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Asymptotic-de sitter inflation in the light of the planck data *
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Abstract: Planck 2015 data, emphasize that the background geometry during inflation is not pure de Sitter, but

from the slow variation of Hubble parameter during the inflationary era, it can be quasi-de Sitter. This motivates

us to consider an Asymptotic-de Sitter mode function for reconstructing of initial mode and primordial power spec-

trum of curvature perturbation. Using Markov Chain Monte Carlo (MCMC) method together with applying recent

observational constraints from the Cosmic Microwave Background (CMB) data for the parameterized asymptotic

initial mode in term of c, show some deviation from Bunch-Davies mode (c=1). Based on Planck 2015 data release

the amplitude of scalar perturbations in 68% confidence level is 109As=2.94+0.42
−0.42 and deviation from Bunch-Davies

mode is ∼ 0.05, i.e. c∼ 1.05. In this parametrization, the CMB power spectrum of our model shows more red-tilt

in comparison with ΛCDM model. Furthermore, we found upper limits for tensor-to-scaler ratio with different pivot

scales.
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1 Introduction

Observation of the Cosmic Microwave Background
Radiation (CMBR) give us a good opportunity to test
the new theoretical models of early universe. The infla-
tionary scenario is a robust theoretical framework which
prepares a physically causal mechanism for large-scale
structure formation [1]. During the period of inflation,
very small causally connected regions are expanded ex-
ponentially due to the inflationary expansion of the uni-
verse [2–5]. In this way, inflation magnifies amplitude
of all tiny quantum fluctuations and therefore, the fre-
quencies of fluctuations are shifted to the red part of the
spectrum.

One of the main predictions of this theory is primor-
dial curvature perturbation which leads to an imprint on
the observed CMBR. Indeed, the pattern of the CMB
angular power spectrum is dependent on the particular
inflationary model. Therefore, by considering a primor-
dial power spectrum, one can calculates numerically the
angular power spectrum of the CMB, and thus a pa-
rameterized primordial curvature spectrum can be com-
pared with CMB data [6]. For example, the power-law
parametrization of power spectrum with a running index

is the simplest parameterized model which is mostly con-
sistent with the CMB data. Other parameterizations,
motivated by the theoretical models or observed data
such as broken power spectrum [7, 8]and cut-off at large
scales [7, 9, 10] are suggested.

On the other hand, the initial state of primordial
fluctuations can affect their statistical properties such
as power spectrum. Motivated by this fact together with
observational data released by WMAP and Planck, some
studies reveal that the initial state effects may be from
pre-inflationary evolution [11–13]; or from a non-singular
bounce as studied in [14, 15]; or from trans-Planckian
physics [16, 17], or from the string theory effects [18, 19]
and so on.

In general, it is assumed that these tiny quantum
fluctuations begin in a minimum energy state which is
called Bunch-Davies (BD)vacuum state [20]. Since, we
have not enough information about the pre inflationary
era, there is no exact reason for the selection of initial
BD vacuum [21–24]. In addition to these studies, the
CMB anisotropy measured by the Planck, offers an ap-
proximately de Sitter geometry for unknown physics era
[25]. So, it is claimed that one can assumes, the initial
state of quantum fluctuations deviates from BD state.
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Now, the key question is, how much is the deviation
from the pure de Sitter geometry? The Answer of this
important question, stimulates us to probe the shape of
new initial mode function, named Asymptotic-de Sitter
mode. First time, this mode is proposed based on consid-
ering an expansion form of Hankel function up to second
order with respect to 1/kτ [26].

Afterward, the authors in [27, 28], parameterized this
mode in terms of Hankel function index i.e. ν, and dis-
cussed on asymptotic method for selection of the gen-
eral form of mode functions in the inflationary back-
ground. Another possibility (i.e. excited state) consid-
ered in [29, 30], showed that this non-trivial initial mode
of field equation which is introduced for nearly de Sit-
ter background, leads to the higher order corrections in
primordial scalar power spectrum or appears the cut-off
scale in it [31].

