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Chiral crossover transition in a finite volume *
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Abstract: Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are

studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary

condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral

symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-

transition temperature Tc of the crossover, showing a significant decrease in Tc as L decreases below 3 fm.
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1 Introduction

It is widely believed that the universe went through
a quark epoch approximately 10−12 seconds after the
Big Bang, when the quarks and gluons formed a quark-
gluon plasma (QGP) state at extremely high tempera-
ture. Nowadays, heavy ion collisions (HICs) at CERN
(France/Switzerland), BNL (USA), and GSI (Germany)
can reproduce such a state in the laboratory [1, 2]. It is
found that QGP consists of unbound quarks/gluons and
behaves as a nearly perfect fluid with low viscosity [3, 4].
On the theory side, nonperturbative QCD methods such
as lattice QCD and effective theories have identified color
de-confinement and chiral symmetry restoration in QGP
[5–7], along with its many thermodynamic properties,
e.g., its equation of state and various response functions
[8–10]. The interplay between HIC experiments and the-
oretical studies will help us understand the profound
phase structure of strongly interacting matter.

However, it should be noted that in HICs the QGP
system produced always has a finite size. Depending
on the collision nuclei, the center of mass energy and the
centrality, the volume of the system varies. For example,
analysis based on the UrQMD transport approach [11]
shows that the volume of homogeneity before freeze-out
for Au-Au and Pb-Pb collisions ranges between approx-

imately 50 ∼ 250 fm3 [12]. There is also an estimation
[13] that the volume of the smallest QGP system pro-
duced at RHIC could be as low as (2 fm)3. Therein the
authors argue that finite volume effects could be rele-
vant in the context of HICs, i.e., smoothening those sin-
gularities and generating shifted peaks and pseudocriti-
cal observables, and the information in thermodynamic
limit (infinite volume) of QCD may be extracted with
the finite-size scaling (FSS).

Finite volume effects in the thermodynamics of strong
interactions have therefore been the subject of extensive
theoretical interest. Chiral perturbation theory has in-
vestigated the implications of finite system size in vari-
ous aspects [14–16], including the shift of pion mass and
chiral quark condensate. This problem is further dis-
cussed using the renormalization group methods in the
framework of the quark-meson model [17, 18]. Therein
the non-negligible finite volume corrections to the chi-
ral phase diagram are also addressed. The PNJL model
obtained similar results [19–21] and further studied the
volume dependence in quark number and isospin number
susceptibilities.

In this connection, we employ the Dyson-Schwinger
equations (DSEs) formalism to study the QCD chiral
crossover transition at finite temperature and finite vol-
ume by solving the quark gap equation. It is a suit-
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able QCD-connected non-perturbative formalism since it
takes the quarks and gluons as the fundamental degrees
of freedom, with key features like color confinement and
dynamical chiral symmetry breaking (DCSB) preserved.
Numerous successes in hadron physics [22] and the QCD
phase diagram [23, 24] have been achieved, including the
aforementioned finite volume effects on the shift of pion
mass and chiral condensate [25], but those studies were
all for zero temperature. In this work, we will general-
ize the DSEs study to both finite temperature and finite
size.

Recently, the importance of choosing the proper
boundary conditions in finite volume effect studies has
been re-emphasized in Ref. [26]. We want to point out
that consistent results from the aforementioned model
studies are all obtained based on a specific boundary con-
dition, which requires the fields to take the same bound-
ary condition in their spatial and temporal directions.
We will explain this in detail in the next section.

This paper is organized as follows. In Section 2 we
introduce the quark gap equation at finite temperature
and finite volume. The spatial boundary conditions will
be discussed. Then in Section 3 we study the volume
effects on the transition behavior of QCD at finite tem-
perature by calculating the quark chiral condensate and
chiral susceptibility. Finally we summarize our results
and give conclusions in Section 4.

