
Chinese Physics C Vol. 42, No. 11 (2018) 114101

Particle number conserving BCS approach in the relativistic mean field

model and its application to 32−74Ca *
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Abstract: A fixed particle number BCS (FBCS) approach is formulated in the relativistic mean field (RMF) model.

It is shown that the RMF+FBCS model obtained can describe the weak pairing limit. We calculate the ground-state

properties of the calcium isotopes 32−74Ca and compare the results with those obtained from the usual RMF+BCS

model. Although the results are quite similar to each other, we observe the interesting phenomenon that for 54Ca,

the FBCS approach can enhance the occupation probability of the 2p1/2 single particle level and slightly increases

its radius, compared with the RMF+BCS model. This leads to the unusual scenario that although 54Ca is more

bound with a spherical configuration, the corresponding size is not the most compact. We anticipate that such a

phenomenon might happen for other neutron-rich nuclei and should be checked by further more systematic studies.
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1 Introduction

In recent years, studies of exotic nuclei with large
isospin ratios have been at the forefront of nuclear
physics both theoretically and experimentally (see, e.g.,
Refs. [1, 2] and references therein). This brings great
challenges to existing nuclear structure models for the
reliable understanding, interpretation and prediction of
new experimental phenomena. Two of the crucial the-
oretical issues (at least in mean-field models) are: (i) a
proper description of the continuum; and (ii) a reliable
treatment of the residual pairing correlation. Both sub-
jects have been extensively studied [3–14]. The pairing
correlation has long been known to be essential to de-
scribe many experimental observables, such as moments
of inertia, level densities, and energies of the lowest-lying
excited states [15, 16]. It plays an more important role
for some weakly bound nuclei, where it is essential for
their existence in mean-field models.

Conventionally, the pairing correlation can be treated
either by the Bardeen-Cooper-Schrieffer (BCS) [17–19]
method or by the Bogoliubov transformation [20]. In

earlier days, it was realized that these methods, origi-
nally developed for macroscopic systems, result in spu-
rious sharp phase transitions from normal states to su-
perfluid states [19], which have never been observed in
experiments. The sharp phase transitions are due to the
breaking of particle number conservation in finite nu-
clei and the fact that only the expectation value of the
particle number operator is fixed. In a macroscopic sys-
tem, this can be safely ignored since the particle num-
ber is large enough. However, in a microscopic system,
such as an atomic nucleus, it can lead to spurious effects
which should be carefully studied. These early findings
have led to a lot of efforts in developing alternative ap-
proaches which improve the treatment of the pairing cor-
relation. The generally accepted approach to restore the
broken gauge symmetry of particle number is the pro-
jection technique, see e.g., Refs. [21–26]. The differences
among the various treatments have been studied in much
detail. It is found that most treatments are quite similar
to each other in the strong pairing limit, while only the
variation after projection methods can properly describe
the weak pairing limit.
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A pairing method which conserves the gauge sym-
metry of particle number is particularly desirable for
weakly bound nuclei because (i) the pairing correlation
plays an important role in binding the whole nucleus
and (ii) only a few single particle levels around the
Fermi surface are important for the pairing correlation
[10]1). Therefore, it will be very interesting to formu-
late such a method within a reliable mean-field model
and study its impact on relevant physical quantities. In
the present work, we formulate the fixed particle number
BCS (FBCS) method [21] in the relativistic mean field
model, one of the two most successful mean field models
[27]. To our knowledge, so far, only the Lipkin-Nogami
BCS method [28, 29], the exact approach [30], and the
shell-model-like approach (SLAP) [31–33] have been ex-
plored in the relativistic mean field model.

This paper is organized as follows. In Section 2, we
briefly review the relativistic mean field (RMF) model.
In Section 3, we introduce the FBCS method and its im-
plementation in the relativistic mean field model. In Sec-
tion 4, we explain how the residuum integrals are solved
numerically. In Section 5, we study the general features
of the RMF+FBCS model by comparing its results with
those of the RMF+BCS model. In Section 6, we check
how well the ground-state properties of the calcium iso-
topes can be described by these two different approaches.
Finally, we summarize and point out possible future ex-
tensions in Section 7.