It is well known, considering a model by strong de-
viation from de Sitter background, leads to the lack of
cosmological inflation idea. So, the new mode is param-
eterized in a way that it approaches asymptotically to
the standard de Sitter mode in the first approximation.
It is clear that a specific initial time τ0, at the begin-
ning of inflation, the choice of initial mode is completely
arbitrary. But, the quasi-de Sitter form of background
of the inflationary expansion, confirmed by recent obser-
vation, motivates us to apply this mode. Actually, our
mode is defined for early time limit and it can use as a
correction to the BD mode. In addition, it was proved
that this mode do not generate any back-reaction effect
in this limit [28].

In this work, in order to constrain our model param-
eters and reconstruct the power spectrum of curvature
perturbations and Asymptotic-de Sitter mode, we per-
form MCMC analysis using the recent Planck 2015 tem-
perature data. The results show that, our CMB spectra
has more red-tilt compared with ΛCDM model, which
can be due to the increase in fluctuations correlation,
which is predicted by our model [32]. Also, unlike the
large tensor-to-scalar ratio value (r∼0.2) released by BI-
CEP2, we have found that r value for our tensor mode
spectra, i.e. r0.05<0.059 and r0.002<0.006, is confirmed
by Planck 2015 results.

Our work is organized as follows: In Sec. 2 the cos-
mological perturbation theory and general Asymptotic-
de Sitter mode is briefly reviewed. In Sec. 3 we derive
the parameterized power spectrum of curvature pertur-
bation. Afterward, we compare model with Planck TT
data and ΛCDM model. In Sec. 4 the results of the
CMB analysis and upper bound to tensor-to-scalar ratio
are given. Finally, we conclude in Sec. 5.

2 Cosmological perturbations with

asymptotic-de sitter mode function

2.1 Quantum fluctuations in inflationary back-

ground

From the perspective of effective field theory, un-
known physics effects as trans-Planckian effects, can ap-
pear in the background geometry as well as the initial
state of quantum fluctuations of scalar field and its evolu-
tion. So, we can make departure from homogeneous uni-
verse and consider the perturbed metric with two more
degrees of freedom, Φ(τ,x) and Ψ(τ,x). The line ele-
ment of perturbed metric based on these functions can
be written as

ds2=−(1+2Φ)dt2+a2(t)(1−2Ψ)dx2

=a2(τ)(−(1+2Φ)dτ 2+(1−2Ψ)dx2), (1)

where Φ and Ψ coincide with gauge-invariant potentials
in the conformal-Newtonian gauge. On the other hand
the inflaton field fluctuates about its homogeneous back-
ground part during inflation as

φ(τ,x)=φ0+δφ(τ,x), (2)

where φ0 is homogeneous part of the field. Because of
Einstein field equation, the fluctuations of metric and
perturbed part of inflaton field are related to each other
by using Mukhanov variables v and z in gauge invariant
formalism in the following form

v=aδφ+zΦ, (3)

where z=aφ0/H . It is considered, the dynamics of quan-
tum fluctuations are governed by following action [2]

S=
1

2

∫

d3xdτ

(

(v′)2−(∇v)2+
z′′

z
v2

)

. (4)

So the equation of motion in Fourier space for primordial
scalar perturbations in gauge invariant formalism is

v′′
k+

(

k2−z′′

z

)

vk=0, (5)

where prime denotes derivative with respect to confor-
mal time τ and vk(τ) is the Fourier mode of quantum
field

v̂(τ,x)=

∫

d3k

(2π)3/2
(

âkvk(τ)e
ik.x+â†

kv
∗
k(τ)e

−ik.x
)

, (6)

where âk (â†
k) is annihilation (creation) operator.

2.2 Power spectrum of curvature perturbation

with BD mode

Considering pure de Sitter geometry during inflation
for space-time expansion leads to the following equation
for time evolution of mode function

v′′
k+

(

k2− 2

τ2

)

vk=0. (7)
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In order to coincide solutions with the BD mode, the
initial conditions i.e. τ→−∞,vk(τ)→ eikτ

√
k

and normal-
ization condition W [u∗

k,u
′
k] = −i are imposed to them.

