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Holographic magnetized chiral density wave *
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Abstract: We explore the end point of the helical instability in a finite density, finite magnetic field background

discussed by Kharzeev and Yee. The nonlinear solution is obtained and identified with the (magnetized) chiral density

wave phase in the literature. We find there are two branches of solutions, which match the two unstable modes found

before. At large chemical potential and magnetic field, the magnetized chiral density wave can be thermodynamically

preferred over the chirally symmetric phase and chiral symmetry breaking phase. Interestingly, we find an exotic

state with vanishing chemical potential at large magnetic field. We also attempt to clarify the role of anomalous

charge in the holographic model.
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1 Introduction

The ground state of hot and dense QCD matter is one
of the key questions in the physics of heavy ion collisions
and neutron stars. In the former case, strong magnetic
fields can be produced in off-center collisions. In the lat-
ter case, strong magnetic fields are believed to exist in
the cores of neutron stars. Magnetic fields are known to
modify QCD phases in different ways. In the absence
of baryon chemical potential, a magnetic field enhances
chiral symmetry breaking and reduces the critical tem-
perature, phenomena known as magnetic catalysis [1–3]
and inverse magnetic catalysis [4, 5] respectively. At fi-
nite quark chemical potential, the QCD phase diagram
becomes much enriched. In particular, a variety of inho-
mogeneous phases appear, including chiral density waves
[6], solitonic modulation [7, 8], crystalline color supercon-
ductors [9], quarkyonic spirals [10] etc. The quark den-
sity is crucial in the formation of these inhomogeneities;
see Ref. [11] for a review. The presence of magnetic
field tends to widen the inhomogenous phases, leading
to magnetized-chiral density waves [12–15] or magnetized
kinks [16], magnetized quarkyonic chiral spirals [17] etc.

Interestingly, the interplay of quark density and mag-
netic field can also lead to more new phases. This is
realized through axial anomaly: at low temperature, ef-
fective model studies have found inhomogeneous phases
including pion domain walls [18, 19], chiral magnetic spi-

rals [20], chiral soliton lattices [21] etc. See Refs. [22, 23]
for comprehensive reviews. From the viewpoint of ther-
modynamics, the formation of inhomogeneous phases in-
duces an anomalous charge, which can lower the free
energy of the system [18, 21]. However, the nature of
anomalous charge remains a mystery. It is desirable
to search for the inhomogeneous phases in other ap-
proaches. A number of such studies using holographic
models have been carried out [24–30]. In this work, we
aim at finding the holographic analog of the magnetized
chiral density wave. This work is inspired by early work
by Kharzeev and Yee [24], in which they found an unsta-
ble helical mode. We will find the end point of the insta-
bility and identify it with the magnetized chiral density
wave (MCDW) phase. The competition of the MCDW
and conventional chiral symmetry breaking phase and re-
stored phase reveals novel structure. We will emphasize
the role of anomaly and attempt to clarify the nature of
anomalous charge.

The paper is organized as follows. In Section 2, we
give a brief review of the holographic model and the
known phase diagram for homogeneous phases [31]. In
Section 3, we present an ansatz for the MCDW phase,
solve it numerically and obtain its thermodynamics. We
discuss the role of anomalous charge in the MCDW phase
in Section 4. We summarize and discuss future perspec-
tives in Section 5.
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2 A quick review of the model

The holographic model we use is the D3/D7 model.
The model contains Nc D3 branes and Nf D7 branes.
The D3 branes generate the AdS black hole background.
In the limit Nf ≪Nc, the backreaction of D7 branes is
suppressed. The field theory dual of the model is a N=4
Super Yang-Mills (SYM) field and N=2 hypermultiplet
fields, transforming in adjoint and fundamental represen-
tations of the SU(Nc) group respectively. The model is
close to QCD in the sense that the N=4 and N=2 fields
can be identified as gluons and quarks respectively. The
probe limit is analogous to the quenched approximation.
The explicit form of the AdS black hole background is
given by [32]:

ds2=−r
2
0

2

f 2

H
ρ2dt2+

r20
2
Hρ2dx2+

dρ2

ρ2
+dθ2

+sin2θdφ2+cos2θdΩ2
3, (1)

where

f=1− 1

ρ4
, H=1+

1

ρ4
. (2)