2 The relativistic mean field model

The basic assumptions made in the relativistic mean
field model are that the nucleons are point-like Dirac
fermions and their interactions are mediated via meson
exchanges. One can then write down the relativistic La-
grangian densities for both nucleons and mesons as well
as photons. Adopting the so-called mean-field and no-
sea approximations, one then solves the coupled equa-
tions self-consistently. For a more detailed explanation
of the RMF model and the recent developments, see, e.g.,
Refs. [34–40].

The Lagrangian density used in this study has the
following form:

L = ψ̄[iγµ∂µ−M−gσσ−γ
µ(gωωµ+gρ~τ ·~ρµ
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where all symbols have their usual meanings. The corre-
sponding Dirac equation for the nucleons and the Klein-
Gordon equations for the mesons and photon, obtained
with the mean-field and the no-sea approximation, are
solved by the expansion method with the harmonic os-
cillator basis [11, 41, 42]. In the present work, 12 shells
are used to expand the Fermi fields and 20 shells for the
meson fields. The mean-field effective force used is NL3
[43], and we found that using other effective forces such
as TM1 [44] and PK1 [45] do not essentially change any
of our conclusions.

3 The FBCS method

The FBCS method has been known for a long
time [21], but to our knowledge, it has not been applied
in the relativistic mean field model in a self-consistent
manner. Here we briefly describe some essential ingre-
dients of this approach. A detailed derivation can be
found in Ref. [21]. In order to simplify the final FBCS
equations and also to simplify the derivation, we adopt
the notion of the “residuum integrals” introduced by Di-
etrich, Mang and Pradal [21]. Introducing a complex
variable z=eiψ, the number projection operator can be
written as an integral in the complex plane:

P̂N=
1

2πi

∮
zN̂

zN+1
dz. (2)

Here we note the property
∮

dz
zn

=2πiδn1 with the contour
being taken around the origin. When applied to the BCS
wave function of the following form

|Ψ〉=|BCS〉=
∏

k>0

(uk+vkĉ
†
k ĉ

†

k̄
)|0〉, (3)

one obtains the projected wave function

|ΨN〉=
1
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k>0

(uk+vkξĉ
†

kĉ
†

k̄
)|0〉, (4)

where we have introduced ξ=z2 and used the fact that
the pair operator ĉ†kĉ

†

k̄
raises the particle number by 2,

and p=N/2 is the number of nucleon pairs. Also, we have
used the property

∮
dξ

ξ
=2πi. The integrand in the above

equation is a Laurent series in ξ. The integration just
picks the terms with ξ−1, which is the component with p
pairs. Using the fermion anti-commutation relations for
the operators ĉk and ĉ†k, arbitrary matrix elements can
be expressed by the residuals:

Rmν (k1,··· ,km)=
1

2πi

∮
dz

z(p−ν)+1

∏

k 6=k1,···,km>0

(u2
k+zv

2
k),

(5)

1) For a relevant discussion on the difference between the BCS and Bogoliubov approaches in the non-relativistic framework, see,
e.g., Ref. [3].

114101-2



Chinese Physics C Vol. 42, No. 11 (2018) 114101

where the product under the integral is over the whole
pairing space, the m states listed in the argument of
R(···) are to be excluded from the product, and p−ν is
the effective number of nucleon pairs, with ν an integer.
Suppose that the Hamiltonian of the system has the fol-
lowing form [15, 16] (a single particle part plus a pure
pairing part):

Ĥ =
∑

j>0

εj(ĉ
†
j ĉj+ĉ

†

j̄
ĉj̄)

+
∑

j1,j2>0
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†
j1
ĉ†
j̄1
ĉj̄2 ĉj2 . (6)

The total energy of the system, which is the expectation
value of the Hamiltonian, can be expressed as

EN
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In the second step, we have used the relation R2
ν(k,k)=

R1
1(k) [15]. From now on, we adopt a different notation

for the pairing matrix element, Gj1j2=−v̄j1,j̄1,j2,j̄2 . Then
the energy of the system can be expressed as
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where ∆j is defined below and we have introduced a new
quantity Ej = εj−

