$
\begin{equation*}
\Gamma(\theta)=\hbar \nu(\theta) P(\theta) . \tag{15}
\end{equation*}
$$

Here $\nu(\theta)$ and $P(\theta)$ define the assault frequency and the penetration probability of the α-particle across the Coulomb barrier, respectively. They can be obtained using the Wentzel-Kramers-Brillouin (WKB) approximation as

$$
\begin{equation*}
\nu(\theta)=\left[\int_{R_{1}(\theta)}^{R_{2}(\theta)} \frac{2 \mu}{\hbar k(r, \theta)} \mathrm{d} r\right]^{-1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\theta)=\exp \left(-2 \int_{R_{2}(\theta)}^{R_{3}} k(r, \theta) \mathrm{d} r\right) . \tag{17}
\end{equation*}
$$

The wave number $k(r, \theta)$ associated with the motion of the α-particle relative to the daughter nucleus is defined as

$$
\begin{equation*}
k(r, \theta)=\sqrt{\frac{2 \mu}{\hbar^{2}}\left|V_{\mathrm{T}}(r, \theta)-Q_{\alpha}\right|} \tag{18}
\end{equation*}
$$

The three turning points $R_{i=1,2,3}(\mathrm{fm})$ of the WKB integrals (Eqs. (16) and (17)) are determined from the condition $\left.V_{\mathrm{T}}(r, \theta)\right|_{r=R_{i}(\theta)}=Q_{\alpha}$. The orientation-independent [18] R_{3}, located at the far tail region of the long-range Coulomb potential $V_{\mathrm{C}}(r, \theta)$, can be obtained in terms of the atomic number of the daughter nucleus $\left(Z_{d}\right)$ and the angular momentum carried by the α-particle (ℓ) as [16],

$$
\begin{equation*}
R_{3}=\frac{1.44 Z_{\mathrm{d}}}{Q_{\alpha}}+\sqrt{\left(\frac{1.44 Z_{\mathrm{d}}}{Q_{\alpha}}\right)^{2}+\frac{l(l+1) \hbar^{2}}{2 \mu Q_{\alpha}}} \tag{19}
\end{equation*}
$$

The orientation-dependent decay width, Eq. (15), is then averaged over the orientation angle θ,

$$
\begin{equation*}
\Gamma=\frac{1}{2} \int_{0}^{\pi} \Gamma(\theta) \sin \theta \mathrm{d} \theta \tag{20}
\end{equation*}
$$

Finally, the half-life of the parent nucleus against α decay reads

$$
\begin{equation*}
T_{\alpha}=\frac{\hbar \ln 2}{S \Gamma} \tag{21}
\end{equation*}
$$

where S denotes the preformation probability of the particle in the parent nucleus. Using Eq. (21), one can estimate the preformation probability using the observed partial half-life $T_{\alpha}^{\exp }$ and the calculated decay width Γ. Based on the experimentally extracted $S_{\alpha}^{\exp }$ for different decay modes of hundreds of α-emitters [18, 20, 21],
an empirical formula has been proposed to estimate the $\quad \operatorname{closures}\left(Z_{0}, N_{0}\right)$ in the parent nucleus (Z, N) as α-preformation factor in terms of the nucleonic shell

$$
\begin{align*}
& S_{\alpha}=\frac{\mathcal{A} \mathrm{e}^{-0.003\left(Z-Z_{0}-Z_{\mathrm{c}}\right)^{2}} \mathrm{e}^{-0.006\left(N-N_{0}-N_{\mathrm{c}}\right)^{2}}-a_{\mathrm{p}}}{a_{1}}, \\
& a_{1}=\frac{A^{2}}{3190 \sqrt{l_{\min }}}-a_{1} 0, \quad a_{10}=\left\{\begin{array}{ll}
3.9 & \text { for } A \geqslant 154 \\
1.0 & \text { for } A<154
\end{array}, \quad a_{1}=1 \text { for } l_{\min }=0,\right. \\
& a_{\mathrm{p}}= \begin{cases}0.0040\left(Z-Z_{0}\right)^{1 / 3} & \text { for odd }(Z)-\operatorname{even}(N) \text { nuclei } \\
0.0056\left(N-N_{0}\right)^{1 / 3} & \text { for even }(Z)-\operatorname{odd}(N) \text { nuclei } \\
0.0088\left(Z-Z_{0}+N-N_{0}\right)^{1 / 3} & \text { for odd }(Z)-\operatorname{odd}(N) \text { nuclei }\end{cases} \tag{22}
\end{align*}
$$

Z_{C} and N_{C} define, respectively, the numbers of protons and neutrons exceeding the shell closures $\left(Z_{0}, N_{0}\right)$, at which S_{α} reaches a local maximum. The dimensionless parameter $A\left(Z_{0}, N_{0}\right)$ correlates with the shell closures. a_{p} [18] and a_{ℓ} [20] account for the pairing effect and the hindrance in S_{α} due to the difference in the spinparity of the nuclei involved in the unfavored decays, respectively. The adopted fitting values [21] of $Z_{\mathrm{C}}, N_{\mathrm{C}}$ and A for the shell closure combinations used in the present work are listed in Table 1.

Table 1. Optimized fitting parameters of the empirical formula of the α preformation factor (Eq. (22)) for nuclei with extra nucleons outside the shell closures, $\left(Z_{0}, N_{0}\right)=(50,50),(50,70)$, (50, $82),(70,70),(70,82),(70,102)$ and $(82,82)$, as obtained from the fit for the experimentally estimated $S_{\alpha}^{\text {exp }}$ of the observed decay modes investigated in Refs. [18, 20, 21] and in the present work. The fit parameters for the shell closure sets ($Z>82, N>82$) are given in Ref. [21].

Z_{0}	N_{0}	Z_{c}	N_{C}	A
50	50	8	8	0.087
	70		6	0.100
	82	8	0.110	
70	70		6	0.080
	82		12	0.063
	102	12	8	0.050
82	82		0.073	

3 Results and discussion

In the present study we restrict our attention to the ground-state to ground-state α-decays of neutrondeficient nuclei in the region of mass number $A=105-$ 179. The 188 parent nuclei investigated have atomic numbers $Z=52-82(N=53-97)$. We consider both decays that have already been experimentally observed and those that have not been observed yet. We investigate whether the proton skin enhances or hinders the α-decay process.

Figure 1 shows the effect of the proton-skin thickness on the α-core interaction potential. Presented in Figs. 1(a), 1(b) and 1(c), respectively, are the nuclear, Coulomb and the total scattering potential of the interacting $\alpha+{ }^{101} \mathrm{Sn}$ nuclei. This nuclear system participates in the α-decay of the ${ }^{105} \mathrm{Te}$ nucleus $\left(Q_{\alpha}=5.069 \pm 0.003\right.$ MeV [44], $\left.T_{\alpha}=0.633 \pm 0.066 \mu \mathrm{~s}[45]\right) .{ }^{101} \mathrm{Sn}$ is almost a spherical nucleus [35]. The self-consistent HF calculations based on the SK255 [46], SLy4 [39], SII [47], $\operatorname{ZR} 1\left(x_{0}=0.1\right)$ [48] and $\operatorname{ZR1}\left(x_{0}=0.024\right)$ parameterizations of the Skyrme Energy Density Functional (EDF) yields $\Delta_{\mathrm{p}}\left({ }^{101} \mathrm{Sn}\right)=0.007-0.065 \mathrm{fm}$. The obtained proton and neutron density distributions of ${ }^{101} \mathrm{Sn}$ have been used in the calculations presented in Fig. 1. While the rms radius of the proton density distributions based on the mentioned forces ranges from 4.356 fm to 4.453 fm , the neutron rms radius ranges from 4.349 fm to 4.409 fm . We examined more than 30 popular parameterizations of the Skyrme EDF. Most of them give Δ_{p} around the value obtained by the Skyrme-SLy4 interaction, $\Delta_{\mathrm{p}}=0.065 \mathrm{fm}$. As shown in Fig. 1(a), increasing the proton-skin thickness increases the attractive nuclear part in its inner region, but reduces it in the overlap-density region. The attractive nuclear potential slightly increases again with Δ_{p} in the surface and Coulomb barrier regions. While the slight changes in the neutron and proton rms radii affect the short-range attractive nuclear potential, the long-range repulsive Coulomb potential remains unaffected, as seen in Fig. 1(b). The influence of the larger Δ_{p} on the nuclear part of the potential results in a decreased total potential, Figs. 1(c). For comparison, we present in Fig. 1(d) the calculated total potentials based on the above-mentioned Skyrme NN interactions. The potential based on a Skyrme effective interaction is characterized by a repulsive core giving rise to a pocket being formed in the inner part of the potential. The internal pocket of the total potential based on M3Y-type interactions is commonly obtained after introducing the renormalization factor λ (Eq. (14)) to the nuclear part of the potential. As shown in Fig. 1(d), larger Δ_{p} produces a

Fig. 1. (color online) The radial dependence of the (a) nuclear, (b) Coulomb and (c) total interaction potential between α and ${ }^{101} \mathrm{Sn}$ nuclei, which are involved in the α decay of ${ }^{105} \mathrm{Te}$, at different values of the proton-skin thickness (Δ_{p}) of ${ }^{101} \mathrm{Sn}$. The nuclear part is computed in terms of the M3Y-Reid effective NN interaction, Eqs. (4, 5 and 6). The proton and neutron density distributions of ${ }^{101} \mathrm{Sn}$ with different Δ_{p} are obtained from self-consistent HF calculations based on the SK255, SLy4, SII, ZR1 $\left(x_{0}=0.1\right)$ and ZR1 $\left(x_{0}=0.024\right)$ parameterizations of the Skyrme EDF. The arrow indicates the sum of the average rms radii of the interacting nuclei. (d) The total interaction potential based on the mentioned Skyrme NN interactions.
wider and deeper internal pocket. Most importantly, Δ_{p} lowers the height of the Coulomb barrier, shifting it to larger internuclear distance, as shown in Figs. 1(c) and 1(d). The Coulomb barrier width decreases with Δ_{p}. The position of the third turning point R_{3}, that located in the extreme outer region of the potential, does not depend on the density distribution of the participating protons but only on their numbers $\left(Z_{\alpha}\right.$ and $\left.Z_{\mathrm{D}}\right)$, Eq. (19).

Figures 2(a)-2(c) show, respectively, the dependence of the α penetration probability P, its assault frequency $\nu\left(\mathrm{s}^{-1}\right)$, and the calculated partial half-life $T_{\alpha}(\mu \mathrm{s})$ of ${ }^{105} \mathrm{Te}$ on the proton-skin thickness of the ${ }^{101} \mathrm{Sn}$ daughter nucleus. Figure 2(a) shows that P increases with Δ_{p}. This is understood as a consequence of decreasing both the Coulomb barrier height and its width with Δ_{p}, Fig. 1(c). The penetration probability increases with decreasing the area under the Coulomb barrier, Eqs. (17) and (18). On the other hand, the assault frequency decreases with Δ_{p} as shown in Fig. 2(b). This is expected since the internal pocket width $R_{21}=R_{2}-R_{1}$ increases with Δ_{p}. The assault frequency is defined as the inverse of the time taken to traverse this distance back and forth, Eq. (16). The obtained increase of P with Δ_{p} is more influential in the decay process than the de-
crease of ν. The overall effect is that Δ_{p} reduces the half-life of the nucleus against α-decay, Fig. 2(c). A preformation factor of 0.0591 (Eq. (22) with $\ell_{\min }=0$) has been used in calculations of T_{α} in Fig. 2(c). Indeed, the α-preformation factor (Eq. (21)) that can be extracted from the experimental T_{α} and the calculated decay width will be affected by the considered value of Δ_{p}. A larger proton-skin thickness would indicate a lower estimated preformation factor, due to lower calculated half-life.