Then the solution of (7), named BD mode, takes the
following form

vBD
k =

1√
2k

(

1− i

kτ

)

e−ikτ . (8)

The power spectrum of curvature perturbation in gauge
invariant formalism on super-horizon scales is

PR(k)=
k3

2π2

∣

∣

∣

vk
z

∣

∣

∣

2

. (9)

So, for BD mode

PR(k)=

(

H

2π

)2(
H

φ̇0

)2

. (10)

2.3 Asymptotic-de Sitter modes for scalar per-

turbation

One of the main aspects of the initial condition for
inflation is the choice of the initial vacuum state at the
beginning of the inflationary phase. Indeed, the vacuum
state can be fixed by choosing proper initial mode func-
tion. In the limit of quasi-de Sitter inflation the quantity
z′′

z
is not equal to 2

τ2
, and one can rewrite the mode equa-

tion (5) as

v′′
k+

(

k2−ν2−1/4

τ2

)

vk=0. (11)

So the general solution for vk(τ) is

vk=

√
πτ

2

(

AkH
(1)
ν (|kτ |)+BkH

(2)
ν (|kτ |)

)

. (12)

For ν= 3
2
we have pure de Sitter mode up to first order of

1/|kτ |, but for ν≈ 3
2
and the early time limit of the uni-

verse |kτ |≫1, we can use the expansion form of Hankel
function up to the higher orders of 1/|kτ | [26, 28, 29].
So, we generate a whole family of modifications of the
usual de Sitter mode function in terms of the parameter
c and conformal time τ as [28]

vgen
k =

Ake
−ikτ

√
2k

(

1− ic

kτ
− d

k2τ2
+...

)

+

Bke
ikτ

√
2k

(

1+
ic

kτ
− d

k2τ2
+...

)

, (13)

where by considering initial condition and Wronskian of
solutions we obtain the positive frequency mode function
which is called Asymptotic-de Sitter Mode [28] as

vAsymp
k =

e−ikτ

√
2k

(

1− ic

kτ
− d

k2τ2

)

. (14)

Substitution of this solution in (11) concludes that

c=
4ν2−1

8
, d=

c(c−1)

2
. (15)

As we can see, the general mode (14) is a function of
both parameters τ and c, so the choice of initial vacuum
not only depend on conformal time τ , but also depend
on the value of c (type of the geometry [28]).

3 Reconstruction of asymptotic-de Sit-

ter mode

3.1 Parametrization of primordial curvature

perturbation

In order to reconstruct the primordial power spec-
trum of curvature perturbation, at first we should cal-
culate PR by substituting new mode function (14) into
relation (9). As a result we can find primordial power
spectrum of scalar perturbation as

PR(k)=
H2

8π2ǫM 2
Pl

[

c+
d2

(kτ∗)2

]

, (16)

by consideration of Λ=−kHτ∗ with condition H≪Λ<
MPl that τ∗ is an initial fixed time that first used for
calculation of power spectrum [34], we can rewrite

PR(k)=
H2

8π2ǫM 2
Pl

[

c+d2

(

H

Λ

)2
]

.

On the other hand, in the quasi- de Sitter inflation the
Hubble parameter is scale dependent as

H

H∗
∼
(

k

k∗

)−ǫ

, (17)

whereH∗ is the Hubble parameter correspond to the par-
ticular scale k∗, when the perturbation with this scale
exits the horizon [33]. In practice, we choose k∗ as a
pivot scale which is the largest observable scales exited
the horizon at first. Substituting (17) into (16) yields

PR(k)=
H2

8π2ǫM 2
Pl

[

c+

(

d2H2
∗

Λ2

)(

k

k∗

)−2ǫ
]

. (18)

In next step, we can rewrite the formula (18) in form of
a parameterized power spectrum

PR(k)=
AS

[c+Γ∗d2]

[

c+Γ∗d
2

(

k

k∗

)−ξ
]

, (19)

where AS =
H4

4π2φ̇2
0

is the scale invariant power spectrum

and Γ∗=
(

H∗

Λ

)2
and ξ=2ǫ. Within this parametrization,

we employ four free parameters i.e. AS,c,Γ∗,ξ which the
parameter c has a main role among them. Indeed, the
main goal of this study is to explore a tiny deviation
from pure de Sitter geometry (i.e. c=1) in the inflation-
ary background, which as expected is fond by estimation
of the parameter c.
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3.2 CMB power spectrum of scalar modes

