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Abstract: We extend the complex scaled Green’s function (CGF) method to describe resonances with triaxial

deformation and present a theoretical formalism. Taking 43S as an example, we elaborate numerical details and

demonstrate how to determine the resonance parameters. With changes in the deformation parameters, we study the

influence of the triaxial deformation parameter γ on single-particle levels. In particular, the present scheme focuses

on the advantages of the complex scaling method (CSM) and the Green’s function method, and is suitable for the

exploration of resonances.
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1 Introduction

Over 85% of nuclei in the nuclear chart have de-
formed shapes [1]. The “deformed shapes” provide an
intuitive understanding of the nuclear structure. Some
nuclei have triaxial shapes [2], which can be character-
ized by the quadrupole triaxial deformation parameter
γ besides the axial deformation parameter β. There are
several islands of axial asymmetry on the nuclear chart,
and most of them turn out to be triaxially deformed in
their ground states [3]. This breaking phenomenon of
axial symmetry is attracting more attention than before,
with research in topics such as nuclear dynamical prop-
erties [4], the increase of the binding of nucleons [3], the
loss of traditional magic numbers [5], shape coexistence
[6], and so on. Although the triaxial nuclei cannot be
measured directly, nuclear wobbling [7] and chiral bands
[8, 9] have been used to infer the existence of triaxiality
in the past decades. For exploring triaxiality, a series
of models and methods have been established, includ-
ing the five-dimensional collective Hamiltonian (5DCH)
theory [10], the cranked Woods-Saxon (WS) shell model
[11], the antisymmetrized molecular dynamics (AMD)
combined with the generator coordinate method (GCM)
[5], and so on.

In Ref. [12], we used the complex scaled Green’s

function (CGF) method to study 45S under axial defor-
mation, and the superiority of the method was shown.
Furthermore, the resonance has resulted in the discov-
ery of exotic phenomena of the deformed nuclei. This
has triggered our interest in sulfur isotope research by
probing the resonance states. 45S and 43S are neutron-
rich nuclei, whose low-lying spectrum can provide the
neutron single-particle levels. This can help us better
understand the energy level structure to obtain the nu-
clear properties. Since deformed structures have had a
profound effect on the development of nuclear physics,
we apply the CGF method to the triaxially deformed
nucleus 43S [5], which is characterized by the quadrupole
deformation parameters β and γ.

2 Formalism

To explore the resonances in a deformed system, the
surface radius [7] can be expanded as

R(θ,ϕ) = R0

{

1+
∑

lm

βlmYlm(θ,ϕ)

}

, (1)

when βlm denotes the deformations deviating from the
spherical shape and R0 is the equilibrium radius. As the
radius R(θ,ϕ) is real and Y ∗

lm=(−1)mYl,−m, we can ob-
tain β∗

lm=(−1)mβl,−m. For simplicity, we introduce a set
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of real parameters alm and blm to describe the deforma-
tions:

βl0 = al0,

βlm =
alm−iblm√

2
,

βl,−m = (−1)m
alm+iblm√

2
,(m>0). (2)

By using the real parameters alm and blm, the surface is
represented as

R(θ,ϕ)=R0

{

1+
∑

lm

βlmYlm(θ,ϕ)
}

=R0

{

1+
∑

l

al0Yl0+
∑

lm

βlmYlm(θ,ϕ)

+
∑

l,−m

βl,−mYl,−m(θ,ϕ)
}

,(m>0)

=R0

{

1+
∑

l

al0Yl0+
∑

l,m>0

[
alm−iblm√

2
Ylm

+(−1)
m alm+iblm√

2
Yl,−m]

}

. (3)

Then, we further express this as

R(θ,ϕ)=R0

{

1+
∑

l

al0Ylo+
∑

l,m>0

(almY
+
lm+blmY

−
lm)

}

,

(4)

where Y +
lm =

Ylm+Y ∗

lm√
2

,Y −
lm =

Ylm−Y ∗

lm

i
√

2
,Y ∗

lm = (−1)mYl,−m.
For a quadrupole deformed system in the intrinsic frame-
work, the Bohr description of deformation is

R(θ,ϕ) = R0{1+a20Y20+a22(Y22+Y2,−2)},

a20 = β2cosγ, a22=
1√
2
β2sinγ, (5)

where γ is the quadrupole triaxial deformation parame-
ter. So in a system with a non-axially symmetric defor-
mation, the surface radius is written for the quadrupole
case as

R(θ,ϕ) = R0

{

1+a20Y20+a22
Y22+Y

∗
22√

2

}

,

a20 = β2cosγ, a22=β2sinγ. (6)

For a multipolar deformed systems like nuclei, the central
potential is

Vcent(r)=V0f(r), f(r)=
1

1+exp

(

r−R
a

) , (7)

and the deformed potential is taken as

Vdef
~(r)=−V0k(r)

[

∑

l

al0Yl0+
∑

l,m>0

(almY
+
lm+blmY

−
lm)

]

,

(8)

where

k(r)=r
df(r)

dr
.