We set the AdS radius to 1. The temperature is given
by T = r0/π. We also parametrize the S5 coordinates
in terms of S3 coordinates and two other angular coordi-
nates θ and φ. The background also contains a nontrivial
Ramond-Ramond form

F5=r
4
0ρ

3Hfdt∧dx1∧dx2∧dx3∧dρ
+4cos3θsinθdθ∧dφ∧dΩ3. (3)

The D7 branes occupy the worldvolume of D3 branes. In
addition, they occupy the S3 coordinates. Their position
in the x8−x9 plane is parametrized by polar coordinates,
with radius ρsinθ and angle φ. The rotational symmetry
in the x8−x9 plane corresponds to U(1)R symmetry in the
field theory. Finally, there is an additional U(1)B sym-
metry from the worldvolume gauge field of D7 branes.
In comparison with QCD, the U(1)R and U(1)B sym-
metries are identified as axial and baryon symmetries
respectively.

With the background metric (1), the gluons provide a
thermal bath at fixed temperature for quarks. The quark
chemical potential and magnetic field are turned on by
a nonvanishing At(ρ) and constant Fxy=B. The phase
diagram has been obtained by Evans et al [31], showing
a rich structure. There is one order parameter of the
system, namely the chiral condensate. The condensate
is determined by the embedding of D7 branes in the D3
brane background. There are two possible embeddings
for D7 branes: black hole embedding and Minkowski em-
bedding, corresponding to the chirally symmetric (χS)
phase and chiral symmetry breaking (χSB) phase. The
phases can further be classified based on quark number
density. For the χS phase, only the finite density state is

allowed. For the χSB phase, both finite density and zero
density states are allowed. In total, three homogeneous
phases are found in Ref. [31]: zero density with χSB
phase, finite density with χSB phase, and finite density
with χS phase.

The action of D7 branes is given by a Dirac-Born-
Infeld (DBI) term and Wess-Zumino (WZ) term

SD7=SDBI+SWZ,

SDBI=−NfTD7

∫

d8ξ

√

−det
(

gab+2πα′F̃ab

)

,

SWZ=
1

2
NfTD7(2πα

′)2
∫

P [C4]∧F̃∧F̃ . (4)

Here TD7 is the D7 brane tension. gab and F̃ab are the
induced metric and worldvolume field strength respec-
tively. Defining

Fab=2πα′F̃ab,

N=NfTD72π
2=

NfNcλ

(2π)4
, (5)

we can simplify the action to

SDBI=− N
2π2

∫

d8ξ
√

−det(gab+Fab),

SWZ=
1

4π2
N

∫

P [C4]∧F∧F. (6)

The embedding function θ and worldvolume gauge fields
At are determined by minimizing the action. The asymp-
totic behaviors of θ and At are given by

sinθ=
m

ρ
+
c

ρ3
+··· , At=µ−

n

ρ2
+··· . (7)

The coefficients m and c are related to the bare quark
massMq and chiral condensate 〈ψ̄ψ〉 as [33]Mq=

mr0
2
√

2πα′
,

〈ψ̄ψ〉=−
√
2πα′N cr30. The coefficients µ and n are re-

lated to the quark chemical potential µq and quark num-
ber density nq as: µq =

µr0
2πα′

, nq =2πα′Nnr30. Below we
set r0=1. This is equivalent to setting πT=1.

For the homogeneous phase, the WZ term is not rel-
evant. However, when B and µ are large, the system is
found to contain an unstable mode involving simultane-
ous fluctuations of x8 and x9 [24]. It is further conjec-
tured that the end point of this instability is the helical
phase. The presence of the WZ term is essential to the
instability. In the next section, we will find the end point
of the instability and identify it with the MCDW phase
known in the literature [13].