Figure 3 displays the influence of the proton-skin thickness on the half-life against α-decay and the released energy along the same isotopic chain. Shown in Figs. 3(a) and $3(\mathrm{~b})$, respectively, are the Q_{α}-values [44] and the partial half-lives T_{α} (on a logarithmic scale) of the protonskinned isotopes of Te, Cs and Ba , as functions of their proton-skin thickness given by Eqs. (9)-(11). The experimentally observed T_{α} of the ${ }^{105-110} \mathrm{Te},{ }^{112,114} \mathrm{Cs}$ and ${ }^{114} \mathrm{Ba}$ isotopes are represented in Fig. 3 by solid symbols. The calculated T_{α} of ${ }^{111} \mathrm{Te},{ }^{113,115-118} \mathrm{Cs}$ and ${ }^{113,115-120} \mathrm{Ba}$, in which no α-decays have been observed, are represented by open symbols. As seen in Fig. 3(a), for the same isotopic chain, Q_{α} linearly increases with Δ_{p}. The half-lives of the proton-skinned nuclei decrease exponentially with increasing proton-skin thickness, Fig. 3(b). The pairing effect slightly influences Q_{α} and T_{α}, keeping their general
trends with Δ_{p}. As clearly seen in Figs. 2(c), 3(a) and $3(\mathrm{~b})$, the overall conclusion is that the proton-skin thickness is a good indicator for the stability of the nucleus. Δ_{p} makes the nucleus less stable.
Corer

Fig. 2. (a) the α-penetration probability, (b) the assault frequency, and (c) the calculated partial half-life T_{α} of the ground-state to ground-state α decay of ${ }^{105} \mathrm{Te}$, as functions of the proton-skin thickness of the daughter nucleus ${ }^{101} \mathrm{Sn}$. The preformation factor $S_{\alpha}=0.0591$ (Eq. (22)) is considered in the calculations of T_{α} in panel (c).

Table 2 gives the calculated partial half-lives $T_{\alpha}^{\text {cal }}$ (column 9) of the ground-state to ground-state decays of the neutron-deficient nuclei of $52 \leqslant Z \leqslant 82$. The presented parent nuclei show calculated proton-skin thickness $\Delta_{\mathrm{p}}>0$. The third and fourth columns in Table 2 contain the ground-state spin and parity $\left(J_{\mathrm{P}(\mathrm{D})}^{\pi}\right)$ of the parent (P) and daughter (D) nuclei listed in the first and second columns, respectively. The minimum values of angular momentum $\ell_{\text {min }}$ carried out by the α-particle in allowed decays are shown in the fifth column. Given in columns 6 and 7 , respectively, are the proton-skin thickness of the parent and daughter nuclei as calculated using the self-consistent HF method [37,38], based on the Skyrme-SLy4 NN interaction. Listed in the eighth column is the released energy Q_{α} in MeV [44]. Concerning the 188 investigated decay modes in Table 2, 59 decays have been experimentally observed and quantified
[45,49]. The experimental half-lives $T_{\alpha}^{\exp }(\mathrm{s})$ of these observed decays are listed in the tenth column. The calculated branching ratios, $B_{\text {cal }}(\%)=\left(T_{\alpha}^{\text {cal }} /\right.$ experimental total half-life of the nucleus) $\times 100$, for the α-decays that have not yet been observed, are given in the last column.

Fig. 3. (color online) (a) The Q_{α}-values [44] and (b) the observed partial half-lives $\left(T_{\alpha}\right)$ of the proton-skinned Te, Cs and Ba α-emitter isotopes and the calculated T_{α} of the corresponding isotopes that have no observed α-decays yet, as a function of the proton-skin thickness $\left(\Delta_{\mathrm{p}}\right)$ of the parent nuclei. T_{α} is plotted on a logarithmic scale.

The ground-state multipole deformations $\left(\beta_{2,3,4,6}\right)$ of the deformed daughter nuclei are taken into accounts in our calculations [35, 36]. The preformation factors are deduced using the semi-empirical formula given in Eq. (22). α-decay was observed as the main decay mode for 38 neutron-deficient nuclei [45, 49]. Most of these nuclei have even proton number. α-decay was observed as a competing (minor) decay mode for 9 (12) neutrondeficient nuclei. The other decay modes that have been observed for these 59 neutron-deficient nuclei are the β^{+}(49 nuclei) and proton (10 nuclei) decays [45]. As shown in Table 2, the calculated partial half-lives are in good agreement with the observed ones. For most of the observed decays, the calculated T_{α} and the observed half-life are of the same order of magnitude. They differ by one or two orders of magnitude for a few decays. This suggests that using the parameterization of the empirical formula (22) given in Table 2 in the present calculations is trustworthy, even although it was determined using

Table 2. The calculated partial half-lives $T_{\alpha}^{\text {cal }}$ (Eq. (21)), column 9, against ground-state to ground state α-decays of the neutron-deficient parent nuclei (column 1) that have non-vanishing calculated proton skin-thickness. The deformations of daughter nuclei are taken into account. The semiempirical formula (22) has been used to estimate the α-preformation probability. Columns $2-5$ identify, respectively, the daughter nuclei, the ground-state spin and parity $J_{P(\mathrm{D})}^{\pi}$ of the parent P and daughter D nuclei [45], and the minimum allowed value $\ell_{\min }$ of the angular momentum carried away by the emitted α-particle. The square brackets [] and parentheses () are used to indicate the non-experimental spin-parity assignments and uncertain values [45], respectively. The proton-skin thickness (Eq. (11)) of the parent and daughter nuclei calculated self-consistently using the HF method based on Skyrme-SLy4 NN interactions are listed in columns 6 and 7, respectively. The values of the energy released in the decays (Q_{α}) are given in Column 8 . Q_{α}-values partly derived from trends in the mass surface [44], with uncertainty fixed at 0.05 MeV , are indicated in square brackets. The experimentally observed half-lives ($T_{\alpha}^{\text {exp }}$) are given in column 10. In the last column we show the calculated percentage branching ($B_{\text {cal }}$ (\%)) for the decays that have not been observed yet. The uncertainties in the calculated partial half-life and in the experimental total half-life of the nucleus were both considered in the estimated branching ratios.