1
2
Gijv

2
j . In the BCS treatment, the

second term − 1
2
Gijv

2
j is usually neglected with the ar-

gument that it corresponds only to a renormalization of
the single particle energies. In that case Ej is simply εj.
This approximation is also adopted in our present work.
A variation of the projected energy with respect to uj
and vj ,
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leads to the FBCS equation
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The quantity Λj has no counterpart in the conventional
BCS equation, where a constant chemical potential is
chosen to make the expectation value of the number op-
erator equal to the required particle number. In the
derivation of the above equation, the quantity Λj arises
from the differentiation of the residuum integrals with
respect to vj and uj. In the usual BCS theory, v2j is the
probability of the pair of states (j,j̄) being occupied, and
u2
j is the probability of this pair of states being unoccu-

pied. In the FBCS theory, the corresponding quantities
ǫ2j and f

2
j are:

ǫ2j=〈ΨN |(ĉj ĉj̄)
†(ĉj ĉj̄)|ΨN 〉=v

2
jR

1
1(j)/R

0
0, (12)

f 2
j =1−ǫ2j=u

2
jR

1
0(j)/R

0
0. (13)

To derive the above relations, we have used the recursion
relations and derivatives of the “residuum integrals” [21].
Of course, the sum of the occupation probabilities is
equal to N/2, i.e., the number of pairs of particles:

∑

j>0

ǫ2j=N/2=p. (14)

The solutions of the FBCS equation can be formally ex-
pressed as:

u2
j =

1

2
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j

),

v2j =
1

2
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(ε̃j+Λj)2+∆2

j

), (15)

which have the same form as the solutions of the conven-
tional BCS equation, but with ε̃j instead of εj.

The total energy in the RMF+BCS model can be
expressed simply as

E=ERMF+E
p
pair+E

n
pair, (16)

with the pairing energy

Epair=−
∑

k>0

∆kukvk. (17)

In the usual RMF+BCS model, the densities are deter-
mined by the occupation probabilities v2i multiplied by
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|ψj|
2, the modulus of the occupied single particle wave

functions. In the RMF+FBCS model, we merely replace
the occupation probabilities v2i by f 2

i =v
2
iR

1
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0
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f 2
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4 Evaluation of the residuum integrals

To solve the FBCS equation, one needs to calculate
the residuum integrals, i.e. R0

0, R
1
0, R

1
1, R

2
1, R

2
2, R

3
1 and

R3
2. One can simplify the calculations by reducing the

number of residuum integrals with several recursion re-
lations. The first one is given by Dietrich et al. [21],
i.e.,

Rmν (k1,··· ,km) = Rm+1
ν+1 (k1,··· ,km,k)v

2
k

+Rm+1
ν (k1,··· ,km,k)u

2
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With this relation, one third of the total number of in-
dependent residuum integrals can be reduced. Another
more powerful relation, first deduced by Ma et al. [46],
is
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The remaining residuum integrals,
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can be calculated straightforwardly by replacing z with
r(cosθ+isinθ), namely,

Rmν (k1,··· ,km) =
1

2πi

∮
r(−sinθ+icosθ)dθ

[r(cosθ+isinθ)](p−ν)+1

×
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(22)

5 General features of the RMF+FBCS

model

In this section, we study the general features of the
RMF+FBCS model and compare them with those of the
conventional RMF+BCS model. For such a purpose, we
take the calcium isotopes 32−74Ca as examples. We adopt
the commonly used density-independent contact delta in-
teraction V =−V0δ(~r1−~r2) for the particle-particle chan-
nel in both methods. The only free parameter in the
pairing channel is the pairing strength V0, which can be

fixed by fitting the pairing gap (∆) to the experimen-
tal odd-even mass difference. The single particle levels
active for the pairing correlation are confined to those
within a 10 MeV window around the Fermi surface.

The FBCS method is expected to be able to provide
a smooth phase transition from normal states to super-
fluid states as a function of the pairing strength. This is
very important because it can show whether the FBCS
method can properly describe the weak pairing limit. In
Fig. 1, the neutron pairing energy of 36Ca is plotted as
a function of the pairing strength V0. Clearly, the FBCS
method does lead to non-trivial solutions no matter how
weak the pairing strength, while an abrupt transition
between superfluid and normal states arises in the BCS
method. The BCS equation completely fails to give a
non-trivial solution below the critical pairing strength of
about 250 MeV fm−3. Beyond the critical value, the pair-
ing energy in the RMF+BCSmodel increases rapidly and
approaches that in the RMF+FBCS model in the region
of the strong pairing limit (V0 =300∼ 500 MeV fm−3).
When the pairing strength exceeds 350 MeV fm−3, the
BCS pairing energy even becomes slightly larger than
that in the FBCS model, due to the self-consistent na-
ture of the calculations.