2 Quark gap equation in a finite volume

The quark gap equation, namely the Dyson-
Schwinger equation for the quark propagator, is a non-
perturbative equation essentially describing the motion
of a two-point quark Green’s function. The quark gap
equation at finite temperature in an infinite volume reads

[G(~p,ωn)]
−1 = [G0(~p,ωn)]

−1+T
∞
∑

l=−∞

∫

d3q

(2π)3

×

[

g2Dµν(~p−~q,ωn−ωl)
λa

2
γµG(~q,ωl)Γ

a
ν

]

,

(1)

where G(~p,ωn) is the fully dressed quark propagator
at finite temperature and G0(~p,ωn) is the free one.
The quark’s Matsubara frequency is {ωn=nπT , n =
±1,±3,...}, satisfying the anti-periodic boundary condi-
tions for a fermion field in the temporal direction. From
Eq. (1), the gluon’s Matsubara frequency is {Ωn=nπT ,
n = 0,±2,...}, so the periodic boundary conditions for
the boson field are naturally satisfied. Since we will use
gluon models that are heavily suppressed in the ultra-
violet region, the integral/summation on the right-hand
side of Eq. (1) is convergent and therefore no renormal-
ization procedure is needed. The quark propagator at

finite temperature can generally be decomposed as [27]

G−1(~p,ωn;T ) = i~γ·~pA(~p 2,ωn;T )+I4B(~p 2,ωn;T )

+iγ4ωnC(~p
2,ωn;T ), (2)

where A,B and C are scalar functions. Note that for the
free quark propagator G0(~p,ωn), the scalar functions are
A=1, B=m and C =1, where m is the current quark
mass.

At finite volume, e.g., a cubic box of volume L3,
the fields are constrained by spatial boundary condi-
tions. However, unlike the thermal Matsubara frequen-
cies, which are fixed by the statistics of the fields, there
is no such restriction for the boundary conditions in the
spatial directions. For the quark fields, popular bound-
ary conditions include the periodic boundary condition
(PBC) and anti-periodic boundary condition (APBC)
[14]. For the PBC the momentum ~p takes discretized
values as

~pn=
∑

ni=0,±2,±4,...

niπ/Lêi, (3)

while for the APBC

~pn=
∑

ni=±1,±3,...

niπ/Lêi, (4)

where êi are the Cartesian unit vectors in Euclidean mo-
mentum space. The PBC tends to reduce the finite
volume effect and surface effect, and hence is favored
by lattice QCD simulations aiming for the thermody-
namic limit. On the other hand, the APBC for quarks is
widely employed in model studies, as introduced in the
last section. The authors of Ref. [14] pointed out that
in a practical effective model study, one should choose a
specific boundary condition which requires the fields to
take the same boundary condition in their spatial and
temporal directions. In our case, the quark should take
the APBC and the gluon should take the PBC. This
has the powerful consequence that the partition func-
tion allows a permutation symmetry of the spatial and
temporal directions, i.e., L and β=1/T . The symmetry
carries over to the Lagrangian, rendering temperature-
and volume- independent coupling constants. In this
sense, we can directly generalize our study to finite vol-
ume without tuning the model parameters which were
determined at infinite volume. We therefore employ the
APBC for quarks (the gluons automatically take the
PBC in Eq. (6)) throughout our calculations in this work.

Discretizing the momentum in Eq. (1) and using
∫

dp3

(2π)3
(···)→

1

L3

∞
∑

nj=−∞

(···), (5)

the quark gap equation at finite temperature and finite
volume can be obtained
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[G(~pn,ωn)]
−1 = [G0(~pn,ωn)]

−1+
T

L3

∞
∑

lj ,l=−∞

[

g2Dµν( ~pn−~ql,ωn−ωl)
λa

2
γµG(~ql,ωl)Γ

a
ν

]

. (6)

The quark propagator is then decomposed as

G−1(~pn,ωn;T ) = i~γ·~pnA(~pn,ωn;T )+I4B(~pn,ωn;T )

+iγ4ωnC(~pn,ωn;T ). (7)

There are several symmetries lying in these scalar func-
tions F = A, B or C. Although there is no longer
O(3) symmetry in the spatial directions, there are still
some left. For example, if we denote F(~pn,ωn;T ) =
F(n1,n2,n3,ωn;T ), then one could expect the reflection
symmetry to hold, leading to

F(n1,n2,n3,ωn;T )=F(±n1,±n2,±n3,ωn;T ). (8)

Further, the scalar functions F are invariant under the
permutation of n1,n2 and n3

F(n1,n2,n3,ωn;T )=F({n1,n2,n3},ωn;T ), (9)

where {n1,n2,n3} is any possible permutation of n1,n2

and n3. We also have in the temporal direction that
ωn→ω−n brings F to its complex conjugate [27],

F(n1,n2,n3,ωn;T )=F
∗(n1,n2,n3,ω−n;T ). (10)

We will show later that these relations allow a large
reduction of the independent F(n1,n2,n3,ωn;T ) space,
greatly optimizing the numerical computation.

