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Ground-state properties of light kaonic nuclei signaling symmetry

energy at high densities *
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Abstract: A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy

at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an

example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-

nucleon interaction. It is found that the 1S1/2 state energy in the high-density core of kaonic nuclei can directly probe

the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron

skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of

the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding

kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central

region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide

another perspective to constrain high-density symmetry energy, and await experimental verification in the future.
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1 Introduction

The determination of symmetry energy is of cru-
cial importance in contemporary nuclear physics, since
it can provide vital information on understanding the
basic aspects of the strong interaction, such as three-
body force [1–3], tensor force [4] and short range correla-
tions [5–7]. Up to now, the density dependence of sym-
metry energy is still not well understood, even though
lots of effort has been made to extract the symmetry
energy from theory, astrophysical observations and ter-
restrial experiments [2, 3, 8–21]. Though neutron stars
(NSs) are natural laboratories for testing the properties
of asymmetric nuclear matter, the symmetry energy con-
strained by NS observation has not reached a satisfactory
precision, due to limited data and indistinct observables,
e.g., the radii of NSs [20, 21]. Meanwhile, constraints
on the symmetry energy from heavy-ion collisions suffer
from low detection efficiency, large systematic error and
transport model dependence [10, 22–24]. The properties
of finite nuclei are of great use in constraining the sym-
metry energy near or beneath the normal density [2, 11–
13, 25–28] owing to the high precision of the structural
data of finite nuclear systems. For instance, the sym-
metry energy and its density slope at normal nuclear
density can be determined by the nucleon global optical

potentials, which can be extracted from nucleon-nucleus
scatterings and the single-particle energy levels of bound
states [12]. Additionally, a connection between the nu-
clear symmetry energy at subnormal density and the
symmetry energy coefficients of finite nuclei can be con-
structed from the measured mass of finite nuclei [16, 26–
29] and the liquid-gas phase transition [30, 31]. In par-
ticular, the neutron skin thickness of neutron-rich nuclei
has captured extensive attention, considering that it can
serve as a bridge linking the symmetry energy and the
structure of NSs [16, 32–36]. After great efforts have
been made to measure the root-mean-square (rms) ra-
dius of neutron density distribution in finite nuclei [37–
41], the symmetry energy near normal nuclear density
has been constrained increasingly well. Despite all this
progress, inferring the high density properties of symme-
try energy from finite nuclei is difficult since the density
of a nucleus saturates at normal nuclear density. If a
high-density core in a finite nucleus could be created, it
would be very interesting to investigate the relationship
between the neutron skin thickness of such nuclei and
the symmetry energy.

We should look for a unique way to achieve a higher
nuclear density in a finite nuclear system, which cannot
be obtained just by adding more nucleons. A possible
option is to incorporate the strangeness degree of free-
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dom, forming exotic nuclei, such as Λ hyperons [42–44]
and kaon mesons [45–47]. Noticeably, the core density
of kaonic nuclei could possibly be as high as two times
the normal nuclear density due to the strongly attractive
antikaon-nucleon interaction [46]. In fact, the properties
of exotic nuclei have played a special role in constrain-
ing the nuclear forces. Specifically, the importance of
the three-body force and the role of the tensor force are
exhibited in exotic states, such as the halo [48–50] and
Hoyle states [51, 52], the shell evolution anomaly [53, 54]
and the novel magic numbers far off the β-stability [55–
57]. These imply that kaonic nuclei can perhaps be re-
garded as candidates to probe the symmetry energy at
high densities. On the other hand, kaonic nuclei them-
selves are fascinating systems owing to their special fea-
tures, such as the breaking of pseudospin symmetry [58]
and the halo structure of light kaonic nuclei [59]. There-
fore, many theoretical works have focused on the study of
kaonic nuclei [46, 47, 58–62], and continuous experimen-
tal efforts have been made to search for them [63–71],
though the existence of kaonic nuclei has not yet been
verified. To the best of our knowledge, the relationship
between kaonic nuclei and symmetry energy has seldom
been investigated. Hence, we will try to construct a data-
to-data correlation between the ground-state properties
of kaonic nuclei and the symmetry energy in this paper
under the framework of the relativistic mean-field (RMF)
theory. In the RMF theory, the interactions are mediated
by mesons, which makes it very easy to incorporate a
K− meson self-consistently. A characteristic of the RMF
theory is that there is a large attractive scalar and a re-
pulsive vector, which is of great importance for interpret-
ing the pseudospin symmetry in nuclei [72, 73]. Mean-
while, the RMF theory can not only reproduce nicely the
ground-state properties for finite nuclei in the whole nu-
clide table [74–77], but also give a successful description
of exotic nuclei [78, 79]. In the past, plenty of research
on hyper-nuclear systems was also based on the RMF
theory [43, 44, 80–84]. Thus, the RMF theory should be
competent in our investigation on kaonic nuclei. It will
be found that the strong antikaon-nucleon attraction can
considerably amplify the sensitivity of the ground-state
properties of kaonic nuclei to the symmetry energy at
high densities.