Fig. 1. (color online) Neutron pairing energy of
36Ca as a function of the pairing strength.

Now we proceed to study the whole calcium isotopic
chain from 32Ca to 74Ca. Two issues of particular in-
terest are the magnitude of the pairing correlation and
how it evolves as a function of the neutron (mass) num-
ber. One can define many different quantities for such
a purpose [15]. Here we use the pairing energy defined
in Eq. (17). In Fig. 2, we compare the neutron pairing
energy of the calcium isotopes 32−74Ca obtained from the
RMF+FBCS and RMF+BCS calculations with pairing
strengths V0 =300 MeV fm−3 and V0 =400 MeV fm−3,
respectively. It is clear that the neutron pairing ener-
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gies obtained with different pairing strengths show al-
most the same pattern. Particularly interesting is that
atN=14, 20, 28, 32 and 40, the neutron pairing energy is
smaller than that of their neighbors in the RMF+FBCS
model. The same scenario occurs in the RMF+BCS

Fig. 2. Neutron pairing energies of the calcium
isotopes as a function of neutron number with
pairing strengths V0=300 MeV fm−3 and V0=400
MeV fm−3, respectively. The results from the
RMF+FBCS model (empty columns) are com-
pared with those from the RMF+BCS model
(shaded columns).

Fig. 3. Proton pairing energies of the calcium iso-
topes as a function of neutron number with pair-
ing strengths V0=300 MeV fm−3 and V0=400
MeV fm−3, respectively. The results from the
RMF+FBCS model (empty columns) are com-
pared with those from the RMF+BCS model
(shaded columns).

model except for N=32 with V0=300 MeV fm−3, where
the pairing energy vanishes. This shows that not only the
conventional magic numbers N=20, 28, but also N=14,
40, and to a lesser extent N = 32, show some kind of
“magicity”, which seems to agree with Refs [47–50].

In Fig. 3, we show the proton pairing energies of the
calcium isotopes as a function of the neutron number. It
can be seen that the RMF+FBCS pairing energies are
still not zero, even for the proton magic number Z=20,
which is different from those in the RMF+BCS calcu-
lations. Furthermore, the proton pairing energies vary
slowly as a function of the neutron number, but the mag-
nitude of this variation is small.

6 Ground-state properties of calcium

isotopes

In this section, we study how the bulk ground-state
properties of the calcium isotopes can be described in
the RMF+FBCS and RMF+BCS models. The pairing
strength is fixed at V0=350 MeV fm−3 in the RMF+BCS
model, and that in the RMF+FBCS model is fixed at
V0=274 MeV fm−3 by fitting to the odd-even mass dif-
ferences of the whole calcium isotopic chain, defined as
the following [15, 16]:

∆(3)(N,Z)=B(N−1,Z)−2B(N,Z)+1/2B(N+1,Z).

(23)

In Fig. 4, the odd-even mass differences of the calcium
isotopes calculated by the RMF+FBCS and RMF+BCS
models are compared with the experimental data [51].
Both approaches reproduce the experimental data quite
well, except for 40,48Ca in the FBCS method. This can
easily be understood because in the determination of the
RMF parameters, doubly magic nuclei are supposed to
have no pairing. More discussion can be found below.

Firstly, we examine the two-neutron separation en-
ergy, defined as the following:

S2N (Z,N)=B(Z,N)−B(Z,N−2), (24)

where B(Z,N) is the binding energy of a nucleus with
proton number Z and neutron number N . In the up-
per panel of Fig. 5, the two-neutron separation energies
obtained from both models are compared with their ex-
perimental counterparts [51]. In the lower panel, the
deviations of the theoretical two neutron separation en-
ergies from their experimental counterparts are shown.
Except for N =36 and 38, the results of both methods
agree quite well with the data . It seems that the N=40
magicity effect is overestimated in the RMF model.