parent	daughter	$J_{\mathrm{P}}^{\pi}[45]$	$J_{\text {D }}^{\pi}[45]$	$\ell_{\text {min }}$	$\Delta_{\mathrm{p}}(\mathrm{P}) / \mathrm{fm}$	$\Delta_{\mathrm{p}}(\mathrm{D}) / \mathrm{fm}$	$Q_{\alpha} / \mathrm{MeV}[44]$	$T_{\alpha}^{\mathrm{cal}} / \mathrm{s}$	$T_{\alpha}^{\exp } / \mathrm{s}[45]$	$B_{\text {cal }}(\%)$
${ }^{105} \mathrm{Te}$	${ }^{101} \mathrm{Sn}$	$\left(7 / 2^{+}\right)$	(7/2 ${ }^{+}$)	0	0.075	0.065	5.069 ± 0.003	$(2.37 \pm 0.058) \times 10^{-7}$	$(6.330 \pm 0.660) \times 10^{-7}$	
${ }^{106} \mathrm{Te}$	${ }^{102} \mathrm{Sn}$	0^{+}	0^{+}	0	0.062	0.051	4.290 ± 0.009	$(25.550 \pm 2.510) \times 10^{-5}$	$(7.800 \pm 1.100) \times 10^{-5}$	
${ }^{107} \mathrm{Te}$	${ }^{103} \mathrm{Sn}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.049	0.037	4.008 ± 0.005	$(6.206 \pm 0.358) \times 10^{-3}$	$(5.500 \pm 2.500) \times 10^{-3}$	
${ }^{108} \mathrm{Te}$	${ }^{104} \mathrm{Sn}$	0^{+}	0^{+}	0	0.036	0.024	3.420 ± 0.008	12.130 ± 1.371	4.331 ± 0.558	
${ }^{109} \mathrm{Te}$	${ }^{105} \mathrm{Sn}$	$\left(5 / 2^{+}\right)$	$\left(5 / 2^{+}\right)$	0	0.024	0.012	3.198 ± 0.006	$(4.469 \pm 0.422) \times 10^{2}$	$(1.356 \pm 0.529) \times 10^{2}$	
${ }^{110} \mathrm{Te}$	${ }^{106} \mathrm{Sn}$	0^{+}	0^{+}	0	0.013	0	2.699 ± 0.008	$(46.080 \pm 7.621) \times 10^{5}$	$(6.200 \pm 0.267) \times 10^{5}$	
${ }^{111} \mathrm{Te}$	${ }^{107} \mathrm{Sn}$	$(5 / 2)^{+}$	$\left(5 / 2^{+}\right)$	0	0.002	-0.012	2.500 ± 0.008	$(4.982 \pm 0.992) \times 10^{8}$		$(5.5 \pm 1.2) \times 10^{-6}$
${ }^{107} \mathrm{I}$	${ }^{103} \mathrm{Sb}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.079	0.071	[4.324 ± 0.050]	$(7.568 \pm 3.678) \times 10^{-4}$		3.5 ± 1.7
${ }^{108} \mathrm{I}$	${ }^{104} \mathrm{Sb}$	$\left[1^{+}\right]$		0	0.066	0.058	4.100 ± 0.050	$(0.958 \pm 0.499) \times 10^{-2}$	$(3.956 \pm 0.659) \times 10^{-2}[49]$	
${ }^{109}$ I	${ }^{105} \mathrm{Sb}$	$1 / 2^{+}$	$\left(5 / 2^{+}\right)$	2	0.054	0.045	3.918 ± 0.021	0.229 ± 0.058	0.812 ± 0.268	
${ }^{110} \mathrm{I}$	${ }^{106} \mathrm{Sb}$	$\left(1^{+}\right)$	$\left(2^{+}\right)$	2	0.041	0.031	3.580 ± 0.050	26.390 ± 16.142	4.057 ± 0.857	
${ }^{111} \mathrm{I}$	${ }^{107} \mathrm{Sb}$	$\left[5 / 2^{+}\right.$]	$\left[5 / 2^{+}\right.$]	0	0.029	0.019	3.275 ± 0.005	$(0.503 \pm 0.043) \times 10^{3}$	$(2.500 \pm 0.200) \times 10^{3}$	
${ }^{112} \mathrm{I}$	${ }^{108} \mathrm{Sb}$	$\left[1^{+}\right]$	$\left(4^{+}\right)$	4	0.017	0.007	2.957 ± 0.012	$(26.170 \pm 5.751) \times 10^{5}$	$(2.783 \pm 0.067) \times 10^{5}$	
${ }^{113} \mathrm{I}$	${ }^{109} \mathrm{Sb}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.007	-0.004	2.707 ± 0.010	$(0.227 \pm 0.047) \times 10^{8}$	$(1.994 \pm 0.060) \times 10^{9}$	
${ }^{109} \mathrm{Xe}$	${ }^{105} \mathrm{Te}$	$\left[7 / 2^{+}\right]$	$\left(7 / 2^{+}\right)$	0	0.082	0.075	4.217 ± 0.007	$(0.732 \pm 0.060) \times 10^{-2}$	$(1.300 \pm 0.200) \times 10^{-2}$	
${ }^{110} \mathrm{Xe}$	${ }^{106} \mathrm{Te}$	0^{+}	0^{+}	0	0.069	0.062	3.872 ± 0.009	0.364 ± 0.044	0.211 ± 0.120	
${ }^{111} \mathrm{Xe}$	${ }^{107} \mathrm{Te}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.057	0.049	3.720 ± 0.050	3.595 ± 2.137	7.725 ± 3.334	
${ }^{112} \mathrm{Xe}$	${ }^{108} \mathrm{Te}$	0^{+}	0^{+}	0	0.045	0.036	3.330 ± 0.006	$(7.979 \pm 0.809) \times 10^{2}$	$(4.850 \pm 3.900) \times 10^{2}$	
${ }^{113} \mathrm{Xe}$	${ }^{109} \mathrm{Te}$	$\left[5 / 2^{+}\right]$	$\left(5 / 2^{+}\right)$	0	0.033	0.024	3.087 ± 0.008	$(5.991 \pm 0.832) \times 10^{4}$	$(2.491 \pm 0.073) \times 10^{4}$	
${ }^{114} \mathrm{Xe}$	${ }^{110} \mathrm{Te}$	0^{+}	0^{+}	0	0.022	0.013	2.719 ± 0.013	$(8.345 \pm 2.334) \times 10^{7}$		$(1.3 \pm 0.4) \times 10^{-5}$
${ }^{115} \mathrm{Xe}$	${ }^{111} \mathrm{Te}$	$\left(5 / 2^{+}\right)$	$(5 / 2)^{+}$	0	0.011	0.002	2.506 ± 0.014	$(1.518 \pm 0.503) \times 10^{10}$	$(7.250 \pm 3.750) \times 10^{6}$	
${ }^{116} \mathrm{Xe}$	${ }^{112} \mathrm{Te}$	0^{+}	0^{+}	0	0.001	-0.009	2.096 ± 0.016	$(1.797 \pm 0.845) \times 10^{15}$		$(4.3 \pm 2.1) \times 10^{-12}$
${ }^{112} \mathrm{Cs}$	${ }^{108} \mathrm{I}$	$\left[1^{+}\right]$	$\left[1^{+}\right]$	0	0.074	0.066	3.930 ± 0.120	1.825 ± 1.674	0.189 ± 0.014	
${ }^{113} \mathrm{Cs}$	${ }^{109}$ I	$\left(3 / 2^{+}\right)$	$1 / 2^{+}$	2	0.061	0.054	3.483 ± 0.008	$(1.406 \pm 0.168) \times 10^{3}$		$(1.3 \pm 0.2) \times 10^{-6}$
${ }^{114} \mathrm{Cs}$	${ }^{110} \mathrm{I}$	$\left(1^{+}\right)$	$\left(1^{+}\right)$	0	0.049	0.041	3.360 ± 0.050	$(7.473 \pm 5.037) \times 10^{3}$	$(3.604 \pm 1.313) \times 10^{3}$	
${ }^{115} \mathrm{Cs}$	${ }^{111} \mathrm{I}$	$\left[9 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	2	0.037	0.029	[2.830 $\pm 0.050]$	$(3.348 \pm 2.637) \times 10^{8}$		$(1.6 \pm 1.5) \times 10^{-6}$
${ }^{116} \mathrm{Cs}$	${ }^{112} \mathrm{I}$	$\left(1^{+}\right)$	$[1+]$	0	0.026	0.017	[2.600 $\pm 0.050]$	$(1.909 \pm 1.599) \times 10^{10}$		$(1.3 \pm 1.1) \times 10^{-8}$
${ }^{117} \mathrm{Cs}$	${ }^{113} \mathrm{I}$	$\left[9 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	2	0.015	0.007	2.200 ± 0.060	$(8.228 \pm 7.910) \times 10^{15}$		$(1.4 \pm 1.3) \times 10^{-12}$
${ }^{118} \mathrm{Cs}$	${ }^{114} \mathrm{I}$	2	$1+$	1	0.005	-0.004	[1.960 ± 0.050]	$(1.513 \pm 0.756) \times 10^{21}$		$<10^{-15}$