The CMB power spectrum are given by [6]

Cℓ=(4π)2
∫

dkk2Tℓ(k)T
′
ℓ(k)PR(k). (20)

To calculate power spectrum for our model we need to
solve Einstein-Boltzmann set of equations. For this pur-
pose we have modified the publicly available Einstein-
Boltzmann code CAMB [35] to compute power spectrum
of anisotropies with modified primordial power spectrum
which is parameterized according to (19). In Fig. 1 we see
temperature anisotropy power spectrum of scalar modes
Dℓ = ℓ(ℓ+1)Cℓ/2π in comparison with Planck data and
ΛCDM model. Obviously model shows consistency with
observation but has greater ISW power spectrum than
ΛCDM.
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Fig. 1. (color online) Upper panel: Power spec-
trum of temperature anisotropy Cℓ for model in
comparison with ΛCDM model and Planck TT
data. Our model shows more red-tilt than ΛCDM
for small multiples ℓ. Lower panel: Residue of
model with respect to ΛCDM and observational
data.

3.3 CMB power spectrum of tensor mode per-

turbations

Unlike the E-mode component of the CMB temper-
ature anisotropy, the B-mode polarization anisotropy is
sourced by tensor perturbation. As discussed in [2] , the
tensor mode function of perturbations are also given by
Hankel function. So, a similar analysis to scalar mode
can be repeated to achieve tensor perturbations spectra
by employing Asymptotic-de Sitter mode function. In
the usual single-field inflation, the tensor mode spectrum
is in this form

Ph=
2

MPl

Pφ, (21)

where Pφ=
k3

2π2 |vk|2 is the scalar mode power spectrum.
Substituting (14) into definition of Pφ, yields

Ph=
H2

2π2M 2
Pl

[

c+Γ∗d
2

(

k

k∗

)−ξ
]

. (22)

By parametrizing this result same as the scalar mode
(i.e. (19)) we have

Ph=
AT

[c+Γ∗d2]

[

c+Γ∗d
2

(

k

k∗

)−ξ
]

. (23)

In Fig. 2 we have shown tensor power spectrum for
different values of tensor-to-scalar ratio r.

Fig. 2. (color online) The tensor power spectrum
of model with different values of tensor-to-scalar
ratio.

4 Estimation of cosmological parameters

We explore the parameter space by Monte Carlo code
for Cosmological Parameter extraction CosmoMC [36]
connected to the modified version of Einstein-Boltzmann
code CAMB.

4.1 Observational constraints from Planck data

As it mentioned in previous sections we modified
CAMB code to calculate power spectrum. To estimate
parameters we joined CAMB program with Monte Carlo
code CosmoMC.

The Markov Chain Monte Carlo (MCMC) method is
an iterative algorithm that sample parameter space from
a prior distribution on given parameters, by construct-
ing a Markov chain, that samples the desired posterior
distribution.

CosmoMC is a Fortran MCMC code for exploring
cosmological parameter space. The code does compute
accurate theoretical matter and CMB power spectra with
the aid of CAMB code. It then produces a set of chain
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files that includes the chain values of the cosmological pa-
rameters requested, and it comes together with a Python
tool, GetDist, that analyzes the chain files [37].

We assume spatially flat geometry for background
and set pivot scale to k∗ = 0.05 Mpc−1 in our analy-
sis. To determine best-fit values and confidence ranges
we used CMB temperature fluctuations angular power
spectra from Planck 2015.

Our parameter space contains 8 parameters

Θk : Ωbh
2,Ωch

2,θ,AS,Γ∗ξ,c,τopt

The best-fit values of cosmological parameters, and
their 1σ marginalized limits from Planck are reported in
Table 2. It is clear that, (Table 2) early-time observation
(CMB) gives parameters with more accuracy.