To solve the quark gap equation Eq. (1) or Eq. (6),
truncations are indispensable. Here we follow Ref. [10]
and employ the Rainbow truncation

Γ a
ν (p,q)=

λa

2
γν . (11)

Despite it being a great simplification, as far as we
know there is no improvement to Eq. (11) that gives
any qualitatively different results concerning the chiral
phase transition. We also employ the gluon propagator
model known as the Maris-Tandy model [28], which has

achieved great success in hadron physics,

g2Dµν(Q
2)=

4π2

ω6
De−Q

2/ω2

(Q2δµν−QµQν). (12)

In Ref. [10], we sketched the QCD phase diagram with
this model using the preferred parameters ω=0.45 GeV
and Dω = (0.8 GeV)3. As is apparent in Eq. (12), we
choose the Landau gauge, which is a fixed point of the
renormalization group. It gives less sensitivity to model-
dependent differences between Ansatze for the fermion-
gauge boson vertex, and hence is widely used in Dyson-
Schwinger equation studies.

3 Finite volume effects on QCD chiral

diagram at finite temperature

In this section, we discuss the chiral phase diagram
at finite temperature and finite volume. Especially, we
will investigate the quark chiral condensate, which is the
order parameter of chiral symmetry restoration in the
chiral limit (m=0) and a good indicator of DCSB be-
yond the chiral limit (m 6= 0). The crossover behavior,
along with the pseudo-transition temperature and vol-
ume dependence, will be shown.

We first solve the quark gap equations. At infinite
volume, the solution to Eq. (1) with model Eq. (12)
has been presented in Ref. [10], where the details can
be found. Here, we focus on Eq. (6) at finite vol-
ume. The procedure is to insert Eqs. (7, 11, 12) into
Eq. (6), multiply each side by −i~pn ·~γ, I4 and −iωlγ4

respectively, and then take traces on both sides. We
have abbreviated pn = (pn1

,pn2
,pn3

,ωn) ≡ (~pn, ωn) and
ql = (ql1 ,ql2 ,ql3 ,ωl)≡ (~ql, ωl). For the scalar functions,
F(~pn,ωn;T ) = Fp and F(~ql,ωl;T ) = Fq. The following
coupled non-linear equations can then be obtained:

~p2
nAp=~p

2
n+

∞
∑

li,l=−∞

C(T,n,l)
Aq (~pn·~ql [(pn−ql)

2+2(~pn−~ql)
2]−2(~pn×~ql)

2)+2Cq[(~pn−~ql)
2+~pn·~ql ]

A2
q~q

2
l +B

2
q+C

2
qω

2
l

, (13)

Bp=m+

∞
∑

li,l=−∞

C(T,n,l)
3Bq(pn−ql)

2

A2
q~q

2
l +B

2
q+C

2
qω

2
l

, (14)

ω2
nCp=ω

2
n+

∞
∑

li,l=−∞

C(T,n,l)
2Aq(~pn·~ql−~q

2
l )ωn(ωn−ωl)+Cqωnωl[(pn−ql)

2+2(ωn−ωl)
2 ]

A2
q~ql

2+B2
q+C

2
qω

2
l

, (15)

C(T,n,l)=
4

3

T

L3

4π2

ω6
De−(pn−ql)

2/ω2

. (16)
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These coupled non-linear equations can be numerically
solved by iteration. As mentioned in last section, re-
garding Eqs. (8,9,10) the number of truly independent
F(n1,n2,n3,ωn) is much less than naively expected. For
example, in a practical computation the typical choice
is for ni and n to vary between around [−15,15]. This
would require about 200,000 F(n1,n2,n3,ωn)’s for itera-
tion, while one can reduce the number to about 10,000
using Eqs. (8)–(10), rendering the computation practi-
cable.

Now we can look at the chiral quark condensate 〈ψ̄ψ〉
which characterizes the DCSB. Using the fully dressed
quark propagator, it can be calculated as [24]

−〈ψ̄ψ〉L=NcNf

T

L3

∞
∑

ni,n=−∞

Tr[G(~pn,ωn;T )−G0(~pn,ωn;T )].