The Hamiltonian of this system can be written as

H=T+V =T+Vcent+Vdef+Vsl. (9)

In the deformed coordinate framework, the Hamiltonian
is written as

H=
p2r
2M

+

−→
l2

2Mr2
+Vcent+Vdef+Vsl

=− ~
2

2M

(

d2

dr2
+
2

r

d

dr

)

+

−→
l2

2Mr2

+Vcent+Vdef+Vsl, (10)

where the spin-orbit coupling potential takes the form

Vsl=− 1
2
vV0g(r)(

−→s ·−→l ) from Ref. [13]. Here the expres-

sion for g(r) is g(r) = Λ2

r

df(r)

dr
, where Λ is the reduced

Compton wavelength of the nucleon and the parameters
are fixed at v=32 and V0=−51+33N−Z

A
[14, 15].

The Hamiltonian has been widely used to study the
single particle resonant states in deformed nuclei by the
coupling-channel method [15]. The Hamiltonian H and
wave function ψ are transformed as

Hθ = U(θ)HU(θ)−1, (11)

ψθ = U(θ)ψ. (12)

Here U(θ) is a complex rotation operator defined in terms
of the transformation ~r→~reiθ, and Hθ(ψθ) is the com-
plex scaled Hamiltonian (wave function) with the com-
plex rotation angle θ. The corresponding complex scaled
equation becomes

Hθψθ=Eθψθ. (13)

We can obtain the bound states, resonant states and
non-resonance continuum from Eq. (13). In terms of
independence of the calculated results for θ, the reso-
nant states can be picked out. The details can be seen
in Ref. [16]. Like axially symmetric nuclei, we combine
the CSM (complex scaling method) and Green’s function
method by defining the complex-scaled Green’s function
as

Gθ(E)=U(θ)G(E)U(θ)−1=
1

E−Hθ

. (14)

In the coordinate representation, one obtains

Gθ(E,~r,~r′)=

〈

~r| 1

E−Hθ

|~r′
〉

. (15)

In order to find resonances in the complex scaled
Green’s function (15), we introduced an extended com-
pleteness relation in Ref. [17]:

Nb
∑

b

|ψθ
b 〉〈ψ̃θ

b |+
Nr
∑

r

|ψθ
r 〉〈ψ̃θ

r |+
∫

dEθ
c |ψθ

c
〉〈ψ̃θ

c |=1, (16)
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where ψθ
b and ψθ

r are the complex scaled wave functions
for the bound and resonant states, respectively, while ψθ

c

is the wave function of the rotated continuum. The bra
states with tilde represent the bi-orthogonal counterparts
of the ket states. Detailed explanations can be found in
Ref. [18].

By using the extended completeness relation (16), the
level density of the complex scaled Hamiltonian Hθ with
the basis number N is expressed as

ρθ(E) = − 1

π
Im

∫

d~r

〈

~r

∣

∣

∣

∣

1

E−Hθ

∣

∣

∣

∣

~r

〉

= − 1

π
Im

∫

d~r

[

Nb
∑

b

ψθ
b (~r)ψ̃

θ∗
b (~r)

E−Eb

+

Nr
∑

r

ψθ
r (~r)ψ̃

θ∗
r (~r)

E−Eθ
r

+

∫

dEθ
c

ψθ
c (~r)ψ̃

θ∗
c (~r)

E−Eθ
c

]

, (17)

where Eb,E
θ
r and Eθ

c represent respectively the energy
eigenvalues of Hθ for the bound states, resonant states
and rotated continuum. Nb and Nr are the numbers of
bound states and resonant states, respectively. Due to
the normalization of the wave functions, the integration
~r for the bound and resonant states in Eq. (17) is unity.
For the continuum, however, there appears a singularity
in the integration ~r, which can be eliminated by using the
basis expansion method in the discretization of the en-
ergy spectrum. Then, the approximate density of states
can be expressed as

ρNθ (E) =

Nb
∑

b

δ(E−EB)+
1

π

Nr
∑

r

Γr/2

(E−Er)
2+Γ2

r/4

+
1

π

N−Nb−Nr
∑

c

εIc
(E−εRc )2+εI2c

, (18)

where the bound state energies Eb(b = 1,2,...,Nb),
the resonance complex energies Eθ

r = Er − iΓr/2(r =
1,2,...,Nr), and the rotated continuum energies εθc =
εRc −iεIc (c=1,2,...,N−Nb−Nr).