3 Magnetized chiral density wave

We start with the following ansatz for the MCDW:

At=At(ρ), θ=θ(ρ), φ=kz. (8)
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The last two equations in Eq. (8) can be written equiv-
alently as

x8+ix9=eikzρsinθ(ρ). (9)

Note that At depends on ρ only. It gives rise to a ho-
mogeneous quark number density. The fields x8 and x9

form a spiral in the direction parallel to the magnetic
field. The limit k→0 reduces to the homogeneous case
studied before. In this limit, x8 = ρsinθ is dual to the
chiral condensate:

ψ̄ψ∝c. (10)

The ansatz (8) is simply a chiral rotation of chiral con-
densate along the z direction:

ψ̄ψ+iψ̄iγ5ψ∝c(coskz+isinkz). (11)

In the presence of non-trivial φ, the dual field theory con-
tains the following interaction term for quarks [34, 35]:

SI=−mψ̄eiφγ5ψ. (12)

The interaction term has no analog in QCD. We are
interested in the massless limit, where this term van-
ishes. Therefore the helical phase corresponds to spon-
taneous breaking of both chiral symmetry and transla-
tional symmetry along z. 1D long range order is known
to be washed out by fluctuations in effective models, with
the ground state containing only quasi-long range order
[36, 37]. In the holographic model, the issue is absent
because of suppression of fluctuations in the large Nc

limit.
Plugging the ansatz (8) into Eq. (6), we obtain

S=

∫

d4xdρ(LDBI+LWZ),

LDBI=N −1+χ2

4

√

2+4B2+1/ρ4+ρ4
√

1

ρ6+ρ10
(1+ρ4+2k2ρ2χ2)

(

2ρ4(1+ρ4)A′2
t (−1+χ2)+(−1+ρ4)

2
(1−χ2+ρ2χ′2)

)

,

LWZ=−NBkA′
t(−2χ2+χ4). (13)

We have defined χ=sinθ. Note that the WZ term de-
pends on the gauge potential C4. We fix the gauge, fol-
lowing Ref. [24], as

C4=

(

r20
2
ρ2H

)2

dt∧dx1∧dx2∧dx3−(cos4θ−1)dφ∧dΩ3.

(14)

Another gauge choice has been used in Ref. [35]. The dif-
ference in fact does not alter the bulk solutions for the
MCDW phase because it only causes a constant shift in
the total action ∆S=

∫

d4xdρBkAt′=Vol4Bkµ. Clearly
it affects the thermodynamics. Our forthcoming analysis
will also support this gauge choice (14). The equations
of motion can be derived as

δL
δχ

− d

dρ

(

δL
δχ′

)

=0,

δL
δAt

− d

dρ

(

δL
δA′

t

)

=0. (15)

Since the action depends on At only through its deriva-
tive, there is a conserved quantity δL

δA′

t

. It is identified

with quark number density n [31]. Consequently, we can
use

δL
δA′

t

=n. (16)

Throughout the paper, we focus on finite density solu-
tions. It is known that only black hole embedding can
support finite density solutions [38]. We search for the
MCDW solution by numerically integrating the horizon
solution to the boundary. The horizon solution for black

hole embedding is obtained analytically as

χ=c0+c2(ρ−1)
2
+··· ,

A′
t=2a2(ρ−1)+3a3(ρ−1)2+··· , (17)

with c0 and a2 being two independent parameters. We
require that the field strength Fρt =A′

t vanishes on the
horizon. Higher order coefficients in the expansion are
expressible in terms of c0 and a2. We search for numeri-
cal solutions with fixed n, and then scan the parameter
n. Since n is invariant along the radial direction, we can
use n to fix one of the horizon parameters a2:

2Bc20k−Bc40k+
a2
√
1+B2(1−c20)2(1+c20k2)

√

(1−a22)(1−c20)(1+c20k2)
=n. (18)

Note that χ= sinθ, thus 0< c0 < 1. For a given set of
parameters n, B and k, c0 is to be determined by the
boundary condition m=0. In general, the MCDW solu-
tion exists for continuous values of k at large n and B.
To find out the preferred spiral momentum k, we need
to minimize the grand potential. The quark chemical
potential is given by bulk integration of A′

t

µ=

∫ ∞

1

dρA′
t. (19)

In practice, we need to tune n and k simultaneously such
that µ remains unchanged. This is a numerically chal-
lenging task. We are able to achieve 1% percentage ac-
curacy for µ. The grand potential Ω is related to the
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Euclidean action as