Table 1. Prior on parameter space, used in the pos-
terior analysis in this paper.

parameter prior shape of PDF

Ωbh
2 [0.005−0.100] Top-Hat

Ωch
2 [0.001−0.990] Top-Hat

c [0.85−1.15] Top-Hat

θ [0.5−10] Top-Hat

Γ0 [0.92−1.1] Top-Hat

ξ [0.01−0.1] Top-Hat

ln(1010As) [2.000−4.000] Top-Hat

τopt [0.01−0.8] Top-Hat

Table 2. Bayesian 68% confidence limits for model
based on Planck TT with k∗=0.05 Mpc−1.

parameter Planck TT

Ωbh
2 0.02159+0.00018

−0.00028

Ωch
2 0.11182+0.00095

−0.0024

Ωm 0.270+0.015
−0.017

100θMC 1.04129+0.00088
−0.00083

109AS 2.94+0.42
−0.42

c 1.0535+0.0089
+0.0010

104Γ∗ 1.01109−0.00068
−0.013

ξ 0.02952+0.00057
−0.0016

τopt 0.207+0.035
−0.022

r <0.0588

Table 3. Bayesian 68% confidence limits for model
based on Planck TT with k∗=0.002 Mpc−1.

parameter Planck TT

Ωbh
2 0.02157+0.00018

−0.00026

Ωch
2 0.11211+0.00062

−0.0027

Ωm 0.278+0.045
−0.024

100θMC 1.04092+0.00089
−0.00085

109AS 2.94+0.45
−0.55

c 1.0608+0.0014
−0.0019

104Γ∗ 1.00972+0.00078
−0.00027

ξ 0.0324+0.017
−0.0041

τopt 0.207+0.032
−0.024

r <0.00625

For k∗ =0.05 Mpc−1 we have Table 2 and For k∗ =
0.002 Mpc−1 we have Table 3.

4.2 Upper bound on r

Now, we are going to imply the Planck constraint on
tensor mode perturbations. As a definition, the standard
primordial tensor-to-scalar ratio at the pivot scale is

r=
Ph(k∗)

PR(k∗)
, (24)

where Ph(k∗) = AT = 2H2

π2M2

Pl

and PR(k∗) = AS [5]. The

constraints on tensor-to-scaler ratio based on Planck full
mission data by assuming two cases, with k∗ = 0.05
Mpc−1 is:

r0.05<0.059, (25)

and with k∗=0.002 Mpc−1 is:

r0.002<0.006. (26)

Planck team in 2015 data release reported an upper limit
for this ratio r0.002<0.11 [25] which our results is consis-
tent with their result.

5 Summary and conclusions

In this paper we examined the cosmological inflation-
ary model with a asymptotic-de Sitter geometry. In-
deed, we reconstructed the shape of primordial curva-
ture spectra and Asymptotic-de Sitter mode function
corresponding to quantum fluctuations. To check con-
sistency of model with cosmological observations a max-
imum likelihood analysis was performed by using pub-
licly available MCMC code CosmoMC. Primordial power
spectrum of model is parameterized with c,As,Γ∗,ξ and
from Planck 2015 data the best-fit of parameters are:
Ωbh

2=0.02159+0.00018
−0.00028 , Ωch

2=0.11182+0.00095
−0.0024 , 109As=

2.94+0.42
−0.42 , c=1.0535+0.0089

+0.0010 , 104Γ∗=1.01109−0.00068
−0.013 and

ξ=0.02952+0.00057
−0.0016 . Also upper bound on tensor to scalar

ratio is r<0.0588.
The results indicated that the initial mode, depended

to parameter c, has a slight deviation i.e. ∼0.05−0.06,
from Bunch-Davies mode. Conclusively, the new CMB
anisotropy spectrum shows more red-tilt in comparison
with scale invariant CMB spectrum. This discrepancy
between new spectrum and ΛCDM in the low ℓ limit
(ℓ<10) is sensible because, amplitude of primordial fluc-
tuations predicted by our model is higher than the other
one. Moreover, by applying Planck constraint on the free
parameters of our model, we achieve to the new limit for
tensor to scalar ratio during inflation when the scales of
perturbations is equal to pivot scale.
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