As there are approximations in realistic calculations,
ρNθ (E) depends slightly on θ. The dependence can be
removed by subtracting the background of Hθ, which is
defined as the density of continuum states ρ0Nθ (E):

ρ0Nθ (E)=
1

π

N
∑

k

ε0Ik
(E−ε0Rk )

2
+ε0I

2

k

, (19)

where ε0k(θ)=ε
0R
k −iε0Ik are the eigenvalues of the asymp-

totic Hamiltonian H0
θ in the form of Hθ with r → ∞.

After subtracting the background of Hθ, we obtain the
continuum level density ∆ρ(E) as the difference between
the density of states ρNθ (E) and the density of continuum
states ρ0Nθ (E):

∆ρ(E)=ρNθ (E)−ρ0Nθ (E). (20)

Because the background of Hθ has been removed, the
continuum level density ∆ρ(E) is almost independent of
θ. Hence, it is more appropriate to explore resonances
by using the continuum level density ∆ρ(E) in the CGF
calculations. For the other systems in Ref. [13], Ω is the
projection of the total angular momentum in the axial
symmetry. It is no longer a good quantum number in the
present calculation, but the parity is still a good quan-
tum number, so we can diagonalize the Hamiltonian in
the subspace with the same parity.

3 Results and discussion

With the formalism in the previous section, we ex-
plore the resonant states in triaxially deformed nuclei.
In our calculations, the complex scaled Eq. (13) is solved
by expansion in the HO basis with 60 oscillator shells,
which is characterized by the parameter b0=1.8927 fm.
The b0 value belongs to the plateau in Ref. [19, 20],
where the resonance energy hardly varies with b0 on the
plateau. Since there is still no observable β value for
43S from experiment, the theoretical value of β=0.196 is
used for the moment, which is taken from the finite range
droplet model-2012 (FRDM2012) [21]. For convenience
of calculation, β = 0.2 is used in our calculation. The
parameters of the potential remain the same as those for
nucleus 43S, except the depth of the potential V0=−42.70
MeV, which is reduced by about 0.14 MeV from its stan-
dard value. This small reduction is made to reproduce
the neutron separation energy of 43S. For example, the
diffuseness is fixed at a=0.67 fm, r0=1.27 fm, and the
radius R= r0A

1/3, where A is a nuclear mass number.
Then we obtain the Sn value 2.66 MeV, which is appro-
priate for the calculation in the paper and close to 2.63
MeV, which is the Sn value of 43S in Ref. [22].

An illustrated example for the continuum level den-
sity ∆ρ(E) with negative parity is plotted in Fig. 1.
Based on the details in Ref. [23], we can determine the
resonance parameters like energy and width. The sharp
peak emerging in ∆ρ(E) represents a resonant state. The
energy of the resonant state can be expressed by the posi-
tion of the peak at the transverse axis. The distance be-
tween these two crossings corresponds to the width of the
resonant state. These two crossings occur at a horizontal
line at half the height of the peak. One crossing corre-
sponds to Er−Γ/2 and the other to Er+Γ/2. From Ref.
[12], the complex angle θ = 14.5◦ is the optimal value.
To further make the parameter appropriate, we list the
resonant energy with the change of θ from θ=10.5◦ to
15.5◦. We find the difference is very small, as shown in
Table 1. So θ=14.5◦ is adopted in the following CGF cal-
culations. In Fig. 1, the three peaks correspond to three
resonance states, which is different from the quadrupole
axial deformation with only one peak. The breaking of
axial symmetry is the reason why the continuum level
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density ∆ρ(E) has more than one peak.

Fig. 1. (color online) Variation of the eigenvalues
of ∆ρ(E) with θ for negative parity states, where
the complex scaling parameter θ varies from 10.5◦

to 14.5◦ in steps of 1◦, β =0.2, and the triaxial
deformation γ=30◦.