The paper is organized as follows. In Section 2, the
RMF formulas for the symmetry energy and kaonic nu-
clei are deduced. The numerical results are presented in
Section 3, followed by a brief summary.

2 Formalism

To simulate different density dependence of the sym-
metry energy, we introduce a coupling term between the
isoscalar vector and isovector vector potential, as done

in Ref. [32]. The interacting Lagrangian density for nu-
cleons is given by

Lint = ψ̄B[gσσ−gωγµω
µ−gργµτ3b

µ
0−e

1+τ3
2

γµA
µ]ψB

−
1

3
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3−
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4
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4+
1

4
c3(ωµω

µ)2

+4Λvg
2
ρ
g2
ω
ωµω

µb0µb
µ
0 , (1)

where σ, ω, b0, A represent the isoscalar scalar, isoscalar
vector, isovector vector, and electromagnetic field, re-
spectively. gi (i=σ,ω,ρ) are the corresponding coupling
constants between meson fields and nucleons. g2 and
g3 denote the strengths of the nonlinear terms of the
scalar field. c3 is the parameter for the non-linear ω self-
coupling term. Λv is the coupling between the isoscalar
vector and isovector vector potential which could be used
to adjust the high-density symmetry energy.

In the mean-field approximation, we can derive the
symmetry energy from the Lagrangian density Eq. (1)
using Esym(ρB) =

1
2
[∂2E(ρB,δ)/∂δ

2]|δ=0 where δ is the
isospin asymmetry. Then, we get

Esym(ρB)=
1

2
(
gρ
m∗
ρ

)2ρB+
k2

F

6E∗
F

, (2)
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ρ
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∗2 is the Fermi

energy with the effective mass of the nucleon M ∗ =
MB−gσσ.

At a particular density ρ′, the symmetry energy can
be approximately expanded as

Esym(ρB)=Esym(ρ
′)+

L

3

ρB−ρ
′

ρ′
+
κsym

18

(ρB−ρ
′)2

ρ′2
, (3)

where L and κsym are the density slope and curvature
of the symmetry energy at ρ′, respectively. The den-
sity slope L is defined as L(ρ′) = 3ρ′

∂Esym

∂ρ
|ρ=ρ′ . Some

studies have found that L and κsym are correlated with
each other [85]. As κsym is very poorly known, the de-
termination of L with high precision could give valuable
information on the symmetry energy.

To investigate kaonic nuclei, the antikaonic sector
should be incorporated into the interacting Lagrangian
density for nucleons Eq. (1). The Lagrangian density for
kaons is written as [62]

LKN=(DµK)†(DµK)−(m2
K−gσKmKσ)K

†K, (4)

where the covariant derivative is defined as Dµ≡∂µ+iVµ
with Vµ = gωKωµ+gρKb0µ+e

1+τ3
2
Aµ, and K =

(

K+

K0

)

,
K†=(K−,K̄0). In this paper, we only consider charged
kaons, since kaonic nuclei are systems where the K− me-
son is implanted into a finite nucleus, i.e., K=K+ and
K†=K−. From this Lagrangian, it can be inferred that
the K−N interaction is mediated by σ, ω, ρ meson fields
and the electromagnetic field, which are coherently at-
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tractive, consistent with experimental data. This makes
the formation of a K−-nucleus bound state possible.