Table 2. - continued from previous page

parent	daughter	$J_{\mathrm{P}}^{\pi}[45]$	$J_{\mathrm{D}}^{\pi}[45]$	$\ell_{\text {min }}$	$\Delta_{\mathrm{p}}(\mathrm{P}) / \mathrm{fm}$	$\Delta_{\mathrm{p}}(\mathrm{D}) / \mathrm{fm}$	$Q_{\alpha} / \mathrm{MeV}$ [44]	$T_{\alpha}^{\text {cal }} / \mathrm{s}$	$T_{\alpha}^{\text {exp }} / \mathrm{s}$ [45]	$B_{\text {cal }}(\%)$
${ }^{113} \mathrm{Ba}$	${ }^{109} \mathrm{Xe}$	$\left[5 / 2^{+}\right]$	$\left[7 / 2^{+}\right]$	2	0.089	0.082	[3.960 $\pm 0.050]$	8.735 ± 4.976		1.7 ± 1.0
${ }^{114} \mathrm{Ba}$	${ }^{110} \mathrm{Xe}$	0^{+}	0^{+}	0	0.075	0.069	3.592 ± 0.019	256.600 ± 69.700	62.708 ± 34.792	
${ }^{115} \mathrm{Ba}$	${ }^{111} \mathrm{Xe}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.063	0.057	[2.950 $\pm 0.050]$	$(3.062 \pm 2.352) \times 10^{7}$		$(3.9 \pm 3.2) \times 10^{-6}$
${ }^{116} \mathrm{Ba}$	${ }^{112} \mathrm{Xe}$	0^{+}	0^{+}	0	0.052	0.045	[3.020 $\pm 0.050]$	$(6.339 \pm 4.774) \times 10^{6}$		$(5.3 \pm 4.3) \times 10^{-5}$
${ }^{117} \mathrm{Ba}$	${ }^{113} \mathrm{Xe}$	$(3 / 2)^{[+]}$	$\left[5 / 2^{+}\right]$	2	0.040	0.033	[2.320 $\pm 0.050]$	$(9.313 \pm 8.372) \times 10^{14}$		$(1.0 \pm 0.9) \times 10^{-12}$
${ }^{118} \mathrm{Ba}$	${ }^{114} \mathrm{Xe}$	0^{+}	0^{+}	0	0.030	0.022	[2.310 $\pm 0.050]$	$(2.542 \pm 2.291) \times 10^{14}$		$(1.1 \pm 1.0) \times 10^{-11}$
${ }^{119} \mathrm{Ba}$	${ }^{115} \mathrm{Xe}$	$\left(5 / 2^{+}\right)$	$\left(5 / 2^{+}\right)$	0	0.019	0.011	[1.640 $\pm 0.050]$	$(8.105 \pm 7.992) \times 10^{25}$		$<10^{-15}$
${ }^{120} \mathrm{Ba}$	${ }^{116} \mathrm{Xe}$	0^{+}	0^{+}	0	0.009	0.001	[1.730 $\pm 0.050]$	$(7.500 \pm 7.346) \times 10^{23}$		$<10^{-15}$
${ }^{117} \mathrm{La}$	${ }^{113} \mathrm{Cs}$	$\left(3 / 2^{+}\right)$	$\left(3 / 2^{+}\right)$	0	0.065	0.061	[2.870 $\pm 0.050]$	$(8.894 \pm 7.058) \times 10^{8}$		$(7.0 \pm 5.8) \times 10^{-9}$
${ }^{118} \mathrm{La}$	${ }^{114} \mathrm{Cs}$		$\left(1^{+}\right)$	0	0.054	0.049	[2.700 $\pm 0.050]$	$(4.567 \pm 3.789) \times 10^{10}$		$(1.4 \pm 1.2) \times 10^{-9}$
${ }^{119} \mathrm{La}$	${ }^{115} \mathrm{Cs}$	$\left[11 / 2^{-}\right]$	$\left[9 / 2^{+}\right]$	1	0.043	0.037	[2.490 $\pm 0.050]$	$(4.485 \pm 3.916) \times 10^{13}$		$(9.4 \pm 8.2) \times 10^{-12}$
${ }^{120} \mathrm{La}$	${ }^{116} \mathrm{Cs}$		$\left(1^{+}\right)$	0	0.033	0.026	[2.050 $\pm 0.050]$	$(1.419 \pm 1.344) \times 10^{19}$		$<10^{-15}$
${ }^{121} \mathrm{La}$	${ }^{117} \mathrm{Cs}$	$\left[11 / 2^{-}\right]$	$\left[9 / 2^{+}\right]$	1	0.022	0.015	[1.880 $\pm 0.050]$	$(5.751 \pm 5.567) \times 10^{22}$		$<10^{-15}$
${ }^{122} \mathrm{La}$	${ }^{118} \mathrm{Cs}$		2	0	0.012	0.005	[1.440 $\pm 0.050]$	$(1.618 \pm 1.611) \times 10^{32}$		$<10^{-15}$
${ }^{123} \mathrm{La}$	${ }^{119} \mathrm{Cs}$	[11/2 ${ }^{-}$]	$9 / 2^{+}$	1	0.002	-0.005	[1.230 $\pm 0.050]$	$(4.234 \pm 4.230) \times 10^{39}$		$<10^{-15}$
${ }^{119} \mathrm{Ce}$	${ }^{115} \mathrm{Ba}$	$\left[5 / 2^{+}\right]$	$\left[5 / 2^{+}\right]$	0	0.067	0.063	[2.660 $\pm 0.050]$	$(6.388 \pm 5.397) \times 10^{11}$		$(1.1 \pm 0.9) \times 10^{-10}$
${ }^{120} \mathrm{Ce}$	${ }^{116} \mathrm{Ba}$	0^{+}	0^{+}	0	0.057	0.052	[2.560 $\pm 0.050]$	$(7.393 \pm 6.395) \times 10^{12}$		$(1.3 \pm 1.2) \times 10^{-11}$
${ }^{121} \mathrm{Ce}$	${ }^{117} \mathrm{Ba}$	$(5 / 2)^{[+]}$	$(3 / 2)^{[+]}$	2	0.046	0.040	[2.340 $\pm 0.050]$	$(2.046 \pm 1.852) \times 10^{16}$		$(3.2 \pm 3.0) \times 10^{-14}$
${ }^{122} \mathrm{Ce}$	${ }^{118} \mathrm{Ba}$	0^{+}	0^{+}	0	0.036	0.030	[2.060 $\pm 0.050]$	$(6.678 \pm 6.342) \times 10^{19}$		$<10^{-15}$
${ }^{123} \mathrm{Ce}$	${ }^{119} \mathrm{Ba}$	$(5 / 2)^{[+]}$	$\left(5 / 2^{+}\right)$	0	0.025	0.019	[1.880 $\pm 0.050]$	$(1.205 \pm 1.170) \times 10^{23}$		$<10^{-15}$
${ }^{124} \mathrm{Ce}$	${ }^{120} \mathrm{Ba}$	0^{+}	0^{+}	0	0.015	0.009	[1.550 $\pm 0.050]$	$(2.115 \pm 2.100) \times 10^{30}$		$<10^{-15}$
${ }^{125} \mathrm{Ce}$	${ }^{121} \mathrm{Ba}$	(7/2-)	$5 / 2(+)$	1	0.006	-0.001	[1.660 $\pm 0.050]$	$(2.721 \pm 2.686) \times 10^{28}$		$<10^{-15}$
${ }^{121} \mathrm{Pr}$	${ }^{117} \mathrm{La}$	(3/2)	$\left(3 / 2^{+}\right)$	0	0.070	0.065	[2.620 $\pm 0.050]$	$(7.898 \pm 6.771) \times 10^{12}$		$(7.8 \pm 7.3) \times 10^{-13}$
${ }^{122} \mathrm{Pr}$	${ }^{118} \mathrm{La}$			0	0.058	0.054	[2.360 $\pm 0.050]$	$(2.121 \pm 1.924) \times 10^{16}$		$(1.3 \pm 1.2) \times 10^{-14}$
${ }^{123} \mathrm{Pr}$	${ }^{119} \mathrm{La}$	$\left[3 / 2^{+}\right]$	[11/2 ${ }^{-}$]	5	0.048	0.043	[2.140 $\pm 0.050]$	$(1.969 \pm 1.856) \times 10^{21}$		$<10^{-15}$
${ }^{124} \mathrm{Pr}$	${ }^{120} \mathrm{La}$			0	0.038	0.033	[1.990 $\pm 0.050]$	$(1.005 \pm 0.965) \times 10^{22}$		$<10^{-15}$
${ }^{125} \mathrm{Pr}$	${ }^{121} \mathrm{La}$	$\left[3 / 2^{+}\right]$	[11/2 ${ }^{-}$]	5	0.028	0.022	[1.830 $\pm 0.050]$	$(9.174 \pm 8.967) \times 10^{26}$		$<10^{-15}$
${ }^{126} \mathrm{Pr}$	${ }^{122} \mathrm{La}$	(4)		0	0.017	0.012	[1.800 $\pm 0.050]$	$(9.181 \pm 8.993) \times 10^{25}$		$<10^{-15}$
${ }^{127} \mathrm{Pr}$	${ }^{123} \mathrm{La}$	$\left[3 / 2^{+}\right]$	[11/2 ${ }^{-}$]	5	0.008	0.002	[1.680 $\pm 0.050]$	$(1.587 \pm 1.566) \times 10^{30}$		$<10^{-15}$
${ }^{124} \mathrm{Nd}$	${ }^{120} \mathrm{Ce}$	0^{+}	0^{+}	0	0.060	0.057	[2.650 $\pm 0.050]$	$(2.399 \pm 2.059) \times 10^{13}$		$(7.9 \pm 6.8) \times 10^{-12}$
${ }^{125} \mathrm{Nd}$	${ }^{121} \mathrm{Ce}$	$(5 / 2)^{[+]}$	$(5 / 2)^{[+]}$	0	0.049	0.046	[2.670 $\pm 0.050]$	$(2.100 \pm 1.796) \times 10^{13}$		$(1.4 \pm 1.3) \times 10^{-11}$
${ }^{126} \mathrm{Nd}$	${ }^{122} \mathrm{Ce}$	0^{+}	0^{+}	0	0.040	0.036	[2.460 $\pm 0.050]$	$(6.529 \pm 5.843) \times 10^{15}$		$(7.7 \pm 6.9) \times 10^{-14}$
${ }^{127} \mathrm{Nd}$	${ }^{123} \mathrm{Ce}$	$\left[5 / 2^{+}\right]$	$(5 / 2)^{[+]}$	0	0.029	0.025	[2.330 $\pm 0.050]$	$(5.653 \pm 5.185) \times 10^{17}$		$(2.4 \pm 2.3) \times 10^{-15}$
${ }^{128} \mathrm{Nd}$	${ }^{124} \mathrm{Ce}$	0^{+}	0^{+}	0	0.019	0.015	[2.180 $\pm 0.050]$	$(5.406 \pm 5.080) \times 10^{19}$		$<10^{-15}$
${ }^{129} \mathrm{Nd}$	${ }^{125} \mathrm{Ce}$	$\left[5 / 2^{+}\right]$	$\left(7 / 2^{-}\right)$	1	0.010	0.006	[1.920 $\pm 0.050]$	$(2.138 \pm 2.075) \times 10^{25}$		$<10^{-15}$
${ }^{130} \mathrm{Nd}$	${ }^{126} \mathrm{Ce}$	0^{+}	0^{+}	0	0.001	-0.005	1.800 ± 0.040	$(1.681 \pm 1.598) \times 10^{26}$		$<10^{-15}$
${ }^{126} \mathrm{Pm}$	${ }^{122} \mathrm{Pr}$			0	0.062	0.058	[3.010 $\pm 0.050]$	$(4.303 \pm 4.415) \times 10^{10}$		$(3.1 \pm 2.5) \times 10^{-9}$
${ }^{127} \mathrm{Pm}$	${ }^{123} \mathrm{Pr}$	$\left[5 / 2^{+}\right]$	$\left[3 / 2^{+}\right]$	2	0.051	0.048	[3.020 $\pm 0.050]$	$(1.548 \pm 1.225) \times 10^{11}$		$(1.7 \pm 1.4) \times 10^{-9}$
${ }^{128} \mathrm{Pm}$	${ }^{124} \mathrm{Pr}$	$(5,6,7)^{[+]}$		0	0.041	0.038	[2.940 $\pm 0.050]$	$(2.591 \pm 2.091) \times 10^{11}$		$(1.4 \pm 1.2) \times 10^{-9}$
${ }^{129} \mathrm{Pm}$	${ }^{125} \mathrm{Pr}$	(5/2-)	$\left[3 / 2^{+}\right]$	1	0.031	0.028	[2.630 $\pm 0.050]$	$(2.373 \pm 2.059) \times 10^{15}$		$(5.4 \pm 5.1) \times 10^{-13}$