Ω=
1

β
SE=−

∫

d3xdρL=−V
∫

dρL. (20)

The integration of holographic coordinate ρ contains di-
vergence. We regularize the action by imposing a UV
cutoff ρ=ρmax and renormalize by adding the following
counter terms: [39]

Scounter=ρ
4
max−

m2ρ2max

2
+
1

4
lnρmax(2B

2+k2m2). (21)

The appearance of k in the counter term for the massive
case is not surprising, as k appears as a parameter of
the theory according to Eq. (12). There is also a finite
counter term for the massive case [33]. The finite counter
term does not bother us since we focus on the massless
case.

The ground state is to be determined by comparing
the free energy of the MCDW phase with those of the
known χS phase and χSB phase [31]. The χSB phase ap-
pears only at large B, while the χS phase exists for any
B and finite µ. The χSB phase can be obtained as a limit
k→0 from the MCDW phase. The χS phase corresponds
to the trivial embedding χ=0. The free energy is given
by the same expression (20). To compare the free energy
of the three phases, we use the free energy of the χS
phase as a baseline, i.e. we calculate ∆Ω=ΩMCDW−ΩχS

for the MCDW phase and ∆Ω=ΩχSB−ΩχS for the χSB
phase. ∆Ω of the MCDW phase and χSB phase are at
percentage level of ΩχS. For the largest magnetic field
B/(πT )2=15, ∆Ω is less than 1% of ΩχS, making com-
parison of the free energy more difficult.

In general, we find that MCDW solutions exist in two
windows of k at large µ and B. The number of windows
coincide with the number of unstable modes [24, 40] in
the chirally symmetric background. We find the lowest
free energy is usually found near the boundary of either
window. We show a typical ∆Ω-k plot in Fig. 1.
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- 0.624

Ω/V B2

μ/(πT)= 1.36,B/(πT) 2 =15

�

Fig. 1. (color online) Ω/
(

VNB2
)

versus k/B1/2 at
B/(πT )2=15 and µ/(πT )=1.36. Here Ω/V is the
free energy density with V =

∫

d3x. The MCDW
phase exists in two branches. The lowest free en-
ergy is found at the right-hand boundary of the
window of smaller k.

Although there is only one thermodynamically pre-
ferred state, we will keep the MCDW states from min-
imizing free energy in both windows for the purpose
of illustration. Below we present three representa-
tive MCDW solutions. They include (i) the case with
B/(πT )2=6.5, where the χSB phase does not exist, and
there is competition between the χS phase and MCDW
phase; (ii) the case with B/(πT )2=9, where the large k
branch of the MCDW phase is thermodynamically pre-
ferred in a wide region of µ; and (iii) the case with
B/(πT )2=15, where the small k branch of the MCDW
phase is thermodynamically preferred in a wide region of
µ.
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Fig. 2. (color online) n/B3/2 versus µ/B1/2 (left)
and k/B1/2 versus µ/B1/2 (right) at B/(πT )2=
6.5. The MCDW phase clearly splits into two
branches. The branches with large k and small
k are marked by blue circles and red squares re-
spectively.

We show the MCDW phase at B/(πT )2 = 6.5 in
Fig. 2. For a given µ, there are two MCDW solutions,
from the large k branch and small k branch. The large
and small k branches of the MCDW solution give large
and small density n respectively. The corresponding free
energy density ∆Ω/V is shown in Fig. 3. At this value
of B, the χSB phase does not exist. There is competi-
tion between the χS phase and MCDW phase. The large
k branch is always thermodynamically more stable than
the small k branch, and it dominates over the χS phase
when µ/B1/2&0.35.