Table 1. Changes in the energy of resonant states
for the negative parity states with the complex
angle θ by the CGF method. The parameters are
the same as Fig.1.

θ Er/MeV Er/MeV Er/MeV

10.5◦ 1.3735 1.8109 3.5591

11.5◦ 1.3397 1.8118 3.5557

12.5◦ 1.3234 1.8125 3.5520

13.5◦ 1.3149 1.8132 3.5483

14.5◦ 1.3097 1.8135 3.5446

15.5◦ 1.3052 1.8128 3.5405

To further analyze the influence of the triaxial de-
formation parameters γ on the resonances, the resonant
states are shown with positive parity in Fig. 2. and Fig.
3. In the CGF calculations, the resonance parameters
are determined by the position and height of the reso-
nant peaks. With γ = 0◦, it comes back to an axially
symmetric quadrupole-deformed nucleus. There are five
resonant peaks corresponding to the degenerate 1g9/2 in
Fig. 2. As the triaxial deformation is increased, more
considerable variations can be seen in Fig. 3. One can
see that the resonances (with energy shown in green)
disappear as we proceed from γ=15◦ to γ=60◦. This
demonstrates that the triaxial deformation obviously af-
fects the creation or disappearance of resonant states.

For comparison, Fig. 4 shows the results from the
CSM calculations. In the CSM calculations, the reso-
nance parameters are determined by using the θ trajec-
tory. As one can see, it is difficult to identify which ones
are the resonances, but we also find the resonances close

to the Fermi surface. The CSM seems to be less able to
achieve level structures. In contrast, we can obtain the
resonance numbers and energy by the continuum level
density ∆ρ(E) conveniently and accurately, especially
for resonances close to the Fermi surface. For example,
the resonance energy at γ = 15◦ is 1.3657 MeV, which
impacts the level structure. In order to further illustrate
our results, we list the energy in several different triaxial
deformations in Table 2. It shows the CGF succeeds in
identifying them but the CSM fails. We see that it dis-
plays the resonance states clearly, and the lower energy
resonance states can be calculated. So the values deter-
mined from the resonant peak using this method should
be more reliable.

Fig. 2. (color online) Variation of the continuum
level density ∆ρ(E) with γ = 0◦ for the states
1g9/2. And the θ=14.5◦ β=0.2.

Table 2. Changes in the energy of resonant states
for the positive parity states with the γ values by
the CGF method. And the θ=14.5◦ β=0.3.

γ Er/MeV γ Er/MeV

5◦ 1.1483 10◦ 1.1711

15◦ 1.2077 20◦ 1.2559

25◦ 1.3114 30◦ 1.3668

35◦ 1.4091 40◦ 1.4233

45◦ 1.4117 50◦ 1.3925

55◦ 1.3714 60◦ 1.3572

In order to further understand of the origin of the
triaxiality, we show the single-particle levels in Fig. 5. In
the left- and right-hand panels, we show single-particle
levels with γ=0◦ and γ=60◦, respectively. In the mid-
dle panel, the neutron levels are plotted as functions of
deformation γ for a fixed value of β=0.3. The 2p3/2 and
1f7/2 levels degenerate at β=0.18 in the left-hand panel
of Fig. 5, so the 2p3/2 level determines the single neutron
separation energy Sn at β=0.2. In this way, the levels
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Fig. 3. (color online) Variation of the energy of resonant states for the positive parity states with the triaxial
deformation γ by the CGF method. Other parameters are the same as Fig. 2.

Fig. 4. Resonant states calculated using the results
obtained with the CSM. θ=14.5◦ β=0.2, and the
triaxial deformation γ=15◦.

have experienced the process of the spherical configura-
tion; we follow the single-nucleon levels, then for this
fixed value of β the path goes from γ = 0◦ to γ = 60◦

(middle panel) and finally, back to γ = 60◦. This level
structure is similar to the Nilsson diagram of single par-
ticle states in Ref. [24]. The traditional magic numbers
N=40, N=20, and the new magic number N=14, ap-
pear in this region. The N=40, N=20, N=14 shell gaps
vary and even vanish depending on β and γ. The three
shell gaps have gap energies of 2.9 MeV, 5.0 MeV, and
3.4 MeV respectively at a spherical shape. At large pro-

late deformation (β>0.3), the shell gaps are completely
lost. In the triaxially deformed region, the 1f7/2 and
2p3/2 levels which originate in the spherical region are
reversed for β=0.3 and γ=35◦. The N =28 shell gap
also emerges with approximately 2.5 MeV at spherical
shape, then gradually quenches in the deformed case.
From Fig. 5, the change of resonances can be clearly
observed. All of these intuitively show that the influence
of triaxial deformation on the energy level structure is
indispensable.