With the Lagrangian density for nucleons Eq. (1) and
K− meson Eq. (4), together with the Lagrangian densi-
ties for free particles, we can obtain the equations of
motion using the standard RMF treatment [74], which

can be written as
[

−iα·∇+β(MB−gσσ)+gωω+gρτ3b0+e
1+τ3
2

A

]

ψB=εψB,

(5)
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2
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(7)

where ρs, ρv, ρ3, ρp, ρK− are the scalar, vector, isovector,
proton, and K− density, respectively. EK− is the energy
eigenvalue of the K− meson. sφ is the so-called source
term for mesons or photons (and mphoton=0). The K−

self-energy term is expressed as

Π=−gσKmKσ−2EK−V−V
2, (8)

where V = gωKω+gρKb0+
1+τ3

2
eA. The parameters in

Eq. (4) can be fitted to the depth of the K− optical po-
tential at normal nuclear density, where the optical po-
tential is defined as Uopt(p,ρ0)=ω(p,ρ0)−

√

p2+m2
K , with

ω(p,ρ0) being the in-medium energy at saturation den-
sity. Strictly, one should consider the effects from the K−

absorption by nucleons. This could be done by introduc-
ing an imaginary potential into the K− self-energy term
Π in Eq. (8) [60–62]. We have found that the stationary-
state properties of kaonic nuclei are only slightly affected
by the incorporation of the imaginary part in the RMF
models when the K− optical potential is around -100
MeV depth at normal nuclear density. Therefore, the
imaginary part in the K− self-energy term is neglected
here, as it has no impact on the conclusion in the paper.

Solving these equations in an iterative procedure, one
can accurately obtain the ground-state properties of nor-
mal nuclei and kaonic nuclei. In each iteration step, we
use the shooting method to obtain energy eigenvalues for
nucleons and antikaons. Specifically, the energy eigenval-
ues are moderately adjusted to connect the wave func-
tion smoothly at matching points in this boundary value
problem. Note that the antikaon eigenvalue is not sen-
sitive to the choice of the specific first-order derivative
at boundaries. Readers can refer to Ref. [58] for more
concrete numerical details. Then, we can construct the
correlations between the structural properties of these fi-
nite nuclear systems and different density dependence of
the symmetry energy.

3 Results and discussion

The antikaon-nucleon interaction is demonstrated to
be strongly attractive from the data extracted from

kaonic atoms [86–91], KN scatterings [92–97] and heavy-
ion collisions [98–103]. The data from kaonic atoms and
KN scattering mainly provide information on low-density
K−N interactions. One needs to use some specific extrap-
olations to obtain the depth of the K− optical potential
at normal nuclear density. However, these extrapola-
tions cause large diversification, giving the depth at nor-
mal nuclear density ranging from -200 MeV to -50 MeV
according to different models [86–97]. Heavy-ion colli-
sions can directly probe the properties at appropriately
produced densities and produce an almost consistent K−

potential depth around -100 MeV at normal nuclear den-
sity [98–103]. Thus, we adopt -100 MeV as the K− op-
tical potential depth at saturation density [100], to de-
termine the value of the unique free parameter gσK , as
gρK and gωK can be determined by the SU(3) relation:
2gωK=2gρK=gρπ=6.04.

Table 1. The parameters Λv and gρ that simu-
late various density dependencies of the symme-
try energy. The symmetry energy at ρ0, 1.5ρ0

and its density slope at 0.7ρ0 are in units of MeV.
Other unlisted parameters are the same as the
TM2 [104].

Λv gρ L(0.7ρ0) Esym(ρ0) Esym(1.5ρ0)

0.0 9.357 106.53 35.90 55.19

0.005 9.778 97.65 34.55 49.81

0.010 10.264 88.79 33.39 46.17

0.015 10.830 79.92 32.37 43.53

0.020 11.502 71.05 31.47 41.54

0.025 12.316 62.19 30.68 39.97

0.030 13.332 53.31 29.96 38.71

We adopt the RMF parameter set TM2 as a starting
point in this work, since TM2 was initially designed for
light nuclei [104]. The different density dependence of
the symmetry energy can be obtained by adjusting the
parameters Λv and gρ in Eq. (1) with a fixed a symmetry
energy of 24.93MeV at ρ=0.7ρ0 (the same as TM2 and
ρ0=0.132 fm−3), similar to what was done in Ref. [32].
This simple treatment produces a nearly constant bind-
ing energy per nucleon for oxygen isotopes when Λv is
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changed. However, the density dependence of the sym-
metry energy diversifies considerably at high densities
due to different coupling strengths between isoscalar vec-
tor and isovector vector field, as shown in Fig. 1. When
Λv changes from 0 to 0.03, the symmetry energy becomes
softer at high densities and the density slope of the sym-
metry energy at 0.7ρ0 varies from 106.53 MeV to 53.31
MeV. The specific parameters and properties are listed
in Table 1.