A closer look at the two-neutron separation energies
of 48Ca, 50Ca, 52Ca and 54Ca in Fig. 6 reveals that the
experimental sharp drop from 52Ca to 54Ca is better re-
produced in the RMF+FBCS model. The same scenario
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is seen in the inset of Fig. 6, where there is a sharp drop
from 70Ca to 72Ca in the RMF+FBCS model.

Fig. 4. (color online) Odd-even mass differences
of Ca isotopes calculated by RMF+FBCS (full
squares) and RMF+BCS (open squares) ap-
proaches in comparison with experimental data
(open triangles) [51].

Fig. 5. (color online) Theoretical and experimen-
tal [51] two-neutron separation energies S2N of
the calcium isotopes and the difference between
them, defined as δ(S2N)=S2N (th)−S2N(exp).

In Ref. [52], the pairing rotational moment of in-
ertia is suggested to be an excellent pairing indicator,
because odd-mass nuclei could contain the contribution
from time-odd fields and be better avoided. The pair-
ing rotational moment of inertia is proportional to the
inverse of the two-nucleon shell gap indicator ∆2N [53]:

∆2N (Z,N)=2B(Z,N)−B(Z,N+2)−B(Z,N−2). (25)

In Fig. 7, the two-neutron shell gaps of the calcium iso-
topes and the deviations from their experimental coun-
terparts are plotted as a function of the neutron num-
ber. The RMF+BCS model provides a slightly better
description of the experimental data, especially for 40Ca
and 48Ca. This can easily be understood from the defini-
tion of ∆2N . In the BCS method the pairing correlation
is only effective on open-shell nuclei and reduces the two-
neutron shell gaps of magic nuclei (compared with pure
mean field models or the FBCS method).

Fig. 6. (color online) Two-neutron separation en-
ergies of 48Ca, 50Ca, 52Ca, and 54Ca. The insert
shows those of 68Ca, 70Ca, and 72Ca.

Fig. 7. (color online) Two-neutron gaps of the cal-
cium isotopes and the differences between theo-
retical and experimental values [51] as a function
of the neutron number.

From the studies of the two-neutron separation en-
ergies and two-neutron gaps of the calcium isotopes, it
seems that the RMF+BCS calculations are of similar
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quality or even slightly better than the RMF+FBCS cal-
culations. This finding is not surprising. It is closely
related to how we obtained the RMF parameters. The
NL3 RMF parameterization is fitted to the ground-state
properties of 10 magic or even-even nuclei [43]. That is to
say, from the very beginning, we only expect the residual
pairing correlation to make open-shell nuclei more bound
but leave closed-shell nuclei unchanged. The BCS and
Bogoliubov methods are perfect candidates to achieve
this, as we can easily see in Fig. 3, though they break
the gauge symmetry of particle number. In contrast,
the FBCS method makes closed-shell nuclei more bound
than the BCS or Bogoliubov method does and leaves
open-shell nuclei more or less unchanged. Therefore, it is
quite natural that no significant improvement has been
observed. To really appreciate the FBCS method, in
particular to improve the agreement with experimental
data, the mean-field effective force has to be readjusted
to leave room for incorporating these higher-order corre-
lations [54]. Due to the present strategy used to fit the
RMF parameters, at least part of the pairing effect for
magic nuclei has been compensated by artificially large
magic number effects at the order of several MeV.

In addition to the binding energies and related quan-
tities, one can study the root mean square (r.m.s.) radii
as well as the deformations of the calcium isotopes. We
found that they are similar in both the RMF+BCS and
RMF+FBCS models and therefore do not show them
explicitly. On the other hand, we notice that close to
the neutron drip line N ≥ 50, the r.m.s. radii in the
RMF+BCS model are slightly larger than those in the
RMF+FBCS model, at the order of 0.05 fm. However,
because of the harmonic oscillator basis adopted, we do
not expect that either of our methods can properly de-
scribe the r.m.s. radii or the density distributions close
to the neutron drip line. Nevertheless, we notice that
the RMF+BCS and RMF+FBCS models can sometimes
change the occupation probability of certain single parti-
cle levels close to the Fermi surface, and thus modify the
density distributions. When the continuum states are
more properly treated, this may have some impact on
the spatial distributions of drip line nuclei. To illustrate
this point, we investigate 54Ca in detail below.