114104-4



Chinese Physics C Vol. 42, No. 11 (2018) 114104

Next we present the case at B/(πT )2=9. In Fig. 4
we show the density and spiral momentum of the two
branches of solutions. Again the large and small k
branches of the MCDW solution give large and small
density n respectively. The comparison of free energy is
shown in Fig. 5. We find the MCDW phase with large k
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Fig. 3. (color online) ∆Ω/
(

VNB2
)

versus µ/B1/2

at B/(πT )2 = 6.5 for two branches of MCDW
phase, marked by blue circles (large k) and red
squares (small k). The large k MCDW phase
has lower free energy than the small k MCDW
phase at fixed µ. Both are found to have lower
free energy than the chirally symmetric phase
for large enough µ. In particular, the large k
MCDW phase becomes thermodynamically pre-
ferred above µ/B1/2

≃0.35. The chiral symmetry
breaking phase does not exist at this value of B.
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Fig. 4. (color online) n/B3/2 versus µ/B1/2 (left)
and k/B1/2 versus µ/B1/2 (right) at B/(πT )2=9.
The branches with large k and small k are marked
by circles and squares respectively.
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Fig. 5. (color online) ∆Ω/
(

VNB2
)

versus µ/B1/2

at B/(πT )2 =9 for two branches of the MCDW
phase, marked by blue circles (large k) and red
squares (small k), and the χSB phase, marked
by green triangles. The large k MCDW phase
has lower free energy than the chirally symmetric
phase and the small k MCDW phase in their over-
lap region. The chiral symmetry breaking case
exists below a critical value of µ/B1/2

≃0.15. The
current precision of numerical data does not allow
for a decisive conclusion on whether the preferred
state is the MCDW or χSB phase.
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Fig. 6. (color online) n/B3/2 versus µ/B1/2 (left)
and k/B1/2 versus µ/B1/2 (right) at B/(πT )2=
15. The MCDW phase splits into two branches,
marked by blue circles (large k) and red squares
(small k). The large k branch of the MCDW
phase extends all the way beyond µ=0, indicating
that axial anomaly is not necessarily required for
its existence. Also, the small k branch extends all
the way beyond n=0(k=0). The behavior of n
and k follow similar patterns.
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is always preferred over the χS phase. At low µ, the
χSB phase can occur. Whether the χSB phase can be
preferred over the MCDW phase cannot be decisively an-
swered by the current precision of numerical data. Nev-
ertheless, the existence of the χSB phase would be con-
strained in a narrow window of µ if it exists as a ther-
modynamically preferred state.

Finally, we present the case of B/(πT )2 = 15. In
Fig. 6, we show the density and spiral momentum of the
two branches of MCDW solutions. While the large/small
density and large/small momentum correspondence still
holds in general, there are also exotic cases. For the
large k branch, the MCDW phase extends below µ=0,
i.e. states with negative µ but positive n and k exist.
For the small k branch, the MCDW phase extends be-
low n=0(k=0), i.e. states with positive µ but negative
n and k exist. By continuity, we can infer that MCDW
states with either µ=0 or k=0 exist. We also show in
Fig. 7 a comparison of the free energy of different phases.
The case of B/(πT )2 = 15 is distinct from the cases of
B/(πT )2=6.5 and B/(πT )2=9: the χS phase is never
thermodynamically preferred. In the region of large µ,
the small k branch of the MCDW phase is preferred. In
the region of small µ, the large k branch is preferred.
The χSB phase exists in a narrow window in µ. It could
be the preferred state in an even narrower window, al-
though the current precision of numerical data does not
allow for a decisive answer.
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Fig. 7. (color online) ∆Ω/
(

VNB2
)

versus µ/B1/2

at B/(πT )2=15 for the two branches of MCDW
phase, marked by blue circles (large k) and red
squares (small k), and the χSB phase, marked by
green triangles. The small k MCDW phase al-
ways has lower free energy than the χS phase.
The large k MCDW phase might be thermody-
namically more favorable in the region of small µ.
The χS phase exists in a narrow window of µ. It
might be the state with the lowest free energy in
an even narrower window. The current precision
of numerical data does not allow for a decisive
conclusion on whether the preferred state is the
MCDW or χSB phase.