Considering that the width is an important physi-
cal quantity for the resonant states, it is meaningful to
study the influence of the triaxial deformation on the
width. Because γ values deeply affect the number of
resonances, we cannot get continuously changing width.
However, we can illustrate the influence by the following
examples. From the fourth line from the top in the mid-
dle panel in Fig. 5, the width of the positive parity is
1.7588 MeV with γ=30◦. For the triaxial deformation
with γ = 0◦ to 60◦, the deformation is maximum with
γ=30◦. In Ref. [12], it is known that such a broad state
is extremely unstable. But when the γ values become
35◦,55◦,60◦, the widths are 1.5073 MeV, 0.2268 MeV,
and 0.1247 MeV respectively. A rapid change happens
in width with increasing γ. The γ deformation plays
a very important role in state evolution. Because the
width is a reciprocal of lifetime [25, 26], it means the
lifetime of the resonant states become longer and longer
with increasing γ. This will be helpful to explore exotic
level structures.
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Fig. 5. (color online) Calculated single-particle levels with deformation as functions of the quadrupole deformation
parameters β and γ.

Fig. 6. (color online) Variation of continuum level
density ∆ρ(E) with different main shell numbers
of the harmonic oscillator basis N = 30,40, and
50,60 for one resonance of negative parity states,
with complex rotation angle θ = 14.5◦, γ = 15◦,
and β=0.2.

Although the CGF method is particularly suitable
to determine the resonance parameters with the triaxial
deformation, we still need to check the dependence of
the calculation on the basis size, because the presented
results are achieved by basis expansion with a finite num-
ber. In Fig. 6, we display the variation of the continuum
level density ∆ρ(E) with the size of the basis for one res-
onance of negative states with γ=15◦. For comparison,
we select the main shell numbers of the harmonic oscil-
lator basis N = 30,40,50,60. When N = 50,60, ∆ρ(E)
are almost coincident. This indicates that the positions

of the peaks corresponding to the energy of the resonant
states almost completely coincide. Actually, the contin-
uum level density ∆ρ(E) is independent of N as long as
the size of basis is large enough. So we choose N =60
to study the resonant states. This is also convenient and
compared to the quadrupole deformation.

4 Summary

In summary, we have used the complex scaled Green’s
function method to describe resonances characterized by
the quadrupole triaxial deformation parameter γ besides
the axial deformation parameter β. A theoretical formal-
ism has been presented in detail. Resonant states have
been explored by calculating the continuum level density
∆ρ(E) for 43S. We have explained why the continuum
level density is different from the axial symmetrical sys-
tem. We have checked the dependence of the continuum
level density on the complex scaling parameter θ and the
size of the basis, obtaining convergent results. In addi-
tion, we have investigated the influence of deformations
on the resonances. With the γ deformation, the posi-
tions and the numbers of resonance peaks both change.
We have also calculated the single-particle levels, which
show the effect of triaxial deformation on energy lev-
els. The reversal of energy level and the appearance of
magic numbers are affected by the quadrupole triaxial
deformation parameter γ, which is helpful to recognize
shell structure and its evolution in deformed nuclei. Es-
pecially, the width of the resonant states shows lifetime
evolution with deformation and is helpful to recognize
shell structure in exotic nuclei.
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3 P. Möller, R. Bengtsson, B. G. Carlsson, P. Olivius, and T.

Ichikawa, Phys. Rev. Lett., 97: 162502 (2006)
4 Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng,

Phys. Rev. C, 87: 054305, (2013)
5 M. Kimura, Y. Taniguchi, Y. Kanada-En’yo, H. Horiuchi, and

K. Ikeda, Phys. Rev. C, 87: 011301(R) (2013)
6 J. Xiang, J. M. Yao, Y. Fu, Z. H. Wang, Z. P. Li, and W. H.

Long, Phys. Rev. C, 93: 054324 (2016)
7 A. Bohr and B. R.Mottelson, Nuclear Structure (Benjamin,

NewYork, 1975), Vol. II.
8 S. Frauendorf and J. Meng, Nucl. Phys. A, 617: 131 (1997)
9 J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C,

73: 037303 (2006)
10 J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S.
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