Table 2. - continued from previous page

parent	daughter	$J_{\mathrm{P}}^{\pi}[45]$	$J_{\mathrm{D}}^{\pi}[45]$	$\ell_{\text {min }}$	$\Delta_{\mathrm{p}}(\mathrm{P}) / \mathrm{fm}$	$\Delta_{\mathrm{p}}(\mathrm{D}) / \mathrm{fm}$	$Q_{\alpha} / \mathrm{MeV}[44]$	$T_{\alpha}^{\mathrm{cal}} / \mathrm{s}$	$T_{\alpha}^{\text {exp }} / \mathrm{s}$ [45]	$B_{\text {cal }}(\%)$
${ }^{130} \mathrm{Pm}$	${ }^{126} \mathrm{Pr}$	$\left(4^{+}\right)$	$(4,5,6)$	0	0.022	0.017	[2.500 $\pm 0.050]$	$(3.624 \pm 3.232) \times 10^{16}$		$(3.7 \pm 3.4) \times 10^{-14}$
${ }^{131} \mathrm{Pm}$	${ }^{127} \mathrm{Pr}$	(11/2 ${ }^{-}$)	$\left[3 / 2^{+}\right]$	5	0.012	0.008	[2.460 $\pm 0.050]$	$(2.082 \pm 1.875) \times 10^{18}$		$(1.8 \pm 1.7) \times 10^{-15}$
${ }^{132} \mathrm{Pm}$	${ }^{128} \mathrm{Pr}$	$\left(3^{+}\right)$	$\left(3^{+}\right)$	0	0.003	0.002	[2.280 $\pm 0.050]$	$(1.053 \pm 0.978) \times 10^{19}$		$<10^{-15}$
${ }^{128} \mathrm{Sm}$	${ }^{124} \mathrm{Nd}$	0^{+}	0^{+}	0	0.063	0.060	[3.430 $\pm 0.050]$	$(2.989 \pm 2.138) \times 10^{7}$		$(3.4 \pm 2.5) \times 10^{-6}$
${ }^{129} \mathrm{Sm}$	${ }^{125} \mathrm{Nd}$	$\left(1 / 2^{+}\right)$	$(5 / 2)^{[+]}$	2	0.053	0.049	[3.170 $\pm 0.050]$	$(3.811 \pm 2.923) \times 10^{10}$		$(4.0 \pm 3.3) \times 10^{-9}$
${ }^{130} \mathrm{Sm}$	${ }^{126} \mathrm{Nd}$	0^{+}	0^{+}	0	0.043	0.040	[3.060 $\pm 0.050]$	$(5.533 \pm 4.366) \times 10^{10}$		$(4.8 \pm 3.8) \times 10^{-9}$
${ }^{131} \mathrm{Sm}$	${ }^{127} \mathrm{Nd}$	[5/2+]	[5/2+]	0	0.033	0.029	$[2.980 \pm 0.050]$	$(6.761 \pm 5.451) \times 10^{11}$		$(5.8 \pm 4.9) \times 10^{-10}$
${ }^{132} \mathrm{Sm}$	${ }^{128} \mathrm{Nd}$	0^{+}	0^{+}	0	0.024	0.019	[2.810 $\pm 0.050]$	$(1.199 \pm 1.007) \times 10^{13}$		$(1.2 \pm 1.0) \times 10^{-10}$
${ }^{133} \mathrm{Sm}$	${ }^{129} \mathrm{Nd}$	$\left(5 / 2^{+}\right)$	$\left[5 / 2^{+}\right]$	0	0.015	0.010	[2.660 $\pm 0.050]$	$(6.122 \pm 5.318) \times 10^{14}$		$(2.0 \pm 1.8) \times 10^{-12}$
${ }^{134} \mathrm{Sm}$	${ }^{130} \mathrm{Nd}$	0^{+}	0^{+}	0	0.006	0.001	[2.800 $\pm 0.050]$	$(1.216 \pm 1.024) \times 10^{13}$		$(2.9 \pm 2.5) \times 10^{-10}$
${ }^{130} \mathrm{Eu}$	${ }^{126} \mathrm{Pm}$	(1+)		0	0.064	0.062	[3.240 $\pm 0.050]$	$(1.104 \pm 0.839) \times 10^{10}$		$(2.8 \pm 2.5) \times 10^{-11}$
${ }^{131} \mathrm{Eu}$	${ }^{127} \mathrm{Pm}$	$3 / 2^{+}$	$\left[5 / 2^{+}\right]$	2	0.054	0.051	[3.090 $\pm 0.050]$	$(6.188 \pm 4.892) \times 10^{11}$		$(8.3 \pm 6.9) \times 10^{-12}$
${ }^{132} \mathrm{Eu}$	${ }^{128} \mathrm{Pm}$		$(5)^{[+]}$	0	0.044	0.041	[3.160 $\pm 0.050]$	$(1.030 \pm 0.800) \times 10^{11}$		$(2.5 \pm 1.9) \times 10^{-10}$
${ }^{133} \mathrm{Eu}$	${ }^{129} \mathrm{Pm}$	$\left[11 / 2^{-}\right]$	$\left(5 / 2^{-}\right)$	4	0.035	0.031	[3.220 $\pm 0.050]$	$(1.274 \pm 0.976) \times 10^{11}$		$(3.8 \pm 2.9) \times 10^{-10}$
${ }^{134} \mathrm{Eu}$	${ }^{130} \mathrm{Pm}$		$\left(4^{+}\right)$	0	0.026	0.022	[3.040 $\pm 0.050]$	$(2.772 \pm 2.218) \times 10^{11}$		$(6.6 \pm 6.0) \times 10^{-10}$
${ }^{135} \mathrm{Eu}$	${ }^{131} \mathrm{Pm}$	[11/2-]	(11/2-)	0	0.016	0.012	[3.090 $\pm 0.050]$	$(8.708 \pm 6.888) \times 10^{10}$		$(5.1 \pm 4.3) \times 10^{-9}$
${ }^{136} \mathrm{Eu}$	${ }^{132} \mathrm{Pm}$	$\left(7^{+}\right)$	$\left(3^{+}\right)$	4	0.007	0.003	[2.960 $\pm 0.050]$	$(3.892 \pm 3.183) \times 10^{13}$		$(2.8 \pm 2.3) \times 10^{-11}$
${ }^{133} \mathrm{Gd}$	${ }^{129} \mathrm{Sm}$	$\left[5 / 2^{+}\right]$	$\left(1 / 2^{+}\right)$	2	0.056	0.053	[3.720 $\pm 0.050]$	$(6.275 \pm 4.248) \times 10^{7}$		$(2.9 \pm 2.0) \times 10^{-8}$
${ }^{134} \mathrm{Gd}$	${ }^{130} \mathrm{Sm}$	0^{+}	0^{+}	0	0.046	0.043	[3.780 $\pm 0.050]$	$(1.103 \pm 0.734) \times 10^{6}$		$(6.5 \pm 4.3) \times 10^{-5}$
${ }^{135} \mathrm{Gd}$	${ }^{131} \mathrm{Sm}$	$\left(5 / 2^{+}\right)$	$\left[5 / 2^{+}\right]$	0	0.037	0.033	[3.320 $\pm 0.050]$	$(4.370 \pm 3.289) \times 10^{9}$		$(6.6 \pm 5.4) \times 10^{-8}$
${ }^{136} \mathrm{Gd}$	${ }^{132} \mathrm{Sm}$	0^{+}	0^{+}	0	0.028	0.024	[3.570 $\pm 0.050]$	$(3.623 \pm 2.554) \times 10^{7}$		$(5.5 \pm 3.9) \times 10^{-6}$
${ }^{137} \mathrm{Gd}$	${ }^{133} \mathrm{Sm}$	$(7 / 2)^{[+]}$	$\left(5 / 2^{+}\right)$	2	0.019	0.015	[3.590 $\pm 0.050]$	$(1.493 \pm 1.045) \times 10^{8}$		$(3.1 \pm 2.3) \times 10^{-6}$
${ }^{138} \mathrm{Gd}$	${ }^{134} \mathrm{Sm}$	0^{+}	0^{+}	0	0.010	0.006	[3.150 $\pm 0.050]$	$(8.778 \pm 6.893) \times 10^{10}$		$(1.6 \pm 1.4) \times 10^{-8}$
${ }^{139} \mathrm{Gd}$	${ }^{135}$ Sm	[9/2 ${ }^{-}$]	$\left(7 / 2^{+}\right)$	1	0.002	-0.003	[2.801 $\pm 0.050]$	$(3.076 \pm 2.626) \times 10^{15}$		$(7.1 \pm 6.2) \times 10^{-13}$
${ }^{135} \mathrm{~Tb}$	${ }^{131} \mathrm{Eu}$	$\left(7 / 2^{-}\right)$	$3 / 2^{+}$	3	0.058	0.054	[4.020 $\pm 0.050]$	$(8.734 \pm 5.508) \times 10^{5}$		$(2.3 \pm 1.7) \times 10^{-7}$
${ }^{136} \mathrm{~Tb}$	${ }^{132} \mathrm{Eu}$			0	0.048	0.044	[3.650 $\pm 0.050]$	$(4.902 \pm 3.416) \times 10^{7}$		$(7.9 \pm 5.5) \times 10^{-7}$
${ }^{137}$ Tb	${ }^{133} \mathrm{Eu}$	[11/2 ${ }^{-}$]	[11/2-]	0	0.039	0.035	[3.840 $\pm 0.050]$	$(1.576 \pm 1.041) \times 10^{6}$		$(6.8 \pm 4.5) \times 10^{-5}$
${ }^{138} \mathrm{~Tb}$	${ }^{134} \mathrm{Eu}$			0	0.030	0.026	[3.840 $\pm 0.050]$	$(1.846 \pm 1.222) \times 10^{6}$		$(7.7 \pm 5.1) \times 10^{-5}$
${ }^{139} \mathrm{~Tb}$	${ }^{135} \mathrm{Eu}$	[11/2 ${ }^{-}$]	[11/2-]	0	0.021	0.016	[3.590 $\pm 0.050]$	$(9.632 \pm 6.808) \times 10^{7}$		$(3.6 \pm 2.8) \times 10^{-6}$
${ }^{140} \mathrm{~Tb}$	${ }^{136} \mathrm{Eu}$	$\left(7^{+}\right)$	$\left(7^{+}\right)$	0	0.012	0.007	[3.340 $\pm 0.050]$	$(1.375 \pm 1.040) \times 10^{10}$		$(4.2 \pm 3.3) \times 10^{-8}$
${ }^{141} \mathrm{~Tb}$	${ }^{137} \mathrm{Eu}$	$\left(5 / 2^{-}\right)$	[11/2-]	4	0.004	-0.003	3.180 ± 0.105	$(2.451 \pm 2.396) \times 10^{13}$		$(3.5 \pm 3.4) \times 10^{-10}$
${ }^{138}$ Dy	${ }^{134} \mathrm{Gd}$	0^{+}	0^{+}	0	0.050	0.046	[3.950 $\pm 0.050]$	$(1.259 \pm 0.818) \times 10^{6}$		$(2.8 \pm 1.8) \times 10^{-5}$
${ }^{139}$ Dy	${ }^{135} \mathrm{Gd}$	$\left(7 / 2^{+}\right)$	$\left(5 / 2^{+}\right)$	2	0.041	0.037	[4.320 $\pm 0.050]$	$(3.659 \pm 2.151) \times 10^{4}$		$(3.0 \pm 2.3) \times 10^{-3}$
${ }^{140}$ Dy	${ }^{136} \mathrm{Gd}$	0^{+}	0^{+}	0	0.032	0.028	[3.840 $\pm 0.050]$	$(7.023 \pm 4.704) \times 10^{6}$		$(1.8 \pm 1.2) \times 10^{-5}$
${ }^{141}$ Dy	${ }^{137} \mathrm{Gd}$	$\left(9 / 2^{-}\right)$	$(7 / 2)^{[+]}$	1	0.024	0.019	[3.410 $\pm 0.050]$	$(1.194 \pm 0.895) \times 10^{11}$		$(1.9 \pm 1.6) \times 10^{-9}$
${ }^{142}$ Dy	${ }^{138} \mathrm{Gd}$	0^{+}	0^{+}	0	0.015	0.010	[3.260 $\pm 0.050]$	$(3.698 \pm 2.881) \times 10^{11}$		$(1.7 \pm 1.4) \times 10^{-9}$
${ }^{143}$ Dy	${ }^{139} \mathrm{Gd}$	$\left(1 / 2^{+}\right)$	[9/2 ${ }^{-}$]	5	0.007	0.002	[3.040 $\pm 0.050]$	$(4.870 \pm 4.006) \times 10^{15}$		$(4.1 \pm 3.6) \times 10^{-13}$
${ }^{140}$ Ho	${ }^{136} \mathrm{~Tb}$	[8+]		0	0.053	0.048	[4.450 $\pm 0.050]$	$(4.452 \pm 2.562) \times 10^{3}$		$(2.6 \pm 2.2) \times 10^{-4}$
${ }^{141}$ Ho	${ }^{137} \mathrm{~Tb}$	$\left(7 / 2^{-}\right)$	$\left[11 / 2^{-}\right]$	2	0.044	0.039	[4.180 $\pm 0.050]$	$(1.094 \pm 0.677) \times 10^{6}$		$(6.2 \pm 3.9) \times 10^{-7}$
${ }^{142} \mathrm{Ho}$	${ }^{138} \mathrm{~Tb}$	$\left(8^{+}\right)$		0	0.035	0.030	[3.990 $\pm 0.050]$	$(2.849 \pm 1.850) \times 10^{6}$		$(2.8 \pm 2.2) \times 10^{-5}$