4 Anomalous charge and MCDW phase

It is interesting to discuss several aspects of the
MCDW phase within the holographic model. We first
discuss the role of anomalous charge. In effective models
[18], the anomalous charge is generated from a spatially
inhomogeneous phase. In the presence of chemical po-
tential, the anomalous charge can lower the free energy
of the system: Ω→Ω−µNanom. Within our holographic
model, we can derive the charge density from thermody-
namics:

n=− δΩ

V δµ
=

∫

dρδL
δµ

=

∫

dρδA′
t

δL
δA′

t

δµ

=
(δAt(∞)−δAt(1))

δµ

δL
δA′

t

. (22)

In the last equality, we use the fact that δL
δA′

t

is ρ-

independent to perform integration over ρ. Note that
At(∞)−At(1)=µ. We thus obtain

n=
δL
δA′

t

=
δLDBI

δA′
t

+
δLWZ

δA′
t

. (23)

This is the conserved charge density already used in the
previous section. The Lagrangian contains contributions
from both DBI and WZ terms. We identify the DBI
and WZ contributions as normal and anomalous charge,
explicitly:

nnorm=(···)A′
t, nanom=Bk(−2χ2+χ4). (24)

Here (···) is a complicated but positive function of A′
t

and χ. In the absence of anomalous charge in the ho-
mogeneous phase, it guarantees the charge density has
the same sign as the chemical potential. The sign of the
anomalous charge is instructive: note that 0 < χ < 1,
which gives nanom>0(nanom<0) for k>0(k<0). Indeed,
linear stability analysis [24, 40], as well as the full non-
linear solution presented in this work, supports positive
k (momentum parallel to magnetic field). This is consis-
tent with the effective model picture in which formation
of a spiral generates anomalous charge, lowering the free
energy of the system. Had we proceeded with another
gauge choice,

C4=

(

r20
2
ρ2H

)2

dt∧dx1∧dx2∧dx3−cos4θdφ∧dΩ3, (25)

we would have obtained

nanom=Bk(1−χ2)
2
, (26)

therefore nanom<0(nanom>0) for k>0(k<0). It implies
that the favorable MCDW phase should be found for
k<0. This is not consistent with linear stability analysis
and nonlinear solutions. It also serves as a confirmation
of the gauge choice made in Ref. [24] and used in this
work.
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Secondly, the anomalous charge defined above inher-
its a feature from the holographic model. In effective
models, normal and anomalous charge are both constant
and separable, see e.g. Ref. [13]. In the holographic
model, the anomalous charge, as well as the normal
charge, depends on the holographic coordinate ρ. Only
the sum of the two is a constant. It is known that the
holographic coordinate plays the role of renormalization
group (RG) scale. It is interesting to analyze the vari-
ation of nanom along the RG scale: since χ=0 at both
horizon and boundary, we conclude that nanom vanishes
in the IR and UV limits. At the intermediate scale,
nanom > 0. To construct an effective model based on
holographic theory, we would need to integrate out the
holographic coordinate from UV to a certain cutoff scale
in the middle. The resultant effective anomalous charge
is not expected to be a simple product Bk, in contrast
to effective models.

Finally, we discuss the two exotic MCDW states at
B/(πT )2=15 and their relation with axial anomaly. One
state has µ=0, but n 6=0(k 6=0). According to the defi-
nition (19), A′

t has at least one zero. We confirm this by
plotting A′

t(ρ) in Fig. 8.

5 10 15 20
ρ

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

0.1

0.2

At' [ρ ]

Fig. 8. (color online) A′
t(ρ) at B/(πT )2=15. The

positive and negative contributions in
∫

dρA′
t(ρ)

cancel out, giving a vanishing µ. There is one
zero of A′

t(ρ), at which nnorm = 0 and nanom =
Bk

(

2χ2
−χ4

)

. This explains why n and k have
the same sign.

Naively, the axial anomaly is not relevant for µ=0.
This is not true: although the integration of A′

t(ρ) van-
ishes, the integration of the WZ term is non-vanishing,
which contributes to the thermodynamics. Mathemati-
cally, the contributions from the DBI and WZ terms take
the following form:

Ωn
DBI/V 6=−

∫

dρA′
tnnorm, Ωn

WZ/V =−
∫

dρA′
tnanom.

(27)

We use the superscript n to indicate that they are contri-
butions from density. The WZ term is a simple coupling
between chemical potential and nanom, while the DBI

term cannot be written as a simple coupling between
chemical potential and nnorm due to the nonlinear depen-
dence of DBI action on A′

t. If this were true, we could
combine the two terms by using nnorm+nanom=constant,
giving a vanishing contribution because µ=

∫

dρA′
t =0.