In the upper panel of Fig. 8, we plot the potential
energy surface of 54Ca as a function of the quadrupole
deformation parameter β20. The curves obtained in the
two models look quite similar, both yielding a minimum
at β20=0, but the RMF+FBCS energy at large deforma-
tions becomes smaller. In the lower panel of Fig. 8, the
neutron r.m.s. radius of 54Ca is also shown as a func-
tion of β20. Surprisingly, we see a bump in the center of

the RMF+FBCS curve, different from the RMF+BCS
case1).

Fig. 8. (color online) Potential energy surface and
root mean square radius of 54Ca as a func-
tion of the deformation parameter β20 obtained
in the RMF+BCS (dashed line) model and the
RMF+FBCS (solid line) model.

Fig. 9. (color online) Occupation probabilities of
the neutron single particle levels of 54Ca ob-
tained in the RMF+BCS model (left) and the
RMF+FBCS model (right).

1) We notice that increasing the pairing strength in the RMF+FBCS model will reduce the bump a little bit but the structure
remains even for a pairing strength of 400 MeV fm−3. In addition, the appearance of such a phenomenon also depends on the adopted
mean-field parameters.
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Since the binding energies at β20 = 0 are similar to
each other, such a difference can only originate from the
different occupation probabilities of the single particle
states close to the Fermi surface. This is indeed the case,
as shown in Fig. 9. We see that the occupation proba-
bility of the neutron 2p1/2 state in the RMF+ FBCS is
much larger than that of the RMF+BCS model. In the
latter, more particles are scattered to the neutron 1f5/2
orbit. This explains why at β20=0, the RMF+BCS and
RMF+FBCS models predict a similar binding energy,
but a different neutron r.m.s. radius.

In Fig. 10, we plot the contribution to neutron den-
sity from the neutron orbitals 1f5/2, 2p1/2 and 2p3/2.
Clearly, in the two methods, the relative contributions
from the 2p1/2 and 1f5/2 orbits are quite different. In the
RMF+FBCS model, the contribution from the 2p1/2 or-
bit, which extends farther away from the center, is larger
than that from the 1f5/2 orbit. In the RMF+BCS model,
the opposite is true. These are the reasons behind the
seemingly unusual behavior observed in Fig. 9.

Fig. 10. (color online) Neutron density of the
1f5/2, 2p1/2, and 2p3/2 orbits of 54Ca calculated
in the RMF+FBCS (solid lines) and RMF+BCS
(dashed lines) models.

7 Summary

We have formulated a particle number conserving
BCS method, the so-called FBCS method, in the rel-
ativistic mean field model. We have shown that the
RMF+FBCS model can properly describe the weak pair-
ing limit. A detailed study of the calcium isotopes re-
veals that the RMF+FBCS results for the two-neutron
separation energies and two-neutron gaps are similar to
those of the RMF+BCS calculations; also, the density
distributions are roughly the same in both calculations
(and therefore not shown). Overall we do not find essen-
tial improvement in the description of the ground state
properties of the calcium isotopes.

On the other hand, we notice that the neutron r.m.s
radii at the neutron drip lines can be somewhat larger in
the RMF+BCS model than in the RMF+FBCS model.
In addition, our study has shown that the FBCS method
can change the occupation probability of certain single
particle orbitals around the Fermi surface and therefore
affect the neutron r.m.s radius. For the case of 54Ca,
the increase of the radius is only about 0.02 fm, but this
can be larger for more neutron-rich nuclei with similar
configurations. However, due to the incorrect asymp-
totic behavior of the harmonic oscillator wave functions,
the expansion in a localized HO basis is not appropri-
ate for the description of drip line nuclei [55], particular
for their density distributions. To treat the continuum
more properly, one may solve the RMF model in co-
ordinate space [7, 10] or adopt the Woods-Saxon basis
[55, 56]. Implementing a particle number conserving
BCS approach or Bogoliubov approach in such models
and studying its impact on drip line nuclei would be
of great interest both experimentally and theoretically.
Such works are in progress.

An Rong and Shi-Sheng Zhang acknowledge valuable

discussions with Prof. Shan-Gui Zhou of Institute of

Theoretical Physics, Chinese Academy of Sciences.
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