Table 2. - continued from previous page

parent	daughter	$J_{\mathrm{P}}^{\pi}[45]$	$J_{\mathrm{D}}^{\pi}[45]$	$\ell_{\text {min }}$	$\Delta_{\mathrm{p}}(\mathrm{P}) / \mathrm{fm}$	$\Delta_{\mathrm{p}}(\mathrm{D}) / \mathrm{fm}$	$Q_{\alpha} / \mathrm{MeV}$ [44]	$T_{\alpha}^{\text {cal }} / \mathrm{s}$	$T_{\alpha}^{\text {exp }} / \mathrm{s}[45]$	$B_{\text {cal }}(\%)$
${ }^{143} \mathrm{Ho}$	${ }^{139} \mathrm{~Tb}$	[11/2 ${ }^{-}$]	[11/2-]	0	0.026	0.021	[3.660 $\pm 0.050]$	$(6.920 \pm 4.909) \times 10^{8}$		$(8.7 \pm 6.2) \times 10^{-8}$
${ }^{144} \mathrm{Ho}$	${ }^{140} \mathrm{~Tb}$	(5^{-})	$\left(7^{+}\right)$	3	0.018	0.012	[3.450 $\pm 0.050]$	$(6.127 \pm 4.595) \times 10^{11}$		$(2.9 \pm 2.3) \times 10^{-10}$
${ }^{145} \mathrm{Ho}$	${ }^{141} \mathrm{~Tb}$	[11/2-]	(5/2 ${ }^{-}$)	4	0.010	0.004	3.000 ± 0.110	$(9.750 \pm 9.632) \times 10^{16}$		$(1.1 \pm 1.1) \times 10^{-13}$
${ }^{146} \mathrm{Ho}$	${ }^{142} \mathrm{~Tb}$	$\left(6^{-}\right)$	1^{+}	5	0.002	-0.004	[2.896 $\pm 0.050]$	$(1.363 \pm 1.165) \times 10^{18}$		$<10^{-15}$
${ }^{142} \mathrm{Er}$	${ }^{138}$ Dy	0^{+}	0^{+}	0	0.054	0.050	[4.480 $\pm 0.050]$	$(9.121 \pm 5.271) \times 10^{3}$		$(1.7 \pm 1.0) \times 10^{-7}$
${ }^{143} \mathrm{Er}$	${ }^{139}$ Dy	[9/2-]	$\left(7 / 2^{+}\right)$	1	0.046	0.041	[3.960 $\pm 0.050]$	$(1.506 \pm 0.999) \times 10^{8}$		$(2.4 \pm 1.6) \times 10^{-7}$
${ }^{144} \mathrm{Er}$	${ }^{140}$ Dy	0^{+}	0^{+}	0	0.037	0.032	[3.800 $\pm 0.050]$	$(2.787 \pm 1.927) \times 10^{8}$		$(2.8 \pm 1.9) \times 10^{-7}$
${ }^{145} \mathrm{Er}$	${ }^{141}$ Dy	$\left[1 / 2^{+}\right]$	(9/2-)	5	0.029	0.024	[3.720 $\pm 0.050]$	$(1.069 \pm 0.757) \times 10^{11}$		$(2.1 \pm 1.8) \times 10^{-9}$
${ }^{146} \mathrm{Er}$	${ }^{142}$ Dy	0^{+}	0^{+}	0	0.020	0.015	[3.370 ± 0.050]	$(9.339 \pm 7.192) \times 10^{11}$		$(5.7 \pm 5.0) \times 10^{-10}$
${ }^{147} \mathrm{Er}$	${ }^{143}$ Dy	$\left(1 / 2^{+}\right)$	$\left(1 / 2^{+}\right)$	0	0.013	0.007	3.140 ± 0.040	$(2.002 \pm 1.454) \times 10^{14}$		$(4.3 \pm 3.7) \times 10^{-12}$
${ }^{148} \mathrm{Er}$	${ }^{144}$ Dy	0^{+}	0^{+}	0	0.006	-0.001	2.666 ± 0.013	$(2.310 \pm 0.809) \times 10^{19}$		$<10^{-15}$
${ }^{144} \mathrm{Tm}$	${ }^{140}$ Ho	$\left(10^{+}\right)$	$\left[8^{+}\right]$	2	0.056	0.053	[4.580 $\pm 0.050]$	$(8.787 \pm 5.016) \times 10^{4}$		$(4.8 \pm 3.7) \times 10^{-9}$
${ }^{145} \mathrm{Tm}$	${ }^{141}$ Но	(11/2 ${ }^{-}$)	(7/2 ${ }^{-}$)	2	0.048	0.044	[4.360 $\pm 0.050]$	$(1.506 \pm 0.910) \times 10^{6}$		$(3.4 \pm 2.2) \times 10^{-10}$
${ }^{146} \mathrm{Tm}$	${ }^{142}$ Ho	$\left(1^{+}\right)$	$\left(7^{-}\right)$	7	0.039	0.035	[3.770 $\pm 0.050]$	$(3.417 \pm 2.418) \times 10^{12}$		$(9.9 \pm 7.6) \times 10^{-12}$
${ }^{147} \mathrm{Tm}$	${ }^{143}$ Ho	11/2 ${ }^{-}$	[11/2-]	0	0.031	0.026	[3.650 $\pm 0.050]$	$(2.239 \pm 1.625) \times 10^{10}$		$(5.7 \pm 4.3) \times 10^{-9}$
${ }^{148} \mathrm{Tm}$	${ }^{144}$ Ho	$\left(10^{+}\right)$	(5^{-})	5	0.024	0.018	3.420 ± 0.013	$(1.541 \pm 0.408) \times 10^{14}$		$(5.3 \pm 2.7) \times 10^{-13}$
${ }^{149} \mathrm{Tm}$	${ }^{145}$ Ho	(11/2-)	[11/2-]	0	0.016	0.010	[2.810 $\pm 0.050]$	$(5.336 \pm 4.687) \times 10^{18}$		$<10^{-15}$
${ }^{150} \mathrm{Tm}$	${ }^{146}$ Ho	$\left(1^{+}\right)$	$\left(6^{-}\right)$	5	0.009	0.002	[2.320 $\pm 0.050]$	$(5.770 \pm 5.484) \times 10^{27}$		$<10^{-15}$
${ }^{151} \mathrm{Tm}$	${ }^{147}$ Ho	(11/2-)	(11/2 ${ }^{-}$)	0	0.002	-0.005	2.559 ± 0.020	$(5.374 \pm 3.012) \times 10^{21}$		$<10^{-15}$
${ }^{148} \mathrm{Yb}$	${ }^{144} \mathrm{Er}$	0^{+}	0^{+}	0	0.042	0.037	[3.850 $\pm 0.050]$	$(2.228 \pm 1.550) \times 10^{9}$		$(2.2 \pm 1.5) \times 10^{-8}$
${ }^{149} \mathrm{Yb}$	${ }^{145} \mathrm{Er}$	$\left(1 / 2^{+}\right)$	$\left[1 / 2^{+}\right]$	0	0.034	0.029	[3.620 $\pm 0.050]$	$(2.258 \pm 1.667) \times 10^{11}$		$(8.3 \pm 7.0) \times 10^{-10}$
${ }^{150} \mathrm{Yb}$	${ }^{146} \mathrm{Er}$	0^{+}	0^{+}	0	0.026	0.020	[3.260 $\pm 0.050]$	$(3.403 \pm 2.737) \times 10^{14}$		$(5.8 \pm 4.7) \times 10^{-13}$
${ }^{151} \mathrm{Yb}$	${ }^{147} \mathrm{Er}$	$\left(1 / 2^{+}\right)$	$\left(1 / 2^{+}\right)$	0	0.019	0.013	[2.640 $\pm 0.050]$	$(6.252 \pm 5.692) \times 10^{21}$		$<10^{-15}$
${ }^{152} \mathrm{Yb}$	${ }^{148} \mathrm{Er}$	0^{+}	0^{+}	0	0.012	0.006	[2.780 $\pm 0.050]$	$(1.051 \pm 0.934) \times 10^{20}$		$<10^{-15}$
${ }^{153} \mathrm{Yb}$	${ }^{149} \mathrm{Er}$	[7/2-]	$\left(1 / 2^{+}\right)$	3	0.001	-0.002	[4.110 $\pm 0.050]$	$(4.591 \pm 2.997) \times 10^{8}$		$(1.6 \pm 1.1) \times 10^{-6}$
${ }^{150} \mathrm{Lu}$	${ }^{146} \mathrm{Tm}$	$\left(5^{-}\right)$	$\left(1^{+}\right)$	5	0.044	0.039	[3.990 $\pm 0.050]$	$(9.869 \pm 6.718) \times 10^{10}$		$(8.9 \pm 6.4) \times 10^{-11}$
${ }^{151} \mathrm{Lu}$	${ }^{147} \mathrm{Tm}$	$\left(11 / 2^{-}\right)$	11/2 ${ }^{-}$	0	0.036	0.031	[3.440 $\pm 0.050]$	$(3.426 \pm 2.661) \times 10^{13}$		$(5.8 \pm 4.6) \times 10^{-13}$
${ }^{152} \mathrm{Lu}$	${ }^{148} \mathrm{Tm}$	$\left(4^{-}\right)$	$\left(10^{+}\right)$	7	0.029	0.024	[2.920 $\pm 0.050]$	$(2.020 \pm 1.761) \times 10^{22}$		$<10^{-15}$
${ }^{154} \mathrm{Lu}$	${ }^{150} \mathrm{Tm}$	$\left(2^{-}\right)$	$\left(1^{+}\right)$	1	0.011	0.009	[4.350 $\pm 0.050]$	$(1.851 \pm 1.146) \times 10^{7}$		$(8.8 \pm 5.4) \times 10^{-6}$
${ }^{155} \mathrm{Lu}$	${ }^{151} \mathrm{Tm}$	$\left(11 / 2^{-}\right)$	$\left(11 / 2^{-}\right)$	0	0.002	0.002	5.803 ± 0.003	$(2.460 \pm 0.701) \times 10^{-2}$	$(7.630 \pm 0.347) \times 10^{-2}$	
${ }^{153} \mathrm{Hf}$	${ }^{149} \mathrm{Yb}$	$\left[1 / 2^{+}\right]$	$\left(1 / 2^{+}\right)$	0	0.039	0.034	[3.470 $\pm 0.050]$	$(9.484 \pm 7.371) \times 10^{13}$		$(1.1 \pm 0.8) \times 10^{-12}$
${ }^{154} \mathrm{Hf}$	${ }^{150} \mathrm{Yb}$	0^{+}	0^{+}	0	0.031	0.026	[3.540 $\pm 0.050]$	$(2.819 \pm 2.155) \times 10^{13}$		$(2.4 \pm 2.2) \times 10^{-11}$
${ }^{155} \mathrm{Hf}$	${ }^{151} \mathrm{Yb}$	[7/2 ${ }^{-}$]	$\left(1 / 2^{+}\right)$	3	0.021	0.019	[4.950 ± 0.050]	$(8.707 \pm 4.701) \times 10^{3}$		$(1.4 \pm 0.8) \times 10^{-2}$
${ }^{156} \mathrm{Hf}$	${ }^{152} \mathrm{Yb}$	0^{+}	0^{+}	0	0.012	0.012	6.029 ± 0.004	$(9.637 \pm 0.325) \times 10^{-2}$	$(2.377 \pm 0.177) \times 10^{-2}$	
${ }^{157} \mathrm{Hf}$	${ }^{153} \mathrm{Yb}$	$\left(7 / 2^{-}\right)$	[7/2 ${ }^{-}$]	0	0.002	0.001	5.880 ± 0.003	$(1.829 \pm 0.051) \times 10^{-1}$	$(1.226 \pm 0.063) \times 10^{-1}$	
${ }^{155} \mathrm{Ta}$	${ }^{151} \mathrm{Lu}$	(11/2-)	(11/2-)	0	0.041	0.036	[3.760 $\pm 0.050]$	$(1.937 \pm 1.420) \times 10^{12}$		$(4.6 \pm 4.1) \times 10^{-13}$
${ }^{156} \mathrm{Ta}$	${ }^{152} \mathrm{Lu}$	$\left(2^{-}\right)$	(4-)	2	0.030	0.029	[5.140 $\pm 0.050]$	$(6.284 \pm 3.274) \times 10^{3}$		$(2.4 \pm 1.3) \times 10^{-3}$
${ }^{157} \mathrm{Ta}$	${ }^{153} \mathrm{Lu}$	$1 / 2^{+}$	11/2-	5	0.022	0.022	6.355 ± 0.006	$(5.120 \pm 3.001) \times 10^{-2}$	$(1.046 \pm 0.041) \times 10^{-2}[49]$	
${ }^{158} \mathrm{Ta}$	${ }^{154} \mathrm{Lu}$	(2-)	$\left(2^{-}\right)$	0	0.012	0.011	6.124 ± 0.004	$(6.404 \pm 0.244) \times 10^{-2}$	$(5.148 \pm 1.048) \times 10^{-2}$	
${ }^{159} \mathrm{Ta}$	${ }^{155} \mathrm{Lu}$	$1 / 2^{+}$	$\left(11 / 2^{-}\right)$	5	0.004	0.002	5.681 ± 0.006	220.300 ± 13.302	3.166 ± 0.730	