However, due to the different nature of anomalous charge
and normal charge, anomaly can still play a role even at
µ=0.

The other two states have n=0 and k=0 respectively.
Although they lie close in µ numerically, we can argue
that they are different states. For states with n=0, we
need nnorm and nanom to cancel each other. Since nnorm is
in general nonvanishing for arbitrary ρ, nanom must also
be nonvanishing. Thus we cannot have a state with n=0
and k=0 simultaneously. The state with n=0 and k 6=0
is still related to axial anomaly as we need anomalous
charge to cancel normal charge. The state with k = 0
and n 6=0 is homogeneous, thus it should reduce to the
χSB case. In Fig. 9 we show a comparison of density
and chiral condensate between the MCDW phase and
χSB phase. It confirms a continuous merging of the two
phases. Combining with Fig. 7, we suggest that the χSB
phase may be replaced by the MCDW phase.
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μ/B1?2
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0.4

0.5

n/B3?2

Fig. 9. (color online) n/B3/2 versus µ/B1/2 at
B/(πT )2 = 15 for the small k branch of the
MCDW phase (red squares) and the χSB phase
(green triangles). At µ/B1/2

≃ 0.25, the density
corresponding to the two phases merges, suggest-
ing a second order phase transition. The critical
value of µ agrees with the k=0 state of MCDW
phase in Fig. 6 and also the free energy compari-
son in Fig. 7.

5 Summary and outlook

We have explored the end point of the spiral insta-
bility studied in Ref. [24]. We find the end point solu-
tion contains both chiral condensate and pseudoscalar
condensate, analogous to the magnetized chiral density
wave phase in the literature [13]. The MCDW phase
contains two branches of solutions, in accordance with
the number of unstable modes found in Refs. [24, 40].
Within each branch, the momentum k can take contin-
uous values. Minimizing the free energy with respect to
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k gives the thermodynamically preferred state. We find
that for not large B, the large k branch of the MCDW
phase is the preferred state out of the two branches. In
this case, there is a critical µ, beyond which the MCDW
phase dominates over the χS and χSB phases. For large
B, the small k branch becomes preferred out of the two
branches for a wide range of µ. At sufficient large µ, the
MCDW phase becomes dominant over the χS and χSB
phases.

We also give a holographic definition of anomalous
charge. The anomalous charge in the holographic model
varies along RG flow. In particular, it vanishes in the IR
and UV limits in our model, but is finite at the interme-
diate scale. The sum of anomalous and normal charge is
constant along the RG flow.

We also find an exotic state of MCDW phase at large
B and vanishing µ. Surprisingly, axial anomaly still plays
a role at vanishing µ, leading to the formation of spiral
phase. The reason is that normal charge and anomalous
charge respond to µ differently. The free energy can be
lowered by forming a nonvanishing sum of the two.

This work can be extended in a few directions. First
of all, we focus on finite density states in this work. To
have a complete study of the phase diagram, we still need

zero-density states. Homogeneous zero-density states
have been studied in Ref. [31]. It would be interesting to
see whether the MCDW phase exists at zero density. A
closely related question is to find out whether a magne-
tized kink solution can be realized in holographic models
and how it may change the phase diagram.

Secondly, at strong magnetic field and finite µ or fi-
nite axial chemical potential µ5, the ground state is con-
jectured to be the chiral magnetic spiral phase. Rather
than longitudinal spiral (along the magnetic field), it
is characterized by a transverse spiral. While the case
with µ5 6= 0 is confirmed in holographic model studies
[29, 41, 42], the case with µ 6=0 is not found in the same
studies. It is desirable to have an independent check
within our model.

Last but not least, it would also be interesting to
explore the transports of the MCDW phase. Since the
MCDW phase breaks both chiral symmetry and trans-
lational symmetry, it would be interesting to study the
corresponding Nambu-Goldstone modes, and moreover
the hydrodynamics in the MCDW phase background.
We leave these for future studies.

S.L. is grateful to Gaoqing Cao, Yoshimasa Hidaka

and Keun-Young Kim for useful discussions.
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