(17)

The −〈ψ̄ψ〉L’s at different L’s are plotted in Fig. 1,
with a few things noticeable. Firstly, when L > 3 fm,
−〈ψ̄ψ〉L is indistinguishable from that at L=∞. This is
natural since the finite volume effects should gradually
diminish as the volume increases and finally approaches
the thermodynamic limit. The quark meson model [18]
also found that when the pion mass m

π
> 200 MeV,

the results approach the infinite volume limit as L> 3
fm. However, this is only at finite temperature. If a
finite chemical potential is introduced, the QCD T−µ
phase diagram, especially the location of the critical end
point (CEP), would approach the thermodynamic limit
at larger L, as exemplified in Ref. [17]. Since the size of
the HIC created fireball could go as low as (2 fm)3, these
calculations could be relevant. Secondly, −〈ψ̄ψ〉L gener-
ally decreases as L decreases below 2.5 fm. This behavior
is consistent with early findings. For example, the au-
thors of Ref. [25] studied the quark gap equation at finite
volume with zero temperature. They found the dynam-
ical quark mass generation rises rapidly until it reaches
a plateau at L= 2 fm. In particular, this behavior is
qualitatively consistent with lattice QCD computations
in the case of Nf=3 and Nf=2+1 at finite temperature
[30, 31]. Note that in lattice QCD the PBC for is com-
monly employed for the quark field . In our case, this
behavior can be easily understood if one realizes that
the APBC allows the permutation symmetry of L and
β = 1/T in the partition function. Therefore −〈ψ̄ψ〉L
should have the same monotonicity for L and β, namely,
−〈ψ̄ψ〉L decreases as L decreases and/or T increases.

We further look at the chiral susceptibility

χm
L
(T )=−

∂

∂m
〈ψ̄ψ〉L (18)

to study the crossover behavior at finite temperature
and finite volume. The size dependence are plotted in
Fig. 2. We denote the maximum of these curves as the

pseudo-critical temperature Tc. While the definition of
Tc with respect to different susceptibilities brings ambi-
guities, the values of the Tc’s will not differ much. Es-
pecially, the shift of Tc’s in L will not be qualitatively
altered. When approaching the thermodynamic limit we
have Tc=165 MeV, close to the lattice QCD simulation
value Tc=154(9) MeV [29]. There is then a sizable de-
crease in Tc from 165 MeV to 120 MeV while the system
size decreases from 3 fm to 1.8 fm, as listed in Table 1.
This result is also consistent with the quark-meson model
study [18]. In this connection, we think the finite volume
effects could be non-negligible for the small QGP systems
created in peripheral collisions.

Fig. 1. (color online) The chiral quark condensate
−〈ψ̄ψ〉L at different volumes. The black solid line
displays the result at L=3.0 fm, with the dashed
(blue), dot-dashed (green), and dotted (red) lines
corresponding to L=2.5, 2.0, 1.8 fm respectively.
The curve for L = ∞ is indistinguishable from
L=3 fm and hence not plotted.

Fig. 2. (color online) The chiral susceptibility
χmL (T ) at different volumes. The black solid line
displays the result at L=3.0 fm, with the dashed
(blue), dot-dashed (green), and dotted (red) lines
corresponding to L=2.5, 2.0, 1.8 fm respectively.
The curve for L = ∞ is indistinguishable from
L=3 fm and hence not plotted.
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Table 1. Pseudo-critical temperature Tc at differ-
ent sizes L.

L/fm 1.8 2.0 2.2 3.0

Tc/MeV 122 141 153 165

4 Summary

Based on the QCD-connected DSEs formalism, we
have investigated the finite volume effects on the chi-
ral crossover transition of QCD at finite temperature by
solving the quark gap equation in a cubic volume of finite
size L. The merit of the quark’s anti-periodic boundary
condition is highlighted. Our calculation shows the chi-

ral quark condensate decreases as L decreases below 2.5
fm. This is understood with the permutation symmetry
of L and β=1/T in the partition function. We further
studied the finite volume effects on the pseudo-critical
temperature Tc of the crossover, showing a decrease in
Tc as L decreases. The qualitative behavior is in agree-
ment with existing model studies [17, 18, 25] and lattice
QCD computations [30, 31]. Our results therefore im-
ply that finite volume effects could be non-negligible for
peripheral collisions in HICs. The theoretical framework
and techniques we developed can readily be applied to
more complicated situations such as studying the whole
T−µ QCD phase diagram.
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