Table 2. - continued from previous page

parent	daughter	$J_{\mathrm{P}}^{\pi}[45]$	$J_{\mathrm{D}}^{\pi}[45]$	$\ell_{\text {min }}$	$\Delta_{\mathrm{p}}(\mathrm{P}) / \mathrm{fm}$	$\Delta_{\mathrm{p}}(\mathrm{D}) / \mathrm{fm}$	$Q_{\alpha} / \mathrm{MeV}$ [44]	$T_{\alpha}^{\mathrm{cal}} / \mathrm{s}$	$T_{\alpha}^{\exp } / \mathrm{s}[45]$	$B_{\text {cal }}(\%)$
${ }^{157} \mathrm{~W}$	${ }^{153} \mathrm{Hf}$	(7/2-)	$\left[1 / 2^{+}\right.$]	3	0.040	0.039	[5.410 ± 0.050]	$(5.818 \pm 2.879) \times 10^{2}$		$(6.7 \pm 4.0) \times 10^{-2}$
${ }^{158}$ W	${ }^{154} \mathrm{Hf}$	0^{+}	0^{+}	0	0.031	0.031	6.613 ± 0.003	$(2.540 \pm 0.062) \times 10^{-3}$	$(1.250 \pm 0.210) \times 10^{-3}$	
${ }^{159} \mathrm{~W}$	${ }^{155} \mathrm{Hf}$	[7/2 ${ }^{-}$]	[7/2 ${ }^{-}$]	0	0.023	0.021	6.450 ± 0.004	$(0.979 \pm 0.032) \times 10^{-2}$	$(1.057 \pm 0.292) \times 10^{-2}$	
${ }^{160} \mathrm{~W}$	${ }^{156} \mathrm{Hf}$	0^{+}	0^{+}	0	0.013	0.012	6.066 ± 0.005	$(2.105 \pm 0.087) \times 10^{-1}$	$(1.049 \pm 0.154) \times 10^{-1}$	
${ }^{161} \mathrm{~W}$	${ }^{157} \mathrm{Hr}$	[7/2 ${ }^{-}$]	$\left(7 / 2^{-}\right)$	0	0.005	0.002	5.923 ± 0.004	$(8.176 \pm 0.278) \times 10^{-1}$	$(5.621 \pm 0.450) \times 10^{-1}$	
${ }^{159} \mathrm{Re}$	${ }^{155} \mathrm{Ta}$	$\left[1 / 2^{+}\right]$	(11/2 ${ }^{-}$)	5	0.040	0.041	6.760 ± 0.060	$(1.727 \pm 0.700) \times 10^{-1}$		$(2.8 \pm 1.1) \times 10^{-2}$
${ }^{160} \mathrm{Re}$	${ }^{156} \mathrm{Ta}$	(4-)	$\left(2^{-}\right)$	2	0.031	0.030	6.698 ± 0.004	$(14.300 \pm 0.461) \times 10^{-3}$	$(5.607 \pm 0.573) \times 10^{-3}$	
${ }^{161} \mathrm{Re}$	${ }^{157} \mathrm{Ta}$	$1 / 2^{+}$	$1 / 2^{+}$	0	0.023	0.022	6.328 ± 0.007	$(6.510 \pm 0.373) \times 10^{-2}$	¿ $(3.143 \pm 0.007) \times 10^{-2}$	
${ }^{162} \mathrm{Re}$	${ }^{158} \mathrm{Ta}$	$\left(2^{-}\right)$	$\left(2^{-}\right)$	0	0.015	0.012	6.240 ± 0.005	0.147 ± 1.007	0.115 ± 0.021	
${ }^{163} \mathrm{Re}$	${ }^{159} \mathrm{Ta}$	$1 / 2^{+}$	$1 / 2^{+}$	0	0.006	0.004	6.012 ± 0.008	0.887 ± 0.064	1.250 ± 0.336	
${ }^{161} \mathrm{Os}$	${ }^{157} \mathrm{~W}$	(7/2 ${ }^{-}$)	(7/2-)	0	0.040	0.040	7.066 ± 0.012	$(5.722 \pm 0.514) \times 10^{-4}$	$(6.400 \pm 0.600) \times 10^{-4}$	
${ }^{162}$ Os	${ }^{158}$ W	0^{+}	0^{+}	0	0.032	0.031	6.767 ± 0.003	$(4.305 \pm 0.104) \times 10^{-3}$	$(2.100 \pm 0.100) \times 10^{-3}$	
${ }^{163} \mathrm{Os}$	${ }^{159} \mathrm{~W}$	$7 / 2^{-}$	[7/2 ${ }^{-}$]	0	0.024	0.023	6.677 ± 0.008	$(9.099 \pm 0.608) \times 10^{-3}$	$(5.500 \pm 0.600) \times 10^{-3}$	
${ }^{164} \mathrm{Os}$	${ }^{160} \mathrm{~W}$	0^{+}	0^{+}	0	0.016	0.013	6.479 ± 0.005	$(3.640 \pm 0.160) \times 10^{-2}$	$(2.143 \pm 0.102) \times 10^{-2}[49]$	
${ }^{165} \mathrm{Os}$	${ }^{161} \mathrm{~W}$	(7/2-)	[7/2 ${ }^{-}$]	0	0.008	0.005	6.335 ± 0.006	$(13.440 \pm 0.661) \times 10^{-2}$	$(7.900 \pm 0.509) \times 10^{-2}$	
${ }^{166} \mathrm{Os}$	${ }^{162} \mathrm{~W}$	0^{+}	0^{+}	0	0.001	-0.003	6.143 ± 0.003	$(5.740 \pm 0.174) \times 10^{-1}$	$(3.071 \pm 0.624) \times 10^{-1}$	
${ }^{164} \mathrm{Ir}$	${ }^{160} \mathrm{Re}$	[2-]	$\left(4^{-}\right)$	2	0.033	0.031	[6.970 $\pm 0.050]$	$(1.222 \pm 0.443) \times 10^{-2}$		9.4 ± 3.4
${ }^{165} \mathrm{Ir}$	${ }^{161} \mathrm{Re}$	$\left[1 / 2^{+}\right]$	$1 / 2^{+}$	0	0.025	0.023	6.820 ± 0.050	$(7.463 \pm 2.783) \times 10^{-3}$		$<(1.6 \pm 0.6) \times 10^{-2}$
${ }^{166} \mathrm{Ir}$	${ }^{162} \mathrm{Re}$	$\left(2^{-}\right)$	$\left(2^{-}\right)$	0	0.017	0.015	6.722 ± 0.006	$(1.654 \pm 0.074) \times 10^{-2}$	$(1.138 \pm 0.273) \times 10^{-2}$	
${ }^{167}$ Ir	${ }^{163} \mathrm{Re}$	$1 / 2^{+}$	$1 / 2^{+}$	0	0.009	0.006	6.505 ± 0.003	$(7.848 \pm 0.175) \times 10^{-2}$	$(6.835 \pm 0.458) \times 10^{-2}$	
${ }^{168} \mathrm{Ir}$	${ }^{164} \mathrm{Re}$	$\left(2^{-}\right)$	$\left(2^{-}\right)$	0	0.002	-0.003	6.381 ± 0.009	0.262 ± 0.019	0.230 ± 0.050	
${ }^{166} \mathrm{Pt}$	${ }^{162} \mathrm{Os}$	0^{+}	0^{+}	0	0.034	0.032	7.286 ± 0.015	$(5.082 \pm 0.558) \times 10^{-4}$	$(3.000 \pm 1.000) \times 10^{-4}$	
${ }^{167} \mathrm{Pt}$	${ }^{163} \mathrm{Os}$	[7/2 ${ }^{-}$]	$7 / 2^{-}$	0	0.026	0.024	7.160 ± 0.050	$(15.350 \pm 5.410) \times 10^{-4}$	$(8.000 \pm 1.600) \times 10^{-4}$	
${ }^{168} \mathrm{Pt}$	${ }^{164} \mathrm{Os}$	0^{+}	0^{+}	0	0.019	0.016	6.990 ± 0.003	$(3.847 \pm 0.090) \times 10^{-3}$	$(2.020 \pm 0.100) \times 10^{-3}$	
${ }^{169} \mathrm{Pt}$	${ }^{165}$ Os	($7 / 2^{-}$)	$\left(7 / 2^{-}\right)$	0	0.011	0.008	6.858 ± 0.005	$(12.390 \pm 0.500) \times 10^{-3}$	$(6.990 \pm 0.090) \times 10^{-3}[49]$	
${ }^{170} \mathrm{Pt}$	${ }^{166}$ Os	0^{+}	0^{+}	0	0.004	0.001	6.707 ± 0.003	$(3.246 \pm 0.084) \times 10^{-2}$	$(1.408 \pm 0.051) \times 10^{-2}[49]$	
${ }^{169} \mathrm{Au}$	${ }^{165} \mathrm{Ir}$	$\left[1 / 2^{+}\right]$	[1/2+]	0	0.027	0.025	[7.380 $\pm 0.050]$	$(6.932 \pm 2.368) \times 10^{-4}$		24.5 ± 8.3
${ }^{170} \mathrm{Au}$	${ }^{166} \mathrm{Ir}$	$\left(2^{-}\right)$	$\left(2^{-}\right)$	0	0.020	0.017	7.177 ± 0.015	$(0.338 \pm 0.038) \times 10^{-2}$	$(1.757 \pm 1.643) \times 10^{-2}$	
${ }^{171} \mathrm{Au}$	${ }^{167} \mathrm{Ir}$	$\left(1 / 2^{+}\right)$	$1 / 2^{+}$	0	0.013	0.009	7.085 ± 0.011	$(5.330 \pm 9.432) \times 10^{-3}$		0.4 ± 0.1
${ }^{172} \mathrm{Au}$	${ }^{168} \mathrm{Ir}$	$\left(2^{-}\right)$	$\left(2^{-}\right)$	0	0.006	0.002	6.923 ± 0.010	$(2.311 \pm 0.186) \times 10^{-2}$	$(2.300 \pm 0.500) \times 10^{-2}[49]$	
${ }^{171} \mathrm{Hg}$	${ }^{167} \mathrm{Pt}$	[3/2 ${ }^{-}$]	[7/2-]	2	0.029	0.026	7.668 ± 0.015	$(11.350 \pm 1.180) \times 10^{-4}$	$(7.000 \pm 3.000) \times 10^{-5}$	
${ }^{172} \mathrm{Hg}$	${ }^{168} \mathrm{Pt}$	0^{+}	0^{+}	0	0.022	0.019	7.524 ± 0.006	$(4.938 \pm 0.214) \times 10^{-4}$	$(2.310 \pm 0.090) \times 10^{-4}$	
${ }^{173} \mathrm{Hg}$	${ }^{169} \mathrm{Pt}$	$\left[3 / 2^{-}\right.$]	(7/2 ${ }^{-}$)	2	0.015	0.011	7.378 ± 0.004	$(86.550 \pm 2.791) \times 10^{-4}$	$(8.000 \pm 0.800) \times 10^{-4}$	
${ }^{174} \mathrm{Hg}$	${ }^{170} \mathrm{Pt}$	0^{+}	0^{+}	0	0.008	0.004	7.233 ± 0.006	$(3.929 \pm 0.176) \times 10^{-3}$	$(2.000 \pm 0.400) \times 10^{-3}$	
${ }^{175} \mathrm{Hg}$	${ }^{171} \mathrm{Pt}$	(7/2 ${ }^{-}$)	$7 / 2^{-}$	0	0.001	-0.002	7.072 ± 0.005	$(1.758 \pm 0.063) \times 10^{-2}$	$(1.060 \pm 0.040) \times 10^{-2}[49]$	
${ }^{176} \mathrm{Tl}$	${ }^{172} \mathrm{Au}$	$\left(3^{-}\right)$	$\left(2^{-}\right)$	2	0.010	0.006	7.470 ± 0.090	$(1.972 \pm 1.158) \times 10^{-2}$		56.2 ± 43.8
${ }^{177} \mathrm{Tl}$	${ }^{173} \mathrm{Au}$	$\left(1 / 2^{+}\right)$	$\left(1 / 2^{+}\right)$	0	0.003	-0.001	7.067 ± 0.007	$(4.898 \pm 0.275) \times 10^{-2}$	$(2.672 \pm 1.161) \times 10^{-2}$	
${ }^{178} \mathrm{~Pb}$	${ }^{174} \mathrm{Hg}$	0^{+}	0^{+}	0	0.011	0.008	7.790 ± 0.014	$(6.080 \pm 0.591) \times 10^{-4}$	$(2.300 \pm 1.500) \times 10^{-4}$	
${ }^{179} \mathrm{~Pb}$	${ }^{175} \mathrm{Hg}$	$\left(9 / 2^{-}\right)$	$\left(7 / 2^{-}\right)$	2	0.005	0.001	7.598 ± 0.020	$(14.260 \pm 2.010) \times 10^{-3}$	$(3.900 \pm 1.100) \times 10^{-3}$	