Fig. 1. (color online) The symmetry energy as a
function of nuclear matter density with various
slopes (L) at 0.7ρ0 obtained from adjusting pa-
rameter Λv and gρ based on TM2, see Table 1.

Fig. 2. (color online) The nuclear density and K−

density distribution in normal nuclei (18O, 22O)
and kaonic nuclei (18K−O,

22
K−O) with the param-

eter set TM2. The corresponding density distri-
butions with various Λv are very similar to the
one with the TM2, thus they are not shown here
for simplicity. The “w/o K−” denotes normal nu-
clei without K− and the “with K−” denotes the
corresponding kaonic nuclei.

Using the parameters in Table 1, we calculate the
ground-state properties of oxygen isotopes, including the
density distributions, nuclear potentials and the single-
particle energy. In Fig. 2, we display the nuclear density
and K− density distributions in 18O and 22O systems.
As one can see, in the core of kaonic nuclei, the nuclear

density is largely increased by the implanted K− meson.
This is the so-called shrinkage effect, which may be con-
structive for producing cold high-density matter in the
laboratory. In fact, it is the strongly attractive inter-
action between nucleons and K− meson that makes the
compression in the core of a nucleus possible, resulting
in this shrinkage effect. Indeed, the increase of the nu-
clear density in kaonic nuclei almost coincides with the
K− density distribution ,which is mainly stacked in the
core region of kaonic nuclei.

Fig. 3. (color online) The single-particle energies
of the 1S1/2 state in 18O and 22O systems as a
function of the symmetry energy at 1.5ρ0. The
“Pro” and “Neu” labels denote the 1S1/2 state
for protons and neutrons, respectively.

Accompanying the shrinkage effect, the inner nu-
clear states in kaonic nuclei are considerably affected by
the embedding of the K− meson. Shown in Fig. 3 is
the single-particle energy of the 1S1/2 state for protons
and neutrons as a function of symmetry energy at 1.5ρ0

which can be adjusted through different Λv in Table 1.
The kaonic nuclei have an average core density around
1.5ρ0, and the correlation between the 1S1/2 state en-
ergy in the core region and the symmetry energy at 1.5ρ0

can directly probe the variation of the symmetry energy
at supranormal nuclear density. We can see that the
single-particle energies of 1S1/2 states for kaonic nuclei
(solid curves) are clearly larger than those for the corre-
sponding normal nuclei (dashed curves), i.e., the nucle-
ons in the 1S1/2 state of kaonic nuclei are more tightly
bound. This is a straightforward consequence of the
strong antikaon-nucleon attraction that would change
the potentials for nucleons in nuclei. Noticeably, the dif-
ference in the single-particle energy between protons and
neutrons in kaonic nuclei becomes increasingly large with
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the increase of high-density symmetry energy, while it is
much less obvious in normal nuclei. This actually estab-
lishes a direct signal to sensitively probe the high-density
symmetry energy.

Fig. 4. (color online) The neutron skin thickness in
18O and 22O systems as a function of the slope of
symmetry energy at 0.7ρ0 (left-hand panels) and
as a function of the symmetry energy at 1.5ρ0

(right-hand panels).

The rms quantities can be calculated using the den-
sity distributions as weight functions. Here, we focus on
the neutron and proton rms radii and define the neu-
tron skin thickness as the difference between the neu-
tron and proton rms radii. The results for the neutron
skin thickness in neutron-rich 18O and 22O systems are
plotted in Fig. 4. As one can see from the left-hand
panels in Fig. 4, the relationship between the neutron
skin thickness and the density slope of the symmetry
energy at 0.7ρ0 is nearly linear in both 18O and 22O
systems. The neutron skin thickness in kaonic nuclei
(solid lines) is larger than that in normal nuclei (dashed
lines) due to the shrinkage effect that occurs in the in-
ner states of kaonic nuclei. The gradient of the neutron
skin thickness with increasing density slope of the sym-
metry energy in 18

K−
O is moderately larger than that in

normal nucleus 18O. Strikingly, the neutron skin thick-
ness in 22

K−
O is obviously more sensitive to the density

slope of the symmetry energy, as compared to that of
22O. To further understand the role of the K− meson in
affecting the sensitivity of the neutron skin thickness to
the difference in the symmetry energy, we display in the
right-hand panels of Fig. 4 the neutron skin thickness of
18
K−

O and 22
K−

O as a function of the symmetry energy at
1.5ρ0. Since this density appears to be close to the aver-
age density of the core of kaonic nuclei, the consequence
of the symmetry energy in the core region could also be
reflected to the neutron skin. It can be clearly seen from
panel (d) in Fig. 4 that the neutron skin thickness in
22
K−

O changes rather rapidly with increasing symmetry
energy at 1.5ρ0. The smaller variation observed for 18

K−
O

in panel (c), compared to that of 22
K−

O, is attributed to
the smaller isospin asymmetry. This can be also seen

by comparing the curves for normal nuclei 22O and 18O,
as shown in Fig. 4. Nevertheless, the sensitivities of the
neutron skin thickness to the isospin effect and symme-
try energy are both magnified by the embedding of the
K− meson.

To reveal the physics behind these phenomena, we
plot in Fig. 5 the isovector potential in 18O and 18

K−
O,

22O and 22
K−

O as a function of radius. In normal nucleus
18O, the isovector potential is very small, in accordance
with its small isospin asymmetry. The variation of the
isovector potential with different density dependence of
the symmetry energy is insignificant in 18O, responsible
for a relatively slow change of the neutron skin thick-
ness (see Fig. 4). However, the isovector potential in
the core of 18

K−
O undergoes an obvious change for vari-

ous symmetry energies, in sharp contrast to the case in
18O. Thus, the embedment of K− meson makes the ef-
fect of different symmetry energy on the isovector poten-
tial more distinguishable. The situation for 22O systems
in the lower panels of Fig. 5 is very similar to that of
18O systems. However, the isovector potential in 22O is
much larger than that in 18O, since 22O possesses a larger
isospin asymmetry. Actually, the symmetry energy effect
on the isovector potentials in 22

K−
O is amplified by both

the implanted K− meson and the larger isospin asym-
metry. Specifically, the potential in the central region of
22
K−

O has a 55% variation as the density slope L changes
from 53.31 MeV to 106.53 MeV. Hence, the implantation
of the K− meson greatly magnifies the difference in the
isovector potential that is induced by the various den-
sity dependencies of the symmetry energy, responsible
for the larger changes in the neutron skin thickness of
kaonic nuclei.

Fig. 5. (color online) The isovector potential in 18O
and 18

K−O,
22O and 22

K−O as a function of radius.
The L value marked is obtained at 0.7ρ0.

We have also conducted a series of investigations
based on the RMF parameter set NL-SH [105] and
FSUGold [106]. It is found that the conclusions are
qualitatively the same. These results indicate that light
kaonic nuclei can be used as candidates to constrain the
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high-density symmetry energy either with appropriate
theoretical approaches or by performing experiments.
The photo-nucleus or pion-nucleus reactions [68, 107],
e.g., γ + 22O → K+ + 22

K−
O or π− + 22F → K∗+ +

22
K−

O, may be used to produce kaonic nuclei and then
directly measure the radius information via the strong
interaction between the nucleons and the outgoing kaons
in these reactions.

4 Summary

In this paper, we have investigated the correlation be-
tween the ground-state properties, especially the neutron
skin thickness, of kaonic oxygen isotopes and the sym-
metry energy in the framework of the RMF theory. By
introducing a coupling between the isoscalar vector and

isovector vector fields, we can simulate different density
dependencies of the symmetry energy. We have directly
established a sensitive correlation between the ground-
state properties of kaonic oxygen isotopes and the sym-
metry energy at supranormal density. It is found that
the sensitivity of the neutron skin thickness to the low-
density slope of the symmetry energy is greatly amplified
in the corresponding kaonic nuclei. These sensitive rela-
tionships are established upon the fact that the isovector
potential in the central region, where a high density core
is formed due to the embedding of the K− meson, be-
comes very sensitive to the variation of the symmetry
energy. These amplified sensitivities could be instructive
for constraining the high-density features of the symme-
try energy.
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