calculations based on the Skyrme-SLy4 interaction rather than the M3Y interaction. For the ${ }^{115} \mathrm{Xe}$ isotope, however, the difference between $T_{\alpha}^{\text {cal }}$ and $T_{\alpha}^{\text {exp }}$ is four orders of magnitude. To check this result, we calculated the half-life based on the Skyrme-SLy4 and got a similar difference, $T_{\alpha}^{\text {cal }}($ Skyrme-SLy 4$)=0.645 \pm 0.271 \times 10^{10}$ s. This difference could be due to uncertainty in the observed half-life and the corresponding low intensity, as these measurements are relatively old [45].

The main observed decay modes for the 129 neutrondeficient nuclei investigated that have no detected α decays are β^{+}(106 nuclei (82.2\%)) and proton (23 nuclei (17.8\%)) decays [45]. Proton-decay was confirmed as the main decay mode of the odd $Z{ }^{113} \mathrm{Cs},{ }^{121} \mathrm{Pr},{ }^{130,131} \mathrm{Eu}$, ${ }^{135} \mathrm{~Tb},{ }^{141} \mathrm{Ho},{ }^{145,146} \mathrm{Tm},{ }^{155.156} \mathrm{Ta},{ }^{171} \mathrm{Au}$ and ${ }^{176} \mathrm{Tl}$ nuclei, with $B(\mathrm{p}) \sim 100 \%$. These nuclei show relative larger calculated Δ_{p} and have relative smaller isospin asymmetry than their isotopes. As seen in Table 2, among the investigated α-decays of these 129 nuclei, the five groundstate to ground-state decays of ${ }^{107} \mathrm{I},{ }^{113} \mathrm{Ba},{ }^{164} \mathrm{Ir},{ }^{169} \mathrm{Au}$ and ${ }^{176} \mathrm{Tl}$ yield estimated percentage branching greater than 1%. Sixteen decay modes yield branching ratio 10^{-5} $\%<B_{\text {cal }}<1 \%$. Most of the investigated decays, 8 decays (62%), exhibit smaller intensity in the range of 10^{-15} $\%<B_{\text {cal }}<10^{-5} \%$. The smallest indicated percentage branching of an observed decay is of the order of 10^{-15} \% [45]. The remaining 28 decays yield extremely small branching ratios of less than $10^{-15} \%$.

4 Summary and conclusions

First, we discussed the behaviour of the different
contributions of the interaction potential between the emitted α-particle and the daughter nucleus with the change of the proton-skin thickness Δ_{p} of the neutrondeficient daughter nucleus. We then investigated the influence of this behavior on the α-decay process. Finally, we explored the ground-state to ground-state α decay of the neutron-deficient nuclei with $A=105-179$ ($Z=52-82, N=53-97$) as main, competing, or minor decay mode. Our results indicate that increasing the proton-skin thickness of the daughter nucleus increases the width of the internal pocket of the interaction potential and shifts down its lowest point. This decreases the assault frequency. More importantly, the increasing of Δ_{p} produces a lower Coulomb barrier with a relatively thinner barrier width. The radius of the Coulomb barrier slightly increases. Consequently, the penetration probability increases with increasing Δ_{p}. The enhancement in the penetration probability due to increasing Δ_{p} is more prominent in the decay process than the relative decrease in the assault frequency. The net effect of these two contradicting factors is to enhance the decay width, leading to a shorter half-life. It is then essential to employ the precise Δ_{p} to predict the correct estimation of the half-life. Along the same isotopic chain, while the Q_{α}-values increase linearly with increasing proton-skin thickness of the parent nuclei, their half-lives decrease exponentially with Δ_{p}. Therefore, the stability of the nucleus decreases with increasing proton-skin thickness. Between the β^{+}and proton decays, the α-decay comes as the second preferred decay mode for neutron-deficient nuclei. It is experimentally observed and theoretically indicated for 85% of the investigated nuclei.

References

1 Sarrigure, M. K. Gaidaro, E. Moya de Guerr, and A. N. Antonov, Phys. Rev. C, 76: 044322 (2007)
2 M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C, 81: 054309 (2010)
3 N. Fukunishi, T. Otsuka, and I. Tanihata, Phys. Rev. C, 48: 1648 (1993)
4 W. M. Seif, Nucl. Phys. A, 878: 14 (2012)
5 B. Alex Brown, Phys. Rev. Lett., 85: 5296 (2000)
6 X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Phys. Rev. Lett., 106: 252501 (2011)
7 C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett., 86: 5647 (2001)

8 E. Rutherford and H. Geiger, Proc. R. Soc. London, Ser. A., 81: 162 (1908)
9 G. Gamow, Z. Phys., 51: 204 (1928)
10 B. Blank et al, Phys. Rev. C, 93: 061301(R) (2016)
11 B. Sumikam et al, Phy. Rev. C, 95: 051601(R) (2017)
12 H. Badran et al, Phys. Rev. C, 94: 054301 (2016)
13 W. M. Seif, M. Shalaby, and M. F. Alrakshy, Phys. Rev. C, 84: 064608 (2011)
14 W. M. Seif, Phys. Rev. C, 74: 034302 (2006)
15 Chang Xu, Zhongzhou Ren, and Yanqing Guo, Phys. Rev. C, 78: 044329 (2008)

16 W. M. Seif, M. Ismail, A. I. Refaie, and Laila H. Amer, J. Phys. G: Nucl. Part. Phys., 43: 075101 (2016)
17 M. Ismail, W. M. Seif, A. Adel, and A. Abdurrahman, Nucl. Phys. A, 958: 202 (2017)
18 W. M. Seif, Phys. Rev. C, 91: 014322 (2015); J. Phys. G: Nucl. Part. Phys., 40: 105102 (2013)
19 Dongdong Ni and Zhongzhou Ren, J. Phys. G: Nucl. Part. Phys., 37: 035104 (2010)
20 W. M. Seif, M. M. Botros, and A. I. Refaie, Phys. Rev. C, 92: 044302 (2015)
21 W. M. Seif, M. Ismail, and E. T. Zeini, J. Phys. G: Nucl. Part. Phys., 44: 055102 (2017)
22 S. Peltonen, D. S. Delion, and J. Suhonen, Phys. Rev. C, 75: 054301 (2007)
23 Y. Qian, Z. Ren, and D. Ni, Nucl. Phys. A, 866:1 (2011)
24 M. Ismail, W. M. Seif, and A. Abdurrahman, Phys. Rev. C, 94: 024316 (2016)
25 Chang Xu, Zhongzhou Ren, and Jian Liu, Phys. Rev. C, 90: 064310 (2014)
26 W. M. Seif, N. V. Antonenko, G. G. Adamian, and Hisham Anwer, Phys. Rev. C, 96: 054328 (2017)
27 Dongdong Ni and Zhongzhou Ren, Phys. Rev. C, 93: 054318 (2016)

28 G. R. Satchler, W. G. Love, Phys. Rep., 55: 183 (1979)
29 G. Bertsch, J. Borysowicz, H. McManus and W. G. Love, Nucl.

Phys. A, 284: 399 (1977)
30 D. T. Khoa,W. von Oertzen, and A. A. Ogloblin, Nucl. Phys. A, 602: 98 (1996)
31 A. M. Kobos, B. A. Brown, R. Lindsay and G. R. Satchler, Nucl. Phys. A, 425: 205 (1984)
32 M. Ismail, W. M. Seif, and H. EL Gebaly, Phys. Lett. B, 563: 53 (2003)
33 M. Ismail, W. M. Seif, and M. M. Botros, Nucl. Phys. A, 828: 333 (2009); Int. J. Mod. Phys. E, 25: 1650026 (2016)
34 M. Ismail and W. M. Seif, Phys. Rev. C, 81: 034607 (2010)
35 P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables, 109-110: 1 (2016)
36 P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables, 59185 (1995)
37 W. M. Seif and Hesham Mansour, Int. J. Mod. Phys. E, 24: 1550083 (2015)
38 P.-G. Reinhard, Computational Nuclear Physics, Vol. 1, edited by K. Langanke, J. A. Maruhn, and S. E. Koonin (SpringerVerlag, Berlin, 1990) p. 28.
39 E. Chabanat, E. Bonche, E. Haensel, J. Meyer, and R. Schaef-
fer, Nucl. Phys. A, 35: 231 (1998)
40 B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 45, 2247 (1992)
41 N. G. Kelkar and H. M. Castañeda, Phys. Rev. C, 76: 064605 (2007)

42 B. Buck, J. C. Johnston, A. C. Merchant, and S. M. Perez, Phys. Rev. C, 53: 2841 (1996)
43 K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Academic, New York, 1977)
44 Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu, Chin. Phys. C, 41: 030003 (2017)
45 G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41: 030001 (2017)
46 B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C, 68: 031304(R) (2003)
47 D. Vautherin and D. M. Brink, Phys. Rev. C, 5: 626 (1972)
48 H. R. Jaqaman, A. Z. Mekjian, and I.. Zamick, Phys. Rev. C, 29: 2067 (1984)
49 Jagdish K. Tuli, Nuclear Wallet Cards, $8^{\text {th }}$ ed. (2011), http://www.nndc.bnl.gov http://www.nndc.bnl.gov

[^0]: Received 12 September 2017, Published online 20 December 2017

 1) E-mail: wseif@sci.cu.edu.eg
 © 2018 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd
