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Abstract: The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand

the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state

geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the

hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The

extension of the flow paradigm to small colliding systems is also discussed.
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1 Introduction

In the theoretical modeling of high energy heavy-ion
collisions at the Relativistic Heavy-Ion Collider (RHIC)
at the Brookhaven National Laboratory and at the Large
Hadron Collider (LHC) at CERN, one essential concept
often used is the system collectivity, and especially the
collectivity of Quark-Gluon Plasma (QGP) [1, 2] – a hot
and dense medium consisting of quarks and gluons.

This concept plays a key role in the understanding
of heavy-ion collisions, in several respects. First, the
dynamical properties of QGP during its collective evo-
lution contain the information of QCD phase structure.
With respect to heavy-ion experiments, it is crucial to
have an appropriate description of the QGP evolution in
the investigation of the phase transition from quarks and
gluons to hadrons, and the searching of the QCD criti-
cal point in the beam energy scan program [3]. Second,
there is mounting evidence from heavy-ion experiments
supporting QGP as a perfect fluid in nature, with very
small dissipation. Phenomenological analyses have re-
vealed that in QGP the ratio of shear viscosity to entropy
density, η/s, is very close to the lower bound predicted
from the theory of gauge-gravity duality for a strongly-
coupled system [4],
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Since the transport properties of a medium are deter-
mined by the underlying microscopic dynamics, estimat-
ing the η/s of the QGP system in heavy-ion collisions
provides an unambiguous probe of the dynamical prop-
erties of QCD. Third, QGP collective evolution is re-
sponsible for all the observed patterns in the spectrum
of soft particles (particles of small transverse momen-
tum, mass, etc.). These soft particles amount to over
99% of the total particle yields in heavy-ion experiments.
Additionally, the collective evolution of the QGP also
determines the background for hard probes (particles
with large transverse momentum, mass, etc.), including
the jet-quenching phenomenon [5] and heavy quarkonia
dissociation and regeneration [6]. It is also the back-
ground for electromagnetic signatures in heavy-ion colli-
sions, such as direct photon production [7, 8], and those
related to the chiral magnetic effect [9].

The concept of medium collectivity has been inves-
tigated extensively in heavy-ion experiments, in which
an unprecedented level of precision in the experimental
observables has been achieved. Different types of mea-
surables from the correlations of of soft particles have
been devised and explored, in nucleus-nucleus collisions
at RHIC and the LHC energies. These include, espe-
cially, the so-called harmonic flow. Recently, measure-
ments of particle correlations have been generalized to
smaller colliding systems, such as proton-lead, deuteron-
gold, and even proton-proton collision events with ex-
tremely high multiplicity production. Surprisingly, the
observed particle correlation patterns in the small collid-
ing systems are compatible with the picture of medium
collective expansion. Regarding all the remarkable ex-
perimental progress, theoretical frameworks have been
proposed on various grounds. Especially, the success of
hydrodynamic modeling has allowed a flow paradigm to
emerge. The purpose of this review is to show how the
flow paradigm is established based on theoretical calcu-
lations via hydrodynamic modelings of heavy-ion colli-
sions, and the corresponding analyses of the experimen-
tal results.

The flow paradigm for heavy-ion collisions is inspired
by the very idea of the system collective expansion. It
assumes the dominant evolution stages of the created
system in nucleus-nucleus collisions or in small collid-
ing systems, as a collectively expanding QGP medium
or hadron gas, which is close to local thermal equilib-
rium. As a result, the dynamics of the medium evo-
lution is dominated by long wave-length hydrodynamic
modes. In this way, the created partons or hadrons in
each collision event evolve coherently as a fluid medium,
in response to the system’s geometrical structures at ear-
lier times, so that their dynamical behaviors affect the
observed correlations of soft particles in experiments.

Accordingly, the flow paradigm commonly employs

viscous hydrodynamics for the description of medium
evolution. However, note that the flow paradigm does
not prevent the use of a kinetic approach with respect to
individual partons or hadrons, as long as sytem collective
evolution in the kinetic description is well-established.
Viscous hydrodynamics is an effective theory for systems
close to local thermal equilibrium, where the dominant
degrees of freedom are long-wavelength hydrodynamic
variables. In the theoretical framework of hydrodynam-
ics, the dissipative effect in a fluid system is described in
terms of a gradient expansion order-by-order. Each term
in the gradient expansion is specified by a transport coef-
ficient. The first order terms correspond to the shear and
the bulk viscosity. Application of viscous hydrodynamics
to a system crucially depends on a separation between
the microscopic scale and the macroscopic scale which
controls the convergence of the gradient expansion. In
the present analyses, a truncation at second order viscous
corrections is generally applied throughout all the col-
lective evolution stages in heavy-ion collisions. Solving
viscous hydrodynamics requires initial conditions. With
respect to the hydro modeling of heavy-ion collisions, an
effective characterization of the initial stage with fluctu-
ations is employed, accounting for the fact that nucleus-
nucleus collisions fluctuate from event to event. After
the system collective expansion stages in heavy-ion col-
lisions, the observables should be calculable as hadrons
emitted independently towards detectors.

Theoretical calculations always depend on parame-
ters. For instance, in hydrodynamic modeling, effective
descriptions of initial state, transport properties, etc,
must be specified for different colliding systems. For the
purpose of extracting the medium transport properties,
these parameterizations bring in substantial uncertain-
ties in analyses. Therefore, it is important in the flow
paradigm to capture some common features of the ob-
servables in experiments, such as those in correlations
and fluctuations of harmonic flow, so as to minimize
the uncertainties from effective parameterizations. These
common features of flow observables can be understood
empirically following some quantitative relations,

which are summarized based on hydrodynamic simu-
lations with respect to all existing observables in heavy-
ion experiments. These relations between harmonic flow
and the geometrical properties of initial state are ex-
pected to be model independent, but contain essential
information about the initial state geometry, event-by-
event fluctuations, and the medium dissipations.

These are several types of average considered in this
review. Unless specified, we shall use double brackets
〈〈...〉〉 to notate the average of a quantity over events. In
each single event, the average over a density profile in the
transverse plane is denoted by curly brackets, {...}. Con-
sidering the approximation of Bjorken boost invariance
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of the system generated in heavy-ion collisions, the Milne
space-time coordinates are often introduced in a theoret-
ical framework, in which the proper time τ =

√
t2−z2 and

space-time rapidity ξ=tanh−1(z/t) are used instead of t
and z.

This review is organized as follows. Theoretical ingre-
dients in the flow paradigm are described in Section 2, in-
cluding a brief description of viscous hydrodynamic mod-
eling of heavy-ion collisions in Section 2.1. Section 2.2
presents discussions on initial state geometrical proper-
ties captured in terms of initial eccentricities. Empiri-
cally, results from hydro modeling of heavy-ion collisions
lead to the medium response relations between harmonic
flow and initial state eccentricities, which are introduced
in Section 2.3. In Section 3, after an overview of the
flow observables compatible with the flow paradigm, we
present quantitative characterizations of flow observables
based on the medium response relations. Especially, the
observed flow fluctuations and correlations are analyzed
in Section 3 and Section 3.2, respectively. Section 4 fo-
cuses on recent measurements involving flow observables
in small colliding systems, and the corresponding theo-
retical developments that generalize the flow paradigm
in small systems. A summary of the review is given in
Section 5.

2 Ingredients of the flow paradigm

To understand the observed flow observables in
heavy-ion collisions, in the flow paradigm a hydrody-
namic model is applied which solves the hydrodynamic
equations of motion for the medium collective expan-
sion. The information of the initial state, especially the
geometry of the colliding systems, is incorporated ac-
cordingly in the initial condition of the coupled equa-
tions. In this way, the observed fluctuations and correla-
tions of flow harmonics are recognized as a consequence
of the combined effects from the geometrical properties
of initial state and transport properties of the medium.
In the flow paradigm, the geometry of initial state is
decomposed and characterized by a set of eccentricities
En, while medium dynamical properties are contained in
the proposed medium response relations. In this section,
we present these three essential ingredients in the flow
paradigm: hydrodynamic modeling, characterization of
initial state geometry, and medium response relations.

2.1 Hydrodynamic modeling

In a hydrodynamic simulation of the system evolution
in heavy-ion collisions, there are three stages: initializa-
tion of the fluid, solving the hydrodynamic equations of
motion, and particle generation.

The hydrodynamic equations of motion are nothing
but a set of conservation laws, in which dissipative prop-

erties of the medium are introduced and captured by
transport coefficients, such as shear viscosity η and bulk
viscosity ζ. These transport coefficients are solely deter-
mined by the underlying dynamics of the system, i.e.,
QCD in heavy-ion collisions, so they should be treated
as inputs. However, the complexity of the medium sys-
tem in heavy-ion collisions makes it difficult for a first-
principles calculation of the transport coefficients. For
instance, it is expected that the coupling constant varies
from weakly-coupled to strongly-coupled as the QGP
cools down. As a result, in practical simulations, η/s
is often considered as some parameterized form, with or
without temperature dependence (cf. the calculations
in Ref. [10]). In a similar manner, in practical hydro
simulations there are also effective parameterizations for
the characterization of initial state of the colliding sys-
tem, the equation of state, and the freeze-out prescrip-
tion. Compared to experimentally measured observables,
the primary goal of hydro simulations then becomes to
constrain these parameterizations, which contain infor-
mation about initial state geometrical fluctuations [11],
medium dissipative properties, and the equation of state
of QCD [12, 13].

The conservation of energy and momentum is written
in hydrodynamics as

∂μT μν =0, (2)

where the energy-momentum tensor T μν is defined in
terms of hydrodynamic variables: energy density e, pres-
sure P and flow four-velocity uμ,

T μν =euμuν+PΔμν+Πμν . (3)

The operator Δμν =uμuν+gμν is a projection operator,
which with the flow four-velocity uμ can be used to put
the formulation of hydrodynamics in a covariant form.
Namely, one may write the spatial gradient and tempo-
ral derivative covariantly as Δμν∂

ν =∇μ and D=uμ∂μ,
respectively. Note that in Eq. (3), we have taken the
mostly plus matrix convention, gμν =(−,+,+,+), which
leads to the flow velocity normalization as u2=−1. When
an equation of state is introduced and coupled to the
hydrodynamic equation of motion, these hydro variables
are completely determined. In practical simulations with
respect to heavy-ion collisions, an equation of state from
lattice QCD calculations is generally incorporated [14].

Dissipative corrections to the energy-momentum ten-
sor are reflected in the stress tensor Πμν . The scale sep-
aration between a microscopic scale related to system
mean free path lmfp, and a macroscopic scale associated
with the system size L, allows one to expand viscous hy-
drodynamics in a series of gradients. The ratio of these
two scales is recognized as a small quantity, the Knudsen
number Kn∼ lmfp/L. To the first order in the gradient
expansion (the first order viscous correction), the stress
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tensor has the well-known Navier-Stokes form,

Πμν =−ησμν−ζΔμν∇·u=πμν+ΔμνΠ, (4)

where πμν and Π are the viscous corrections associated
with the shear and the bulk channel. The structure of
the first order in the gradient expansion

σμν =∇μuν+∇νuμ−2
3
Δμν∇·u≡∇〈μuν〉 (5)

is a symmetric and traceless tensor, and it is transverse
to uν , σμνuμ=0. Note that in Eq. (5), and in the follow-
ing discussion of this section, the single brackets around
indices of a tensor denote that the tensor has been made
symmetric, traceless and transverse to uμ. In practical
hydrodynamic simulations, to avoid acausal mode evo-
lution, second order viscous corrections must be taken
into account in the gradient expansion (cf. discussions
in Ref. [15]).

There are more terms which stem from more involved
gradient structures in higher order viscous corrections,
and accordingly more transport coefficients. In a simpli-
fied case at the second order, considering a form of relax-
ing second order terms to their Navier-Stokes correspon-
dence in Eq. (4), one finds the relativistic generalization
of the Israel-Stewart hydrodynamics, with new transport
coefficients τπ and τΠ associated with the relaxation time
of the shear channel and bulk channel, respectively. For
instance, the shear channel has

(τπD+1)πμν =−ησμν+..., (6)

where the ellipsis implies structures generated from the
second order of gradient expansion, e.g., σ〈μ

ασαν〉, σμν∇·u,
and σ〈μ

αΩαν〉 (Ωμν = 1
2
(∇μuν −∇νuμ) being an anti-

symmetric tensor). Variants of definitions of the sec-
ond order viscous hydrodynamics have been achieved in
a conformal fluid [16], and from the moment expansion
techniques [17].

Eq. (6) is the most commonly solved hydro equa-
tion of motion for hydro modeling of heavy-ion collisions
at RHIC and the LHC [18–22]. However, it is not a
complete theoretical formulation, because thermal fluc-
tuations are ignored. Thermal fluctuations in a fluid
system, also known as the hydrodynamic fluctuations,
are present in all the evolution stages of the expand-
ing medium in heavy-ion collisions. The strength of hy-
drodynamic fluctuations is related to dissipative proper-
ties of the fluid through the fluctuation-dissipation rela-
tions [23]. In the theoretical framework, hydrodynamic
fluctuations can be introduced as an extra stochastic ten-
sor Sμν to the energy-momentum tensor [24–26],

T μν =euμuν+PΔμν+Πμν+Sμν , (7)

whose two-point auto-correlation is related to the corre-

sponding dissipations. For the Navier-Stokes hydrody-
namics [27]1),

〈〈Sμν(x)Sαβ(x′)〉〉=2T
[
η(ΔμαΔνβ+ΔμβΔνα)

+
(

ζ−2
3
η

)
ΔμνΔαβ

]
δ(4)(x−x′),

(8)

with the strength of the thermal fluctuations determined
by the shear and bulk viscosity. The Dirac delta function
in Eq. (8) is practically recognized in realistic simulations
of a finite thermal system as the inverse of space-time
volume. Therefore, one naively expects significant con-
tributions from thermal fluctuations in small colliding
systems, and systems close to the QCD critical point.
In practical simulations, solving the noisy viscous hydro-
dynamics is more challenging than most of the present
hydro modelings.

To solve the hydrodynamic equations of motion, one
needs inputs from an effective characterization of the sys-
tem at the initial stages of heavy-ion collisions. That is
to say, all hydro variables, as well as the stress tensor
πμν , and bulk pressure Π, must be specified at some
proper time τ0, assuming at which the QGP system is
sufficiently close to local thermal equilibrium. Approach-
ing local thermalization, or in a more relaxed term, the
onset of viscous hydrodynamics, is a crucial challenge
to the application of viscous hydrodynamics in heavy-
ion collisions, despite all the success of hydro modelling
has achieved regarding flow observables. In particu-
lar, in recent experiments with small colliding systems,
the validity of viscous hydrodynamics needs to be re-
examined. The onset of hydrodynamics, although it is
a topic beyond the scope of the present review, shall be
briefly addressed in the context of applying hydrodynam-
ics and the flow paradigm in small colliding systems in
Section 4.2.1. One may find more detailed discussions
elsewhere in Ref. [28] and Ref. [29]. A value of τ0∼O(1)
fm/c has been found necessary to make reasonable pre-
dictions in nucleus-nucleus collisions at RHIC and the
LHC energies. For smaller colliding systems, some hy-
dro simulations suggest τ0∼O(0.1) fm/c [30].

In hydrodynamic modeling, several effective models
have been developed to generate a density profile of
the QGP system at τ0 [31–35], with fluctuations imple-
mented through Monte Carlo simulations. Inspired by a
color-glass picture, in models such as IP-Glasma [31], an
initial state energy density profile is obtained by solv-
ing the gluon field evolution. On the other hand, in
the MC-Glauber model [32], energy is deposited from
nucleon-nucleon collisions in an eikonal approximation.
All of these models provide an event-by-event basis for

1) The two-point auto-correlation of thermal fluctuations is defined according to the average over thermal ensembles, for which in this
review we use the same notation of double brackets 〈〈...〉〉, despite its subtle difference from average over events in heavy-ion collisions.
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hydrodynamic simulations, and especially, a fluctuat-
ing initial state. Fig. 1 presents the distribution of en-
ergy density e(x,y) in the transverse plane of one typical
event in heavy-ion collisions at initial time τ0, generated
from the MC-Glauber, MC-KLN and IP-Glasma mod-
els. Bumpy structures seen in these distributions reflect
fluctuations originating from energy deposition during
nucleus-nucleus collisions. As one can see, the fluctua-
tions are stronger in the IP-Glasma model than in MC-
Glauber. Simply speaking, one may recognize gradients
of the distribution, due to an overall shape or fluctua-
tions, as the driving force of system expansion in hydro-
dynamics. Accordingly, the fluctuating geometry of the

Fig. 1. (color online) Initial state distribution
of energy density in the transverse plane from
IP-Glasma (top), MC-KLN (middle) and MC-
Glauber (bottom) models. Reprinted figure with
permission from B. Schenke, P. Tribedy, and R.
Venugopalan, Phys. Rev. Lett. 108, 252301, 2012
(DOI: https://doi.org/10.1103/PhysRevLett.108.
252301) (Ref. [31]). Copyright 2012 by the Amer-
ican Physical Society.

initial state is converted into asymmetries of the gener-
ated particles in the momentum space. This is the in-
tuitive interpretation of medium response to initial state
geometry, which we shall detail in the next subsection.

The medium system created in heavy-ion collisions
cools down as it expands. Once the system becomes so
locally dilute that the dominant degrees of freedom are
excited particles instead of hydro variables, the system
starts to freeze out from the fluid description. A com-
mon procedure of freeze-out was given by Cooper and
Frye [36], in which hadrons are generated from a fluid
on a 3D hyper-surface Σ determined by the freeze-out
condition,

E
dN

d3p
=

∫
Σ

dσ·pf(uμ,T,μ). (9)

The phase-space distribution function f(uμ,T,μ) should
be incorporated properly corresponding to viscous hy-
drodynamics through Landau’s matching condition.
More precisely, it is

f(uμ,T,μ)=n(uμ,T,μ)+δf(uμ,T,μ), (10)

with the local equilibrium distribution n(uμ,T,μ) corre-
sponding to ideal hydrodynamics and the viscous correc-
tion ∫

d3p

E
pμpνδf(uμ,T,μ)=Πμν . (11)

For the shear channel, it is conventionally taken as
δf(uμ,T,μ) ∝ pμpνπμν [37] while the bulk channel has
δf(uμ,T,μ)∝Π [38, 39]. The canonical form of the vis-
cous correction to the phase-space distribution at second
order has more involved dependence in the second or-
der gradients and momentum, but converges to the first
order viscous corrections with respect to small dissipa-
tions [40]. The chemical potential μ in Eq. (9) is specified
with respect to the desired particle species.

For more realistic hydro simulations of heavy-ion col-
lisions, the particle spectrum receives further modifica-
tions from subsequent interactions among hadrons, in-
cluding hadrons collisions in kinetics and resonance de-
cays, which can be described by effective models, such
as UrQMD [41].

Eventually, the spectrum of particles from each colli-
sion event is determined from numerical simulations, ac-
counting for all the effects mentioned above. The single-
particle spectrum represents the hydro prediction of the
particles observed in detectors in experiments. It should
be emphasized that hydrodynamic predictions of the par-
ticle spectrum are characteristic in long-range correla-
tions in rapidity, which are best quantified by the har-
monic flow, Vn. Defined according to a Fourier decom-

042001-5



Chinese Physics C Vol. 42, No. 4 (2018) 042001

position of the emitted single-particle spectrum,

E
dN

d3p
=

1
2π

dN

pTdpTdη

[
1+

∞∑
n=1

(
Vn(pT,η)e−inφp+c.c.

)]
,

(12)
the harmonic flow Vn characterizes the momentum
anisotropy in azimuth of the particle spectrum, of order
n. In Eq. (12), η=tanh−1(pz/|p|) is the pseudo-rapidity,
which should be distinguished from the notation of shear
viscosity. In Eq. (12), c.c. indicates a complex conjugate.
Harmonic flow Vn’s are complex by definition,

Vn(pT,η)≡vneinΨn =〈einφp〉 (13)

where the magnitude vn characterizes the magnitude of
azimuthal anisotropies of the particle spectrum in the
transverse directions, while the phase Ψn, also known as
the event-plane, determines orientation of the anisotropy.
In the last equation of Eq. (13), the single brackets de-
note an average with respect to the single particle spec-
trum in one collision event.

Fluctuations in the initial state density profile from
event to event result in fluctuations of the generated par-
icle spectrum, and also flucutating harmonic flow Vn.
Therefore, in event-by-event hydrodynamic simulations,
as in experiments, harmonic flow Vn should be extracted
via multi-particle correlations. In experiments, it has
been noticed that anisotropy of the particle spectrum
depends on collision centrality, transverse momentum
pT, and rapidity y (implying the dependence on particle
species), or pseudo-rapidity η, as does the corresponding
harmonic flow Vn.

Different orders of the harmonic flow have specified
physical interpretations, in terms of the azimuthal sym-
metry. The most dominant flow signature is n = 2,
the elliptic flow V2, which characterizes the asymmet-
ric distribution of particles generated in- and out-of the
event-plane Ψ2 in one collision event [42]. For the case
of n=1, which characterizes asymmetric particle yields
from one side of the system to the other, there is a
rapidity-even component which is often referred to as the
dipolar flow [43, 44], and a rapidity-odd piece. In multi-
particle correlations, although both the dipolar flow and
the rapidity-odd V1 receive contributions from momen-
tum conservation in multi-particle correlations [45], the
dipolar flow is generated as a result of medium collective
expansion, as in the flow paradigm. The rapidity-odd
V1 is rooted in the properties of nucleus scatterings, and
has a strong correlation with the reaction plane. Re-
garding higher order azimuthal anisotropies, there are
also trianglar flow V3 [46], quadranglar flow V4, etc. It
should emphasized that the flow harmonics of order n
has a determined rotational symmetry in the azimuth,
φp→φp+2π/n.

In experiments, it has been found that the ellip-

tic flow is more significant than others. Especially in
nucleus-nucleus collisions, such as the Au+Au at RHIC,
the signature of ellitptic flow is understood as a medium
evolution with respect to an almond-shaped geometry
determined by the initial overlap of the colliding sys-
tem. Relating flow observables to initial state geometry
is generalizable to higher order flow harmonics, which
motivates the analyses of medium response relations in
the flow paradigm.

Although hydrodynamic modeling of heavy-ion col-
lisions gives rise to results with quantitative agreement
with the observed flow signatures, these calculations rely
on several effective parameterizations. Especially, the
effective description of the initial state contributes to
the greatest extent to the uncertainties of the analyses.
These are the dominant source of uncertainties in the
extraction of η/s in hydro modeling. In addition, there
are also fundamental issues related to the application of
dissipative fluid dynamics to heavy-ion collisions, which
are more severe for the recent experiments carried out
with small colliding systems. Nevertheless, the success
of hydro modeling in heavy-ion collisions allows one to
empirically correlate the observed flow signatures to the
geometrical properties of the initial state and the dissi-
pative feature of the expanding medium, as in the flow
paradigm. By doing so, what really matter in analysis
are the common features of the observed flow harmon-
ics in various colliding systems, in a way that not only
can one understand the generation of harmonic flow, flow
correlation and fluctuation, but also provides quantita-
tive constraints on the exatraction of η/s, with mini-
mized dependence on the effective parameterizations of
the model.

2.2 Geometrical properties of the initial state

The quantitative relations established in the flow
paradigm to relate the observed flow harmonics to ini-
tial state and medium dissipations requires appropriate
characterizations of the initial state geometry. This can
be achieved by using the so-called initial state eccentric-
ity En, which by definition is introduced according to the
azimuthal symmetry of the initial state density profile.
Fluctuations of the initial state density profile lead to
fluctuations of En from event to event. Additionally, on
an event-by-event basis, En are correlated owing to the
background geometry resulting from the colliding sys-
tems. Fluctuations and correlations of En are crucial in
understanding the similar behaviors in Vn.
2.2.1 Initial state anisotropy En

The idea to relate harmonic flow and initial state ge-
ometry is inspired by the fact that the linearised hydro-
dynamic response does not mix the evolution of modes,
once these modes are considered small perturbations. In
terms of the expanding medium systems in heavy-ion col-
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lisions, these are modes associated with azimuthal asym-
metries which are responsible for the generation of flow
harmonics (cf. Ref. [47]). Also, as in the original ob-
servation of elliptic flow, V2 [42], in a somewhat crude
analysis ignoring fluctuations in the initial state, people
realized that the observed elliptic flow is correlated to an
almond shape of the initial state density profile.

In high energy heavy-ion collisions, such an almond-
shaped distribution is simply expected from the overlap
of two colliding nuclei when collisions are non-central,
with the shorter dimension of the almond shape aligned
with the reaction plane. As a result, elliptic flow can
be interpreted as a result of medium expansion driven
by the asymmetric density profile. More precisely, gradi-
ents, which play the role of force in hydrodynamics, are
anisotropic in- and out-of reaction plane, leading cor-
respondingly to an anisotropic expansion. This expan-
sion scenario has been justified by the similar expansion
out of an anisotropic medium system realized in the cold
atom experiments [48]. The key in this relation is the
azimuthal structure of the initial distribution, which is
asymmetric between in- and out-of reaction plane, anal-
ogous to that of elliptic flow. The extent of asymmetry is
characterized by a dimensionless quantity called elliptic-
ity. With respect to the reaction-plane, it can be defined
as

εRP
2 =

{x2−y2}
{x2+y2} , (14)

where the curly brackets denote the average with respect
to the initial state energy (or entropy) density distribu-
tion,

{...}=
∫

dxdye(x,y)...∫
dxdye(x,y)

. (15)

The reaction-plane ellipticity εRP
2 is bounded by unity.

It is clear that the elliptic asymmetry vanishes when
εRP
2 = 0, corresponding to a density profile with abso-

lute azimuthal symmetry. Elliptic asymmetry maximizes
when εRP

2 =1. To a good approximation, a linear relation

between the ellipticity and v2 has been found [49].
When event-by-event fluctuations are taken into ac-

count, the initial state geometry in heavy-ion collisions
depends not only on the background shape, but also de-
formations induced by the extra fluctuations. A gener-
alization of ellipticity to higher orders can be applied,
which provides a mode decomposition with respect to
the azimuthal asymmetry of the initial state geometry.
If one takes the complex expression z =x+iy = reiφ for
the transverse coordinates, a standard generalization of
the n-th order eccentricity is defined in terms of the n-th
order moment of the density, as

En≡εneinΦn =− {zn}
{|z|n}=−{rneinφ}

{rn} , n>1, (16)

where {|z|n} in the denominator plays the role of normal-
ization. The minus sign is conventionally taken so that
En is potentially aligned with respect to Vn, although the
alignment is often broken due to the complexity induced
from the medium response. It can also be understood as
a Fourier decomposition of the energy density in terms
of azimuthal angle φ, with a rn-weight corresponding to
the fluctuation modes along the radial direction. For the
case of n=1, since {z} vanishes by a re-centering of the
density profile1), the non-trivial leading contribution is

E1≡ε1eiΦ1 =−{z2z∗}
{|z|3} =−{r3eiφ}

{r3} , (17)

which captures a dipolar structure in the initial energy
density. E1 is the dipolar anisotropy, which is rapidity-
even. Note that in Eq. (16), En is complex with its mod-
ule εn characterizing the magnitude of asymmetry, while
its phase Φn defines the orientation. The phase Φn is
sometimes referred to as the participant plane of the
initial state. Both εn and Φn fluctuate from event to
event in heavy-ion collisions as the density profile fluc-
tuates. Again, by definition in Eq. (16) and Eq. (17),
En is bounded by unity, with a vanishing En indicating
a vanishing n-th order anisotropy, while a maximized
anisotropy is achieved when |En|=εn=1.

ε1 ε2 ε3 ε4 ε5
Fig. 2. (color online) Characteristic shapes of the deformed initial state density profile, corresponding to anisotropies

of E1, E2, E3, E4 and E5 (from left to right).

1) Re-centering of the initial density in a theoretical analysis is always allowed, since the physical observables in heavy-ion collisions
are invariant under translations in the transverse plane.
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By construction, En is invariant under rotation in
azimuthal angle, φ → φ+2π/n, which implies that the
azimuthal angle dependence of the fluctuating density
profile is decomposed into modes according to En. Each
mode corresponds to a characteristic shape, under the
rotational symmetry. In addition to the elliptic shape
associated with E2, E3 defines the triangularity, E4 de-
fines the quadrangularity, etc. Fig. 2 demonstrates the
eccentric shapes corresponding to n = 1 to n = 5. The
phase Φn’s in Fig. 2 are aligned with the x-axis.

Mode decomposition of the azimuthal angle depen-
dence in Eq. (16) gives rise to correct definitions of di-
mensionless quantities, with the desired symmetry de-
pendence with respect to rotation. However, the defi-
nition of initial eccentricity is not unique. Apparently,
various types of weight function of the radial distance
f(r) can be applied, accounting for the dependence in
the radial direction [46, 50, 51], so that one has in gen-
eral

En[f(r)]=−{f(r)einφ}
{|f(r)|} . (18)

For instance, instead of the r2 weighting in the defi-
nition of E2, r4-weighted moments, {r4ei2φ} = {z3z∗},
also lead to the characterization ellipticity, satisfying the
same symmetry condition under rotation. A systematic
way of considering the r-dependence of the initial state
requires a generalized mode decomposition in r. Analo-
gous to the fact that different harmonic orders relate to
different structures in the azimuth of the system, higher
modes associated with r in the definition of eccentrici-
ties correspond to different (and finer) structures in the
radial direction. These higher modes are particularly
important regarding fluctuations of the initial state den-
sity profile. With respect to the same harmonic order,
these different modes along r contribute simultaneously
to the corresponding harmonic flow, but they have dif-
ferent dynamical properties responsible for the observed
momentum dependence, which motivates the proposed
principal component analysis [52, 53].

In addition to the moment of the density profile, one
may also consider using cumulants [43]. For instance,
for the 4-th order anisotropy, cumulants of the density
profile gives

Ec
4 =− 1

{|z|4} [{z4}−3{z2}2] , (19)

where terms proportional to {z} are suppressed as a re-
sult of re-centering correction. Like E4, one may check
that Ec

4 is also invariant under the rotation φ→φ+2π/4.
However, unlike E4, Ec

4 is not bounded by unity, in partic-
ular in very peripheral collisions where the ellipticity of
the system is large. A cumulant definition of the eccen-
tricity coincides with the moment definition, when n�3.
When n� 4, there are always subtractions or additions

of nonlinear moment couplings in the cumulant defini-
tion. For the cumulant definition of the fifth order and
the sixth order, one has

Ec
5 =−{z5}−10{z2}{z3}

{|z|5} ,

Ec
6 =−{z6}−15{z4}{z2}−10{z3}2+30{z2}3

{|z|6} (20)

Throughout discussions in this review, we shall take the
momentum-based definition by default.
2.2.2 Fluctuations and correlations of En

In the flow paradigm, fluctuations and correlations
of En play an essential role in the understanding of fluc-
tuations and correlations of the harmonic flow Vn. For
the discussion of fluctuations, we shall focus on lower
harmonic orders (n � 3), to avoid complexities due to
the nonlinear mode couplings during the medium evo-
lution. Correlations amongst En will be addressed with
respect to the correlations of participant plane Φn. In
this subsection, we concentrate on some of the analyti-
cal results from independent sources, with respect to very
fundamental assumptions. Deviations from the present
assumptions are expected to be sub-leading.

Fluctuations and correlations of initial state eccen-
tricities are rooted in the event-by-event fluctuations of
initial state density profile, and accordingly the induced
fluctuating initial state geometry. Although it can be re-
alized through Monte Carlo simulations of effective mod-
els, the fluctuating density profiles of various effective
models behave differently, which gives rise to different
evaluations of the induced anisotropies, the probabil-
ity distributions of anisotropies and correlations among
them. As is clearly shown in Fig. 1, the density profile
from IP-Glasma is more spiky, implying stronger fluc-
tuations of anisotropy. Despite ambiguities in different
effective models, there are two essential concepts one has
to take into account in a theoretical analysis of the ini-
tial state geometry: background geometry and fluctua-
tions. The background geometry of a fluctuating system
reflects the event-averaged density profile. For instance,
in collisions such as Au+Au at RHIC, and Pb+Pb at
the LHC energies, the event-averaged density presents a
determined almond shape in each centrality class. Given
a background density profile which captures the correct
shape, fluctuations are treated as extra sources.

Fluctuations of En In the simplest scenario, one
considers a fluctuating density profile in terms of N-
independent point-like sources, distributed according to
a two-dimensional Gaussian background geometry. It
has been found that with respect to such a configuration,
the probability distribution of initial state eccentricity
can be solved analytically [54, 55], leading to the so-
called elliptic-power distribution. The two-dimensional
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elliptic-power distribution for ellipticity En=εx+iεy is

P (εx,εy)=
α

π
(1−ε2

0)
1+ 1

2
(1−ε2

x−ε2
y)

α−1

(1−ε0εx)2α+1
, (21)

where ε0 and α are parameters associated with the back-
ground shape and number of independent sources, re-
spectively. Regarding the Gaussian background, ε0 char-
acterizes ellipticity in the reaction plane. Note, however,
that although ε0 is expected to be close to εRP

2 , it should
be distinguished from the real ellipticity in the reaction
plane defined for a fluctuating system, owing to the ef-
fects of fluctuations. The parameter α= N−1

2
is related

to the fluctuation strength, which is roughly proportional
to 1/

√
N . One remarkable property of the elliptic-power

distribution is its consistency with the condition that ec-
centricity is bounded by unity. This is implied in the
normalization ∫

dεxdεyP (εx,εy)=1, (22)

where integration runs over a unit disk, |En| � 1. The
upper bound of the eccentricity is not generally satisfied
in other distribution functions. For instance, consider-
ing a simplification of the elliptic-power distribution in
the limit α 
 1, corresponding to a system with small
fluctuations, the distribution Eq. (21) reduces to a two-
dimensional elliptic Gaussian,

P (εx,εy)=
1

2πσxσy

exp
(
− (εx−ε0)2

2σ2
x

− ε2
y

2σ2
y

)
, (23)

which is normalized in the entire plane of (εx,εy).
In deriving the elliptic-power distribution, ε0 is in-

troduced to characterize the intrinsic anisotropy induced
from the background geometry. There are circumstances
when ε0 = 0, so that the initial state eccentricity is en-
tirely generated by fluctuations. For instance, in pro-
ton+Pb collisions, the created medium is rotationally
symmetric if the shape of the proton is isotropic. Also,
as in collisions like Pb+Pb, all odd-order anisotropies
vanish from the background geometry. In such cases,
the elliptic-power reduces to the power distribution,

P (εx,εy)=
α

π
(1−ε2

x−ε2
y)

α−1 . (24)

One may check that the power distribution is also nor-
malized on a unit disk.

The probability distribution of the magnitude can
be found by integrating out the dependence of angle
ϕn=arg(En). The elliptic-power distribution gives,

P (εn) = 2εnα(1−ε2
n)α−1(1−εnε0)−1−2α(1−ε2

0)
α+ 1

2

×2F1

(
1
2
,1+2α;1;

2εnε0

εnε0−1

)
, (25)

where 2F1 is the hypergeometric function. The power

distribution gives,

P (εn)=2αεn(1−ε2
n)α−1 . (26)

Figure 3 displays the probability ditribution of ε2, ε3

and ε4, generated from MC-Glauber simulations, with
respect to Pb+Pb collision events in the 75%-80% cen-
trality class at the LHC energy

√
sNN =2.76 TeV. This

very peripheral centrality class is purposely chosen since
the effects of fluctuations are sufficiently strong, so is the
influence from the bound of εn by unity.

The fit using an elliptic-power distribution describes
ε2 and ε4 (red solid lines in Fig. 3 (a) and (c)) well, while
since ε3 in Pb+Pb collisions is solely fluctuation-driven,
its fluctuating feature is compatible with a power distri-
bution, as shown in Fig. 3 (b). When σx=σy in the two-
dimensional elliptic Gaussian Eq. (23), integration over
angle ϕ is applicable, which leads to the Bessel-Gaussion
function [56],

P (εn)=
εn

σ2
exp

(
−ε2

n+ε2
0

2σ2

)
I0

(ε0εn

σ2

)
(27)

As a comparison, the fit using the Bessel-Gaussian func-
tion is shown in Fig. 3 as the green dashed lines. The
Bessel-Gaussian results in a worse description of the ec-
centricity distribution. Especially, one notices the non-
zero tails of the Bessel-Gaussian at εn =1 in Fig. 3, as
anticipated, since in the Bessel-Gaussian distribution the
upper bound of eccentricities is infinity.

As a simple summary, we notice that the probability
distributions of initial state eccentricities are apparently
non-Gaussian, as one sees in Fig. 3 that the elliptic-power
and power distributions give rise to much better fits than
the Bessel-Gaussian function. Considering the deriva-
tion of elliptic-power and power distribution functions,
assuming only N-independent point-like sources on top
of a Gaussian background, the non-Gaussianity comes
dominantly from the fact that En is bounded by unity.

Elliptic-power and power distributions have been suc-
cessfully applied to parameterize a general class of the
generated initial state eccentricity from effective models,
where differences of these effective models are quantita-
tively captured by the parameters ε0 and α [55]. Note
that in these models, there are many other sources that
contribute to the non-Gaussianity of the initial eccen-
tricity fluctuations. For instance, there are higher or-
der corrections concerning a more sophisticated config-
uration of the initial state density profile rather than a
two-dimensional Gaussian, and extra correlations among
sources, etc. [57–59], which have been taken into account
in theoretical analyses.
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Fig. 3. (color online) Histogram of the initial state
eccentricity (a) ε2, (b) ε3 and (c) ε4 distributions,
obtained from Monte-Carlo simulations of the
MC-Glauber model, with respect to the Pb+Pb
collisions in the 75%–80% centrality class, at√

sNN = 2.76 TeV. Lines of different styles and
color are fit using elliptic-power (red solid),
power (red dash-dot) and Bessel-Gaussian (green
dashed) functions. Reprinted figure with per-
mission from L. Yan, J.-Y. Ollitrault, and A. M.
Poskanzer, Phys. Rev. C 90, 024903, 2014 (DOI:
https://doi.org/10.1103/PhysRevC.90.024903)
(Ref. [55]). Copyright 2014 by the American
Physical Society.

Correlations of En Event-by-event fluctuations of
the density profile also generate correlations among ini-
tial state eccentricities [43, 60]. These correlations are
consequences of pure geometrical effects due to the av-
eraged background geometry and fluctuations of energy
deposition from event to event [61]. The similar idea
of treating the density profile as independent sources
can be applied to the mixed correlations among En [62].
In this way, one may consider introducing the event-by-
event fluctuation of a function g as δg≡{g}−〈〈g〉〉. Note
that {g} is obtained with respect to the density profile
of one single event, while 〈〈g〉〉 is the averaged value over
events. From the independent sources, one has the two-
point correlation of fluctuations inversely proportional to
the number of independent sources [63],

〈〈δfδg〉〉= 〈〈fg〉〉−〈〈f〉〉〈〈g〉〉
N

. (28)

Three-point and four-point correlations are found at the
next leading-order, in terms of 1/N2. Therefore, by tak-
ing account of the recentering corrections, fluctuating
initial eccentricities E2 and E3 are written as

E2=−{(z−δz)2}
{r2} ≈−〈〈z2〉〉+E0δr2+δz2

〈〈r2〉〉 +O(δ2)

E3=−{(z−δz)3}
{r3} ≈−δz3−3〈〈z2〉〉δz

〈〈r3〉〉 +O(δ2) (29)

Note that we have assumed a non-zero averaged back-
ground ellipticity, E0=−〈〈z2〉〉/〈〈r2〉〉 in the above equa-
tions, which corresponds to the case of non-central
nucleus-nucleus collisions. As a result, Eq. (29) implies
the fact that ε2{2}∼ε0, while ε3{2}∼1/

√
N . One should

be aware that in colliding systems such as He3+Au, the
ultra-central collisions are expected to have an averaged
triangular shape, so that a non-zero background trian-
gularity should be assumed instead, E0=−〈〈z3〉〉/〈〈r3〉〉.

Eq. (29) can be generalized to other eccentricities,
which allows one to analytically derive the mixed corre-
lations among En, order by order with respect to 1/N .
For instance, at the leading-order, the correlation be-
tween E2 and E3 has the following contribution,

〈〈E3
2E∗2

3 〉〉=−9|E0|6
N

〈〈r2〉〉3
〈〈r3〉〉2 . (30)

Although the above estimate is only valid with respect to
independent sources, it generically captures the feature
of negative correlation. Besides, one also expects from
Eq. (30) that the strength of correlation grows when N
decreases, corresponding to an increase of centrality per-
centile in heavy-ion collisions. Both of these features
are confirmed in model simulations, as shown in Fig. 4.
Fig. 4 displays the mixed correlators involving E1, E2 and
E3, from Monte-Carlo simulations of a CGC-typed model
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and the Glauber model. Analytic solutions from inde-
pendent sources are obtained in terms of the expansion
in inverse to the number of sources. One notices that the
correlations are well-described by analytical results from
independent sources. The correlations of initial state ec-
centricities are observed quite generally in various effec-
tive models, which inspire the measurement of the mixed
correlations in harmonic flow [64].

Fig. 4. (color online) Mixed correlations among
initial state eccentricities En. Red solid and
black dashed lines are estimates from indepen-
dent sources, to the leading-order in 1/N and
next leading-order, respectively. Symbols are
Monte-Carlo simulations from the CGC model
(left panel) and the Glauber model (right panel).
The notations indicate to the mixed correlations
of the corresponding harmonic orders, with
a proper normalization of the magnitude of
eccentricities. Reprinted figure with permission
from R. S. Bhalerao, M. Luzum, and J.-Y.
Ollitrault, Phys. Rev. C 84, 054901, 2011 (DOI:
https://doi.org/10.1103/PhysRevC.84.054901)
(Ref. [62]). Copyright 2011 by the American
Physical Society.

2.3 Medium response to En

Solutions to the hydrodynamic equations of motion
are completely determined once an initial condition is
specified. With respect to the fluctuating initial state
characterized in terms of initial state eccentricities, the
hydrodynamic predictions of harmonic flow are expected
as a function of these eccentricities,

Vn=Vn(E ,α). (31)

In Eq. (31), E denotes a set of initial state eccentricities
that are responsible to Vn, while α contains parameters
related to the medium dynamical properties, such as the
transport coefficient η/s. Although the explicit form of

Eq. (31) is not known a priori from first-principle calcu-
lations, there is mounting evidence from numerical hy-
drodynamic simulations suggesting that one may expand
Vn(E ,α) in terms of E ,

Vn=κ(α)E+O(E2)+δn , (32)

with respect to the fact that |E| < 1. The quantity δn

is the residual introduced accounting for deviations due
to additional fluctuations. By assumption, δn is uncor-
related with initial state eccentricities, which we shall
address later. Note that δn is complex, since Eq. (32)
relates complex quantities on both sides of the equation.
More precisely, the magnitudes and the phases of both
sides in the equation are identical respectively.

In practice one would like to truncate the expansion
at a finite order, so that harmonic flow can be well ap-
proximated. These terms in the expansion correspond
to the medium response to the initial geometry E , from
the linear order, to nonlinear mixing of higher orders.
Comments are in order with respect to the expansion
Eq. (32).

1. The expansion relies on the fact that En’s are small
quantities. In collisions of large systems such as
Pb+Pb and Au+Au, this criterion is generally sat-
isfied for harmonic orders n �= 2, because initial
state eccentricities of order n �=2 are generated en-
tirely from fluctuations. One estimates the magni-
tude of eccentricity εn∼1/

√
N1. Whereas when

n=2, ellipticity comes dominantly from the back-
ground geometry in non-central collisions. There-
fore, E2 is more significant than other eccentrici-
ties in the expansion. Effective model simulations
have shown that towards peripheral collisions, ε2

can grow above 0.5, which implies the role of non-
linear order terms involving E2 in the expansion.

2. By expanding in En’s, the dependence on medium
dynamical properties is absorbed separately in the
expansion coefficients, κ(α), etc. We shall refer to
the coefficient of the linear order κ(α) as the linear
response coefficient. Coefficients of higher orders as
nonlinear response coefficients. These coefficients
are remarkable in probing the medium dynamical
properties, as their dependence on the initial state
is minimized. Although Eq. (32) is written on an
event-by-event basis, one would expect the medium
response coefficients not to fluctuate in one central-
ity class. These coefficients are calculable in hy-
drodynamic simulations, and as will be discussed,
some of them are accessible in experiments under
fairly general assumptions.

3. In each single event, with respect to the rota-
tional symmetry of Vn, each term on the right-
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hand side of Eq. (32) is invariant under the ro-
tation φ→φ+2π/n. Since response coefficients are
real quantities according to parity conditions, at
each order the allowed combinations of En’s can be
determined by symmetry conditions. For the re-
sponse of linear order, it is apparent that V L

n (the
linear part of flow Vn) is proportional to En. It
should be emphasized that there exist ambiguities
in the definition of En. Symmetry constraints on
the nonlinear order part of the flow V NL

n are more
useful. For instance, for the fourth order flow har-
monics, in addition to a linear response to E4, the
nonlinear contributions at quadratic order include
the coupling of E2, i.e., V NL

4 ∝ E2
2 . For V5, rota-

tional symmetry requires the nonlinear part to be
generated by quadratic coupling between E2 and
E3, V NL

5 ∝E2E3.

With respect to all these aspects, the following forms
have been found successful in practical applications of
the expansion Eq. (32). From the elliptic flow V2 to har-
monic order n=6 [20, 65],

V2=κ2E2+κ′
2ε

2
2E2+δ2 , (33a)

V3=κ3E3+κ′
23ε

2
2E3+δ3 , (33b)

V4=κ4E4+κ422E2
2+δ4 , (33c)

V5=κ5E5+κ523E2E3+δ5 , (33d)
V6=κ6E6+κ633E2

3+κ624E2E4+κ6222E3
2+δ6 . (33e)

One notices that higher order flow becomes more compli-
cated since more terms from the nonlinear mode mixings
are required to achieve a good approximation. There
have also been some attempts in the similar analysis for
the flow V7 and V8,

V7 = κ7E7+κ7223E2
2E3+...+δ7

V8 = κ8E8+κ82222E4
2+...+δ8 , (34)

where even more involved terms up to the quartic order
nonlinear couplings contribute. Although Eqs. (33) are
kind of idealistic, in the sense that they require explicit
information of the En’s, these relations are of great sig-
nificance in the flow paradigm. These response relations
can be applied to quantitatively describe the final state
flow observables in terms of the dynamical properties of
the medium, and the initial state eccentricities En. In
the following subsections, we shall summarize some im-
portant details in Eqs. (33) based on solutions of viscous
hydrodynamics.
2.3.1 Viscous effects on the medium response

The effect of fluid response to the initial state per-
turbations is suppressed by viscous corrections in hydro-
dynamics. When the solution of the system evolution is
decomposed into modes, it is further expected that the
higher order modes get stronger viscous corrections.

In theory, the argument that the response of higher
order mode is more damped by viscous corrections can be
verified in several cases with analytic solutions of viscous
hydrodynamics. In the linear response analysis with re-
spect to a static fluid background, considering any types
of initial perturbations of hydrodynamic fields which are
decomposed into modes k (wave-number), it is known
that the evolution of these modes undergoes viscous cor-
rections proportional to −k2η/s, as a result of the diffu-
sion feature of the Navier-Stokes equations (cf. Ref. [66]).

Similar behaviors of the fluid dynamics are also
present in the analytic solutions of expanding systems:
the 0+1 dimensional Bjorken flow [68] and 1+1 dimen-
sional Gubser flow [47]. Gubser flow is an analytical solu-
tion of a conformal fluid system, with system expansion
realized both in the longitudinal direction along space-
time rapidity, and in the radial direction along r. The
analytical solution of the Gubser flow assumes a back-
ground which is rotationally symmetric. Deformation
of the symmetric background results in mode decompo-
sition in terms of spherical harmonics E (l)

n ∼ Y l
n. The

index l captures the fluctuations along the radial direc-
tion, while n is associated with the azimuthal angle. It
should be noted that the mode decomposition in terms
of n is consistent with the Fourier decomposition used in
the usual definition of initial state eccentricities. Corre-
sponding to the initial state geometrical fluctuations in
heavy-ion collisions, one may approximate the mode E (l)

n

in the Gubser flow, as the ordinarily defined eccentricity
En from moment {rleinφ}. For instance, in the Gubser
flow the mode E (2)

2 can be recognized as the ellipticity
E2. For each n-th order initial eccentricity, the dominant
one in the decomposition comes from the lowest order l,
satisfying n=l, which is suppressed in the Navier-Stokes
hydrodynamics according to the factor

exp(−l2η/s)∼exp(−n2η/s). (35)

Eq. (35) also reflects the diffusion feature of the mode
evolution in hydrodynamics, in analogous to the k2 sup-
pression in a static fluid.

In realistic systems in heavy-ion collisions, which are
not conformal, nor rotationally symmetric, there is no
analytical relation solved between harmonic order n and
viscous corrections. However, as inspired in these an-
alytic solutions, especially Eq. (35), one still expects a
n2-scaling of the viscous corrections [47, 69, 70]. Indeed,
numerical solutions in the single-shot viscous hydrody-
namics have found very similar trends in the linear re-
sponse to the moment (and cumulant) based initial ec-
centricities, as viscosity increases [71]. Owing to the com-
plexity in exacting linear response coefficients, however,
the n2-scaling has not been validated in event-by-event
hydrodynamic simulations.

The n2 dependence of the viscous suppression in the
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fluids has strong indications in the flow paradigm. In
particular, in addition to the simple fact that the lin-
ear response of higher order flow harmonics is more sup-
pressed than the lower order ones, nonlinear response
coefficients are always less suppressed than the corre-
sponding linear response, for the same harmonic order1).
As a consequence, in higher order harmonic flow, with
n � 4, the dominant contributions are from the nonlin-
ear mode mixings from E2 and E3, etc., in the expansion
equation Eq. (33), when viscous effects are sufficiently
strong.
2.3.2 Medium response in V2 and V3

Linear order response We start with the two
lower order flow harmonics, elliptic flow V2 and trian-
gular flow V3. These two types of flow harmonics are dif-
ferent from the higher order ones in the flow paradigm,
as they are dominated by a linear medium response.
Nonlinear mode mixings appearing in Eq. (33a) and
Eq. (33b) are of cubic order, whose effects are minor
expect in some particular situations. Ignoring nonlinear
terms, the linear relations

V2=κ2E2 , V3=κ3E3 , (36)

simplify the theoretical analysis significantly. From
Eq. (36), one expects the magnitudes of V2 and V3 to be
linearly proportional to those of E2 and E3, respectively.
Besides, the initial state participant planes Φ2 and Φ3 are
aligned respectively to the event-plane Ψ2 and Ψ3, which
are determined from the observed particle spectrum. As
a result, fluctuations and correlations seen in flow har-
monics are to a large extent understandable in terms of
those in E2 and E3. For instance, the probability distri-
bution of v2 is then a rescaled distribution of ε2. In turn,
features of the cumulants of initial ε2 are detectable once
the v2 cumulants are measured in experiments.

The linear relation can be examined simply in hydro-
dynamic simulations [67, 73]. Scatter plots in Fig. 5, for
example, present the linear relation between the magni-
tude v2 and magnitude ε2, and between v3 and ε3, based
on simulations of viscous hydrodynamics with respect
to Au+Au collision events of

√
sNN = 200 MeV, in the

centrality class 20%-30% [67]. The linearity is obvious
in the figures, with the slope corresponding to the linear
response coefficient κ. However, it should be emphasized
that the slope is not identical to the linear response co-
efficient κ. One notices a larger slope in the scatter plot
of v2 than v3 in the same centrality class, signifying a
stronger medium linear response to the ellipticity than
triangularity. A stronger correlation between v2 and ε2

is observed, as the dispersion in the scatter plot of trian-
gularity is more pronounced.

Fig. 5. (color online) Response of the flow mag-
nitudes v2 and v3 to the magnitudes of initial
ellipticity ε2 and triangularity ε3, obtained from
event-by-event hydro simulations of the Au+Au
collisions in one centrality class, 20% − 30%..
Reprinted figure with permission from H. Niemi
et al, Phys. Rev. C 87, 054901, 2013 (DOI:
https://doi.org/10.1103/PhysRevC.87.054901)
(Ref. [67]). Copyright 2013 by the American
Physical Society.

To validate the linear response relations in a more
quantitative way, one defines the Pearson correlation co-
efficient [62]. For V2, it is written as

P2=
Re〈〈V2E∗

2 〉〉√〈〈v2
2〉〉

√〈〈ε2
2〉〉

, (37)

in terms of event-averaged quantities. The Pearson co-
efficient P2 measures the linear correlation between V2

and E2. It should be emphasized that P2 measures the
linear relation simultaneously between both magnitudes
and phases. By construction, P2 vanishes when V2 is un-
correlated with E2, while P2 =±1 indicates an absolute
correlation or anti-correlation. Similarly, for V3 one has

P3=
Re〈〈V3E∗

3 〉〉√〈〈v2
3〉〉

√〈〈ε2
3〉〉

, (38)

1) This statement is true when the viscous correction of harmonic order n is proportional to nα, as long as α>1, i.e., not necessarily
α=2.
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Fig. 6. (color online) Correlations of the elliptic flow v2 (left panel) and triangular flow v3 (right panel) for different
definitions of initial eccentricities, characterized in terms of Pearson correlation coefficients as a function of central-
ity percentile. Reprinted figures with permission from F. G. Gardim et al, Phys. Rev. C 85, 024908, 2012 (DOI:
https://doi.org/10.1103/PhysRevC.85.024908) (Ref. [72]). Copyright 2012 by the American Physical Society.

which measures the linear correlation between V3 and E3.
It is worth mentioning that the linear response coefficient
κ can be calculated analogously via these event-averaged
quantities, i.e.,

κ2=
Re〈〈V2E∗

2 〉〉
〈〈ε2

2〉〉
, κ3=

Re〈〈V3E∗
3 〉〉

〈〈ε2
3〉〉

, (39)

The linear response coefficients deviate from the slope
of the scatter plot in Fig. 5, which is given as
〈〈vnεn〉〉/〈〈|εn|2〉〉.

In Fig. 6, the Pearson correlation coefficients are cal-
culated in viscous hydrodynamics, with various types of
characterizations of the initial state ellipticity (left panel)
and triangularity (right panel) examined. On a general
ground, the ellipticity defined in Eq. (16) with a r2 weight
(blue points) is most responsible in the linear relation to
V2, leading to P2 above 0.95 for most of the centrality
bins. The correlation gets stronger towards non-central
collisions, as one observes an increasing trend of P2. El-
lipticity defined with a r4 weighting can be found in the
cumulant expansion of the initial density profile, whose
linear correlation with V2 is also found to be strong in
Fig. 6 (black points). Actually the r4-weighted ellipticity
is more responsible for V2 in central collisions, which sig-
nifies the role of outer layer in the density profile in the
generation of elliptic flow in central collisions. The quan-
tity f2 in Fig. 6 is adopted from the mode decomposition
with respect to the Gubser flow [47], whose correlations
with V2 are weaker in all centrality classes.

Similar analyses for the triangular flow are shown in
the right-hand panel of Fig. 6. The correlation of the
linear relation is generally weaker in V3 than V2, consis-
tent with the observation in Fig. 5. The linear correla-
tion with the triangularity defined in Eq. (16) with a r3

weighting is reasonably good, though a r2 weighting is
more favorable in peripheral bins, which implies the sig-
nificance of inner layer in the generation of V3 in systems

of smaller sizes. But in larger systems, the outer layer is
more sensitive, as one notices the stronger linear corre-
lation with the r5-weighted definition. The r5-weighted
triangularity is again derived from the cumulant expan-
sion of initial state density profile. Similarly, in the mode
decomposition developed from the Gubser flow, f3 pro-
vides weaker correlations to V3.

Viscous effects on the linear medium response are
expected to suppress the response coefficient κ, as has
been discussed in the previous section. Besides, event-
by-event hydro simulations have also shown that viscos-
ity tends to enhance the linear correlation between initial
state eccentricity and flow [67].

Cubic order response The increasing trend of the
Pearson correlation coefficients P2 and P3 seen in Fig. 6
from central to non-central bins can be understood as ow-
ing to the growth of ellipticity and triangularity, against
residual fluctuations, etc. When going towards very pe-
ripheral collisions, however, one notices a weak but clear
drop of the correlation with respect to linearity, indicat-
ing the role of nonlinear terms in Eq. (33a) and Eq. (33b).

Deviation from the linear relation in the peripheral
collision bins for V2 is visible in hydrodynamic simula-
tions [10]. Shown in Fig. 7(a) is a scatter plot of the
correlation between the magnitudes v2 and ε2, obtained
in the centrality class 45%-50% of Pb+Pb collisions at√

sNN = 2.76 TeV [21]. Each point in the plot corre-
sponds to an event with a randomly specified initial ge-
ometry from the Monte Carlo Glauber model. A nonlin-
ear trend in the plot is obvious for the events with large
values of ε2. In the same centrality class, deviation from
the linear correlation between the magnitude v3 and the
magnitude ε3 is seen to be negligible in Fig. 7(b). Black
dashed lines correspond to the linear response relation,
with the slope calculated according to Eqs. (39). Red
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Fig. 7. (color online) Correlation between the magnitudes of anisotropic flow vn and initial eccentricity εn for
Pb+Pb collisions at 2.76 TeV in the 45%–50% centrality range. Each point corresponds to a different ini-
tial geometry. Dotted line: linear estimator. Full line: cubic estimator. (a) Elliptic flow. (b) Triangular
flow. Reprinted figure with permission from J. Noronha-Hostler et al, Phys. Rev. C 93, 014909, 2016 (DOI:
https://doi.org/10.1103/PhysRevC.93.014909) (Ref. [21]). Copyright 2016 by the American Physical Society.

solid lines are results containing a cubic order response,
with the response coefficients determined as in Eq. (40)
and Eq. (41) below.

To include nonlinear effects in the response function,
for V2 and V3 the allowed terms by symmetry are of cubic
order. Following the rule that E2 is dominant in the ex-
pansion, one arrives at the terms ∝ε2

2E2 for V2 and ∝ε2
2E3

for V3, respectively. There are new response coefficients
corresponding to the cubic order terms. Determination
of the linear response coefficient κ and the cubic order
response coefficient κ′ can be approached by minimizing
the effects of residual fluctuations 〈〈|δn|2〉〉. Or equiva-
lently, it is the maximization of the Pearson correlation
coefficient with respect to the flow constructed with the
cubic order response terms. For the elliptic flow V2, it
leads to

κ2=
Re(〈〈ε6

2〉〉〈〈V2E∗
2 〉〉−〈〈ε4

2〉〉〈〈ε2
2V2E∗

2 〉〉)
〈〈ε6

2〉〉〈〈ε2
2〉〉−〈〈ε4

2〉〉2
, (40a)

κ′
2=

Re(−〈〈ε4
2〉〉〈〈V2E∗

2 〉〉+〈〈ε2
2〉〉〈〈V2E∗

2 ε2
2〉〉)

〈〈ε6
2〉〉〈〈ε2

2〉〉−〈〈ε4
2〉〉2

. (40b)

Similarly for the triangular flow V3,

κ3=
Re(〈〈V3E∗

3 〉〉〈〈ε4
2ε

2
3〉〉−〈〈V3E∗

3 ε2
2〉〉〈〈ε2

2ε
2
3〉〉)

〈〈ε2
3〉〉〈〈ε4

2ε
2
3〉〉−〈〈ε2

2ε
2
3〉〉2

, (41a)

κ′
23=

Re(−〈〈V3E∗
3 〉〉〈〈ε2

2ε
2
3〉〉+〈〈V3E∗

3 ε2
2〉〉〈〈ε2

3〉〉)
〈〈ε2

3〉〉〈〈ε4
2ε

2
3〉〉−〈〈ε2

2ε
2
3〉〉2

. (41b)

In comparison with Eq. (39), when the cubic order re-
sponse terms contribute, the resulting linear response co-
efficients κ2 and κ3 get extra negative corrections which
scale as ε2

2. The corrections are potentially significant

at very peripheral collision bins. With the cubic order
response, one may also plug in the estimated flow out of
initial eccentricities in the evaluations of Pearson corre-
lation coefficients. The resulting correlation is improved
for both V2 and V3, but the improvements are not sizable.

The calculated result of these coefficients from vis-
cous hydrodynamic simulations can be found in Fig. 8,
as a function of centrality percentile [21]. The sym-
bols are obtained with respect to Eq. (40) and Eq. (41)
through event-by-event simulations of viscous hydrody-
namics. Solid blue lines are the linear response coeffi-
cients from the single-shot hydrodynamic calculations.
In the single-shot hydrodynamic calculations, hydrody-
namic equations of motion are solved using a smooth
initial condition, which is normally a deformed two-
dimensional Gaussian distribution. The deformations
can be introduced properly so that there is only one type
of initial eccentricity involved in the initial state. Hence
it involves single mode evolution.

In either type of calculation, the obtained linear
response coefficients decrease as centrality percentile
grows, in line with an increasing effect of viscous cor-
rections in the medium system. The viscous effect is
stronger in the event-by-event simulations using MC-
Glauber initial conditions, although both calculations
took the same value of η/s=0.081). It is consistent with
the expectation in the linear response theory, that the re-
sponse behavior diffuses with the diffusion proporntional
to η/s. It is interesting to note that the viscous effect on
cubic order response coefficient κ′

2 is opposite, as κ′
2 has

a slight increase against the centrality percentile. Again,
the increase is more evident in the results obtained from

1) An intuitive explanation can be given as follows: in event-by-event simulations with respect to random initial distributions, the
calculated response contain all higher modes. Hense if response of higher modes are more sensitive to η/s, the viscous effects are expected
stronger in the event-by-event calculations, comparing to the single-shot hydrodynamics where only the lowest order mode is calculated.
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Fig. 8. (color online) Linear and cubic order response coefficients calculated from event-by-event hydro simu-
lations for the Pb+Pb collisions of

√
sNN = 2.76 TeV. Upper panel: elliptic flow. Lower panel: triangular

flow. Reprinted figure with permission from J. Noronha-Hostler et al, Phys. Rev. C 93, 014909, 2016 (DOI:
https://doi.org/10.1103/PhysRevC.93.014909) (Ref. [21]). Copyright 2016 by the American Physical Society.

event-by-event simulations. It is interesting to note that,
for v2, the sum of the linear and the cubic order response
coefficients remains constant, regardless the change of
centrality. Although nonlinear deviations in the scatter
plot in Fig. 7 of V3 are not obvious, a finite cubic order
response coefficient κ′

23 is found for Eq. (41). For com-
parison, the contribution from a cubic coupling of ε2

3E3

to V3 is examined in the calculations,

V3=κ3+κ′
3ε

2
3E3+δ3 , (42)

with the corresponding cubic order response coefficient
κ′

3 found compatible with zero from the event-by-event
hydrodynamic simulations.
2.3.3 Medium response in higher harmonic orders

When analyzing higher order flow harmonics in the
flow paradigm, it is very useful to rewrite the E2 and E3

in terms of V2 and V3 in Eqs. (33), respectively,

V4=V L
4 +χ422V

2
2 +δ4 (43a)

V5=V L
5 +χ523V2V3+δ5 (43b)

V6=V L
6 +χ633V

2
3 +χ624V2V

L
4 +χ6222V

3
2 +δ6 , (43c)

where in a similar manner, the linear response part of
higher order flow is left implicitly as V L

n . By doing so,
it becomes possible to analyze directly the quantitative
relations among high order flow harmonics, and V2 and
V3, so that ambiguities resulting from the definition of
higher order eccentricities are avoided. Accordingly, un-
certainties from the effective characterizations of initial
state are reduced.

The re-expressions in terms of V2 and V3 are allowed
in the expansion due to the fact that the linear response
relation in the lower order flow harmonics is well approxi-
mated and has been tested in hydrodynamic simulations.
Accordingly, there are new nonlinear flow response coeffi-

cients introduced. For the nonlinear contribution to V4,
χ422 quantifies how much the contribution comes from
the mixing of V 2

2 . For V5, χ523 quantifies how much
the contribution to V5 is from the mixing of V2V3, etc.
These new nonlinear response coefficients are related to
those κ’s written in Eqs. (33), e.g., χ422 = κ422/κ2

2 and
χ523=κ523/(κ2κ3).

Fig. 9. (color online) A test of the uncorrelation
between the linear and nonlinear parts of V4

(left panel) and V5 (right panel), based on event-
by-event hydrodynamic simulations. Reprinted
figure with permission from J. Qian, U. Heinz,
and J. Liu, Phys. Rev. C 93, 064901, 2016 (DOI:
https://doi.org/10.1103/PhysRevC.93.064901)
(Ref. [20]). Copyright 2016 by the American
Physical Society.

Let us emphasize again that, unlike the lower order
flow, there is subtlety in interpreting the linear response
of higher order flow harmonics as V L

n ∝ En, due to the
ambiguity in the En definitions. (Some recent hydrody-
namic simulations suggest stronger correlations between
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the linear part of V4 and V5 with the corresponding ini-
tial state eccentricities from cumulant definition [74].)
Nevertheless, seen from Eqs. (43), one may recognize
V L

n as the part uncorrelated to the nonlinear response
contributions in the higher order flow harmonics, on an
event-by-event basis. Namely, one has the event averages
〈〈V L

n V NL
n 〉〉=0. As indicated in the expansion formulae,

these event averaged correlators are assumed to vanish,

〈〈V L
4 (V ∗

2 )2〉〉=0, (44a)
〈〈V L

5 (V ∗
2 V ∗

3 )〉〉=0, (44b)
〈〈V L

6 (χ633V
∗2
3 +χ624V

∗
2 V L∗

4 +χ6222V
∗3
2 )〉〉=0. (44c)

Eqs. (44) are actually exact conditions on a general
ground, as long as V L

n is identified as the part of flow
projected out of the plane composited from nonlinear
mode mixings. Indeed, these relations in V4 and V5 have
been found to hold approximately in hydrodynamics [20]
and AMPT calculations [75]. Shown in Fig. 9 are some
specified ratios from event-by-event hydrodynamic simu-
lations, in which the implied identities are equivalent to
the uncorrelation of the linear and nonlinear parts in v4

and v5 [65],

〈〈V4(V ∗
2 )2v2

2〉〉
〈〈V4(V ∗

2 )2〉〉〈〈v2
2〉〉

=
〈〈v6

2〉〉
〈〈v4

2〉〉〈〈v2
2〉〉

, (45a)

〈〈V5V
∗
2 V ∗

3 v2
2v

2
3〉〉

〈〈V5V ∗
2 V ∗

3 〉〉〈〈v2
2v

2
3〉〉

=
〈〈v4

2v
4
3〉〉

〈〈v2
2v

3
3〉〉2

. (45b)

In experiments, measurements also support the conclu-
sion that the linear and nonlinear parts in V4 and V5

are uncorrelated, as long as one consider V L
n as the part

of projection out of the plane composed from nonlinear
mode mixings [76]. Given these results, further assump-
tions can be made for V6, that all the nonlinear terms
are not correlated with each other, i.e.,

〈〈V L
6 (V ∗

2 )3〉〉=〈〈V L
6 (V ∗

3 )2〉〉=〈〈V L
6 (V ∗

2 V L∗
4 )〉〉=0. (46)

The analysis of higher order flow is simplified once the
linear and nonlinear parts are uncorelated. In particular,
the linear and nonlinear response of higher order flow for
events in a centain centrality class are separable regard-
ing the rms values. Taking V4 as an example, the square
of v4{rms}=v4{2}1) becomes the sum of the square of
vL
4 {rms}=vL

4 {2} and the square of vNL
4 {rms}=vNL

4 {2},
v4{2}2=vL

4 {2}2+vNL
4 {2}2 . (47)

It is worth mentioning that the rms value of the nonlin-
ear v4 is identical to the projection of V4 onto the plane
determined by V 2

2 , or more explicitly 2Ψ2. This is known
as the v4{Ψ2}. Hence, by using the event-averaged quan-
tities, vNL

4 {2}, or the projection v4{Ψ2}, is accessible in
event-by-event hydrodynamic calculations and in exper-

iments,

vNL
4 {2}=

Re〈〈V4(V ∗
2 )2〉〉

〈〈|V2|4〉〉1/2
≡v4{Ψ2}. (48)

Note that the denominator is the fourth order moment
of V2, which in experiments should be measured with a
rapdity-gap so that non-flow effects are not important.
The linear part can be obtained accordingly,

vL
4 {2}=

√
〈〈|V4|2〉〉−v4{Ψ4}2 . (49)

It is very similar for V5, except that the plane from the
nonlinear coupling of V2V3 is Ψ23=2Ψ2+3Ψ3. The nonlin-
ear part of v5 is measured in the Ψ23 plane,

vNL
5 {2}=

Re〈〈V5(V ∗
2 V ∗

3 )〉〉
〈〈|V2|2|V3|2〉〉1/2

≡v5{Ψ23}, (50)

which results in the linear part of v5

vL
5 {2}=

√
〈〈|V5|2〉〉−v5{Ψ23}2 . (51)

The sixth order harmonic flow has several types of non-
linear mode mixings. Except the one that involves linear
response of the quadrangular flow V L

4 , there are planes
well-defined in terms of V3 of the quadratic order (2Ψ3),
and V2 of cubic order (3Ψ2). Measured in these specified
planes respectively, one has v6 projected onto Ψ2 and Ψ3

planes,

v6{Ψ2}≡Re〈〈V6(V ∗
2 )3〉〉

〈〈|V2|6〉〉1/2
, (52)

v6{Ψ3}≡Re〈〈V6(V ∗
3 )2〉〉

〈〈|V3|4〉〉1/2
. (53)

To extract the linear part of v6, one would have to sub-
stract also the projected flow onto the V2V

L
4 plane, which

has not been done yet. Apart from that, the strategy has
been applied in experiments to disentangle the linear and
nonlinear parts in higher order flow [76, 77], leading to
results consistent with those obtained by using the event-
shape engineering method [78]. It is worth mentioning
that the separated nonlinear part of the higher order har-
monic flow is related to the measured event-plane corre-
lations [65], which we discuss in Section 3.2.

The projection of higher order flow, and event-plane
correlation, are understood in the flow paradigm as a
combined effect of initial state geometry and medium
dynamical expansion. Namely, they depends on the ini-
tial eccentricities and medium response coefficients in
Eqs. (43), in a similar way to many other flow observ-
ables. However, a closer look at the formulae of the pro-
jections of higher flow harmonics reveals the possibility
of extracting the nonlinear response coefficients χ’s di-
rectly, by taking proper ratios with respect to the speci-

1) Taking into account the effect of event-by-event fluctuations, the quantity v4{2} is determined from two-particle correlations in
experiments (or hydro simulations), whose definition and details will be given later.
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fied moments

χ422 =
〈〈V4(V ∗

2 )2〉〉
〈〈|V2|4〉〉 =

v4{Ψ2}√〈〈|V2|4〉〉

χ523 =
〈〈V5V

∗
2 V ∗

3 〉〉
〈〈|V2|2|V 2

3 |〉〉
=

v5{Ψ23}√〈〈|V2|2|V 2
3 |〉〉

χ6222 =
〈〈V6(V ∗

2 )3〉〉
〈〈|V2|6〉〉 =

v6{Ψ2}√〈〈|V2|6〉〉

χ633 =
〈〈V6(V ∗

3 )2〉〉
〈〈|V3|4〉〉 =

v6{Ψ3}√〈〈|V3|4〉〉
(54)

These χ’s are calculable in hydrodynamics, and measur-
able in experiments according to the expressions above.
Note that these moments in the denominators are sup-
posed to be entirely due to medium collectivity, thus in
experiments non-flow contributions should be excluded
carefully. By design, dependence on initial states eccen-
tricities is cancelled in these ratios, hence χ’s are not
sensitive to the details of initial state. As a result, χ’s
are ideal probes reflecting directly the dynamical prop-
erties of the system evolution.

These nonlinear response coeffiicents have been mea-
sured in experiments at the LHC energies [76, 77]. Shown
in Fig. 10 are the measured χ’s as a function of central-
ity percentile, from the CMS collaboration. Compared to
the direct measurements of higher order flow, the nonlin-
ear response coefficients present weaker dependence on
the collision centrality. Considering the major effect on
flow observables from central to peripheral collisions due
to the increase of medium viscous corrections, χ’s are less
affected by viscosity. This could be due to the cancella-
tion of viscous effects in the ratios. Besides, there is also
cancellation of statistical errors in the ratios, so that the
measured nonlinear response coefficients are more accu-
rate than their corresponding higher order flow.

In Fig. 10, the hydro calculations from VISH2+2 [20]
and AMPT calculations [79] are shown as well, regard-
ing different types of initial conditions and parameteriza-
tions of medium dissipative effects. The hydro results are
compatible with experiments, in terms of overall mag-
nitudes and centrality dependence, etc., although χ523

is apparently over-estimated. In contrast to the origi-
nal proposal, the resulted nonlinear response coefficients
do present dependence on initial conditions [20]. For
instance, with the same η/s = 0.08, hydro gives larger
χ422 with respect to the MC-Glauber initialization than
MC-KLN. Similarly, MC-Glauber model leads to a larger
value of χ6222

1). Nonetheless, the dependence on initial
conditions is quite weak in χ523 and χ633.

Although viscous corrections to the χ’s are expected
to be minor, detailed hydro calculations have shown
strong dependence of χ’s on the freeze-out prescrip-
tion. For instance, the χ’s increase with respect to a
lower freeze-out temperature in hydrodynamic simula-
tions. Most of the viscous effects on χ’s come from the
viscous corrections to the phase space distribution func-
tion δf at freeze-out [20], which signifies the importance
of χ as a probe for future studies on the physics of freeze-
out and particle generation.

It is very likely that the nonlinear mode mixings in
hydrodynamic modeling are dominantly generated dur-
ing the freeze-out process, which can be explained in a
quantitative way as follows. In ideal hydrodynamics, the
nonlinear mode mixings at freeze-out lead the predic-
tion that, at fixed and large transverse momentum pT,
χ422 = 1

2
, χ523 = 1, χ6222 = 1

6
, and χ633 = 1

2
[80]. The

integrated value of χ’s are further modified by a factor
from an average over the pT spectrum. For the nonlin-
ear response coefficients associated with quadratic order
couplings, the factor is roughly 〈v2〉/〈v〉2>1, where sin-
gle brackets indicate the integrated flow (v2 or v3) ac-
cording to the pT spectrum in a single hydro event. For
those from the cubic order couplings, a larger factor is
expected, 〈v3〉/〈v〉3 > 〈v2〉/〈v〉2. Since v2 and v3 have
roughly similar pT dependence, the ratios are compa-
rable for χ422, χ523 and χ633, and comparable for χ6222

and χ7223. As a consequence, in the flow paradigm cap-
tured by hydrodynamics, one expects the approximate
relations χ422 ∼ χ633 ∼ 1

2
χ523 and χ6222 ∼ 1

3
χ7223. These

approximate relations are confirmed in experimental ob-
servations. Accordingly, up to a semi-analytical level,
these observed relations demonstrate the success of the
flow paradigm, and especially, the proposed medium re-
sponse relations.
2.3.4 Fluctuations in the medium response

Even though all the linear and nonlinear responses in
the medium are well understood, or have been quantita-
tively characterized in a hydro simulation, the predicted
flow observables are not deterministic, owing to random
fluctuations. As well as fluctuations of initial state eccen-
tricities, there are also fluctuations associated with the
dynamics of medium response, which in the expansion
formulae Eqs. (33) are captured by the residual δn’s.

In writing residuals in the expansion form, there are
two assumptions: 1) It is assumed that δn has the same
rotational symmetry in the azimuth as Vn; 2) The resid-
ual δn should be statistically uncorrelated with the rest
of the terms in the expansion in Eqs. (33), i.e., one ex-

1) One possible explanation for the discrepancy is that the KLN model has a more elliptic averaged background, which results in
a larger prediction of v2. Accordingly, higher order mode mixings involving V2 are required in the expansion form Eqs. (43), to give a
good description of higher order flow. However, these new terms are not considered in the definitions of nonlinear response coefficients.
On the other hand, these calculations indeed show that χ523 and χ633 have weak sensitivity to initial conditions, where the role of V2 is
less significant.
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Fig. 10. (color online) Non-linear response coefficients measured by the ALICE collaboration with respect to Pb+Pb
collisions at

√
sNN=2.76 TeV, as a function of centrality percentile. Hydro calculations are shown for comparisons.

Figure reproduced from Ref. [77] (DOI: https://doi.org/10.1016/j.nuclphysa.2017.05.064), under the CC-BY 4.0
license (http://creativecommons.org/licenses/by/4.0/).

pects vanishing correlations of δn and initial eccentrici-
ties, 〈〈δnE∗

m〉〉=0. There are two possible origins of the
residual δn in heavy-ion collisions. It can be understood
as an inadequate characterization of the flow generation
on an event-by-event basis, so that additional effects re-
lated to initial state fluctuations contribute, δini. On the
other hand, it can be a consequence of thermal fluctu-
ations, δth. The former can be studied in the present
framework of event-by-event hydro simulations, without
considering thermal fluctuation effects.

As has been shown in Fig. 5 and Fig. 7, the response
of v2 and v3 disperse around the prediction of linear
and/or linear+cubic response, indicating the effects of
δ2 and δ3 on an event-by-event basis. One would ex-
pect these residuals to be generated from the hydro re-
sponse to short-scale structures in the initial state den-
sity profile. Indeed, the dispersion, or the rms value of
δn, is suppressed as viscosity applied in these calcula-
tions is increased. It is also consistent with the observa-
tion that dispersion in triangular flow is stronger, where
the role of short-scale structures is relatively more im-
portant than that in the elliptic flow. Therefore, one
may associate the effect of δn with initial state fluctua-
tions, which scale as 1/

√
Np, with Np being the number

of participants. Shown in Fig. 11 are the correspond-
ing results from event-by-event hydro simulations, with
respect to Pb+Pb collisions at

√
sNN = 2.76 TeV. The

rescaled rms values of the residual vary within a fac-
tor of two when centrality increases, considering the fact
that

√
Np changes by a factor 10.

The presence of thermal fluctuations can be decom-
posed into similar mode structures. That is to say, for
each of the harmonic orders, in the medium evolution
there is a fluctuating mode correspondingly originated
from thermal fluctuations [26], in addition to the aver-
aged response coefficients. Although the effects of ther-
mal fluctuations can be absorbed formally in the residu-
als of the response relations Eqs. (33) as δth

n ’s, the origins
of thermal fluctuations are distinct from those related to

the initial state, δini
n ’s.
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Fig. 11. (color online) Rms values of the resid-
ual δn scaled by

√
Np, from event-by-event hy-

dro simulations with respect to Pb+Pb col-
lisions at

√
sNN = 2.76 TeV, as a func-

tion of centrality. Reprinted figure with per-
mission from J. Noronha-Hostler et al, Phys.
Rev. C 93, 014909, 2016 (DOI: https://doi.org/
10.1103/PhysRevC.93.014909) (Ref. [21]). Copy-
right 2016 by the American Physical Society.

Several remarks are in order with respect to the ef-
fects of thermal fluctuations in the generation of har-
monic flow. First, a thermodynamical origin guarantees
the condition 〈〈δth

n Em〉〉=0 and 〈〈δth
n δini〉〉=0. Therefore,

in the two-particle (or multi-particle) correlations, con-
tributions from a thermal origin and a quantum origin
are separable. Second, the effects of fluctuations are con-
trolled in principle by the fluctuation strength, in terms
of the two-point auto-correlations. For the effects asso-
ciated with initial state fluctuations, one has parameter-
ically

〈〈δiniδini〉〉∼1/Np or 〈〈ε2
n〉〉∼1/Np . (55)

On the other hand, two-point auto-correlations of ther-
mal fluctuations are determined by the dissipative cor-
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rections of the medium system through the flutucation-
dissipation relation [26],

〈〈δthδth〉〉∼ η

s

/〈〈dS

dy

〉〉
. (56)

with an extra factor quantified by the inverse of the to-
tal entropy per rapidity. From Eq. (55) and Eq. (56),
one realizes that the contributions from thermal fluc-
tuations to the two-particle correlation are suppressed
parametrically by a factor of (η/sKs)1/2, where the con-
stant Ks 
1 is associated with the entropy production
from nucleon-nucleon collisions. Therefore, even though
in higher order flow harmonics thermal fluctuations are
expected stronger [24, 26], the overall effects of ther-
mal fluctuations in the observed flow are not signifi-
cant compared to those from the initial state, unless on
the occasions that the system is sufficiently close to the
QCD critical point. Third, the previous estimates of the
thermal fluctuations are obtained with an inclusion of
the thermal fluctuations linearly in hydrodynamics in a
canonical way, corresponding to the gradient expansion.
Recently, however, it was found that the nonlinear fea-
ture of hydrodynamics results in non-linear couplings of
thermal fluctuations, and a distinct behavior is achieved
with the appearance of a fractional order term in the
gradient expansion O(∇3/2). This is the generic prop-
erty of long-time tails in hydrodynamics [81, 82], which
has conceptual influences in the theoretical framework.
In particular, nonlinear couplings of the thermal fluctu-
ations effectively modify transport coefficients, such as
η [83, 84] and ζ [85, 86].

3 Experimental observables in nucleus-
nucleus collisions

In this section, we summarize some of the observables
in heavy-ion experiments that are compatible with the
flow paradigm. We shall start with an overview of the
measured harmonic flow from multi-particle correlations.
For comparison, corresponding predictions from hydro-
dynamics are shown with properly parameterized trans-
port coefficients, such as η/s, ζ/s. These are concrete
examples showing how these coefficients are estimated
in the analyses in the flow paradigm.

The concept of the flow paradigm depends essentially
on the system collective expansion. The most convincing
evidence of the system collective expansion in heavy-ion
collisions comes from the observed structures in long-
range multi-particle correlations. This is because, once
a medium system expands collectively, the short-scale
structures at initial times are amplified in space as time

evolves, leading to long-range correlations. Normally,
these long-range correlations are beyond the prediction
of first principle calculations based on particle scatterings
or classical fields at early evolution stages, if late-time
medium evolution is ignored. In heavy-ion collisions, this
long-range correlation is particularly recognized in the
long-range correlations in rapidity, or pseudo-rapidity η
(it should be distinguished from the notation of shear
viscosity)1).

One typical example can be found in Fig. 12, which
depicts the measured two-particle correlation functions
in relative azimuthal angle Δφ and relative pseudo-
rapidity Δη, from the CMS collaboration with respect
to the Pb+Pb collisions at

√
sNN=2.76 TeV, and p+Pb

collisions at
√

sNN = 5.02 TeV. The collision events are
purposely selected for illustration, in a way that the mul-
tiplicity productions in Pb+Pb and p+Pb are compa-
rable and sufficiently large. Despite some fine details,
one notices the very similar long-range correlation struc-
tures at large Δη. Especially, at Δφ = 0 (near-side),
a bump appears in the Pb+Pb system, which is some-
times referred to as the “ridge”. The “ridge” indicates a
long-range correlation pattern which is expected from the
medium collective expansion scenario. Note that these
Pb+Pb events correspond to peripheral collisions. In
more central collisions of larger multiplicity productions,
the ridge, and thus the system collective expansion, is
more obvious. On the contrary, as one might expect, the
“ridge” is absent in the two-particle correlation functions
when the corresponding multiplicity production of the
collision event is small (see for instance Ref. [87] for p+p
collisions), or the trigger or associated particles are not
soft.

Given the single-particle spectrum written in terms
of harmonic flow Vn in Eq. (12), the two-particle corre-
lation function can be described accordingly,〈〈dNpair

dΔφ

〉〉
=

〈〈dNa

dφa

dNb

dφb

〉〉
∼1+

∞∑
n=1

〈〈VnV ∗
n 〉〉einΔφ ,

(57)
which explains the bump in Fig. 12 at Δφ=0 as a conse-
quence of the non-zero correlation structure, 〈〈V a

n V b∗
n 〉〉≡

VnΔ . Normally, a fit using Eq. (57) for the two-particle
correlation function allows one to estimate the magni-
tude of harmonic flow vn in experiments. More precisely,
it defines the the measured flow using the scalar-product
method, or the two-particle cumulant vn{2},

vn{2}2=〈〈v2
n〉〉≡〈〈ein(φa

p−φb
p)〉〉=〈〈V a

n V b∗
n 〉〉. (58)

The quantities vn{2} are the most generally measured
harmonic flow signatures that contain the information of

1) For the convenience of later discussions, we assume the configuration of a colliding system as being to align the beam-axis with
the z-axis, while the plane perpendicular to the beam-axis is recognized as the transverse plane. When the nucleus-nucleus collisions are
not head-on collisions, there is a non-zero impact which defines the x-axis. The direction of the impact, together with the beam-axis,
determine the reaction-plane ΨR.
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the magnitude of Vn. They must be measured in experi-
ments in the correlated particle spectra as a consequence
of event-by-event fluctuations of Vn.

Fig. 12. (color online) Two-particle correlation
functions measured by the CMS collaboration,
for the Pb+Pb collisions at

√
sNN = 2.76 TeV

(up) and p+Pb collisions at
√

sNN = 5.02 TeV
(down). Collision events in p+Pb and Pb+Pb
are selected with comparable and sufficiently
large multiplicity productions. In these events,
long-range correlation patterns can be identified
as the “ridge” structure: the bump span along
relative pesudo-rapidity at Δφ = 0. Trigger and
associated particles are chosen in the low pT

range. Figure reproduced from Ref. [88] (DOI:
https://doi.org/10.1016/j.physletb.2013.06.028,
under the CC-BY-NC-ND license).

As an example, Fig. 13 presents the recently mea-
sured flow harmonics, using the scalar-product method

for the correlated two-particle spectra, as a function of
collision centrality. The symbols correspond to elliptic
flow v2{2} (black), the triangular flow v3{2} (red) and
the quadrangular flow v4{2} (green), in the Pb+Pb sys-
tem of

√
sNN = 5.02 TeV, by the ALICE collaboration.

Hydro calculations from IP-Glasma+MUSICS with an
input η/s=0.095 and a parameterized temperature de-
pendent bulk viscosity over entropy density ratio ζ/s are
shown in solid lines. One notices an increasing trend of
the flow harmonics along with the increase of collision
centrality percentile1). The increasing trend of the flow
harmonics and the magnitude of each flow harmonics,
are both captured quantitatively by hydro calculations.

Fig. 13. (color online) Harmonic flow measured
from two-particle correlations from the ALICE
collaboration for the Pb+Pb at

√
sNN = 5.02

TeV. Lines are corresponding results from hy-
drodynamic simulations, with a constant value
of η/s =0.095 and a temperature dependent pa-
rameterization of ζ/s. Reprinted figure with per-
mission from S. McDonald et al, Phys. Rev. C
95, 064913, 2017 (DOI: https://doi.org/10.1103/
PhysRevC.95.064913) (Ref. [19]). Copyright 2017
by the American Physical Society.

As we mentioned before, harmonic flow vn{2} can be
also measured differentially in experiments as a function
of the transverse momentum pT. These differential spec-
tra of harmonic flow are obtained from two-particle cor-
relations, assuming a factorization of the correlation [89]

〈〈V n(pa
T)V ∗

n (pb
T)〉〉⇒vn{2}(pa

T)×vn{2}(pb
T). (59)

However, the above factorization can be broken. In the
flow paradigm where a single-particle spectrum is well-
established from hydrodynamic calculations, one has
generally [90]

〈〈V n(pa
T)V ∗

n (pb
T)〉〉�vn{2}(pa

T)×vn{2}(pb
T), (60)

1) Centrality percentile is used to identify collision events with respect to multiplicity production. A centrality percentile approaching
to zero implies the collision with the largest multiplicity production of the whole events, namely, approximately head-on collisions in
nucleus-nucleus collisions. On the other hand, centrality percentile close to 100% corresponds to very peripheral collisions with very small
particle yields.
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with the equality satisfied only when the complex vari-
ables Vn(pa

T) and Vn(pb
T) are linearly dependent. That

is to say, there exists a pT-dependent function that does
not fluctuate from event to event in one centrality class.
When the effects of initial state fluctuations are sizable,
the linear dependent relation is broken, which in turn
result in the breaking of the factorization in Eq. (59).
In particular, the breaking of factorization is expected
to be stronger when the difference pa

T−pb
T increases, ow-

ing to the effect of initial state fluctuations. Breaking
of the factorization also implies a pT-dependent flow an-
gle Ψn(pT) [91]. Eq. (60) is a Cauchy-Schwarz inequality
derived by correlating single-particle spectra. Therefore,
violation of Eq. (60) can be seen as an indication of non-
flow contribution. A quantity rn is introduced accord-
ingly [90],

rn≡ VnΔ(pa
T,pb

T)√
VnΔ(pa

T,pa
T)

√
VnΔ(pb

T,pb
T)

(61)

to quantify these effects. Indeed, experiments have found
violation of the inequality Eq. (60) with respect to large
transverse momentum, that rn > 1. Besides, a decreas-
ing trend of rn is confirmed regarding the growth of the
relative difference transverse momentum pa

T−pb
T [89, 92],

which are compatible with hydrodynamics [91, 93]
In addition to the two-particle correlation function,

in realistic analyses in experiments, the measurements
of flow harmonics also generalize to multi-particle cor-
relations. Systematic generalization to four-, six- and
eight-particle spectra leads to the measured cumulants
of harmonic flow vn{4}, vn{6} and vn{8} [56, 95]

vn{4}4=2〈〈v2
n〉〉2−〈〈v4

n〉〉 (62a)

vn{6}6=
1
4

[〈〈v6
n〉〉−9〈〈v4

n〉〉〈〈v2
n〉〉+12〈〈v2

n〉〉3] (62b)

vn{8}8=
1
33

[
−〈〈v8

n〉〉+16〈〈v6
n〉〉〈〈v2

n〉〉+18〈〈v4
n〉〉2

−144〈〈v4
n〉〉〈〈v2

n〉〉2+144〈〈v2
n〉〉4

]
, (62c)

where self-correlations are subtracted by definition.
With respect to correlations of all particle yields in the
collision events, there exists the Lee-Yang zero method
and correspondingly harmonic flow vn{LY} [96].

In heavy-ion experiments at RHIC and the LHC, flow
cumulants have been measured up to v2{8} in nucleus-
nucleus collisions for the elliptic flow, as summarized in
Table 1. Fig. 14 displays the recent results of the cumu-
lants of elliptic flow from multi-particle correlations from
the ALICE collaboration [94], in the Pb+Pb collisions at√

sNN=2.76 TeV and
√

sNN=5.02 TeV. Higher order cu-
mulants of v2 tend to collapse, although they present
similar centrality dependence as v2{2}. Note that there
is a gap between v2{2} and these higher order cumulants,
which grows as centrality increases. As will be discussed

later, the gap and the tiny splitting among higher order
flow cumulants signify the non-Gaussian behavior of v2

flucutations.

Fig. 14. (color online) Harmonic flow mea-
sured from multi-particle correlations from
the ALICE collaboration for the Pb+Pb at√

sNN = 5.02 TeV, in comparison to that from
the Pb+Pb at

√
sNN = 2.76 TeV. Lines are

corresponding results from hydrodynamic simu-
lations. Figure reproduced from Ref. [94] (DOI:
https://doi.org/10.1103/PhysRevLett.116.132302,
“Anisotropic flow of charged particles in Pb-Pb
collisions at

√
sNN = 5.02 TeV”), under the

CC-BY-3.0 license.

These cumulants of Vn are of particular significance
with respect to the fluctuating nature of heavy-ion col-
lisions, since they provide a quantitative characteriza-
tion of the flow event-by-event fluctuations. For in-
stance, vn{2} captures the variance of flow distribution
on an event-by-event basis [97], while vn{4} and vn{6}
can be used to measure the skewness [98]. Additionally,
flow measurements from multi-particle correlations have
the advantage of suppressing non-flow contributions [99].
Note that in Fig. 13 and Fig. 14, a rapidity gap of |Δη|>1
has been applied to the measured two-particle spectra to
suppress non-flow contributions, assuming that non-flow
effects are dominantly short-ranged.

Besides the measurements involving the same har-
monic orders, one is allowed to extract the correlations
among mixed harmonic orders. In this way, the infor-
maiton of the phase Ψn becomes detectable. Unlike the
cumulants of harmonic flow which reflect the fluctuation
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porperties of the colliding systems, to a large extent, flow
correlations measure the correlation properties of flow
angles on an event-by-event basis. There are several
types of correlators of the mixed harmonics that have
been investigated in experiments, including event-plane
correlations first measured by the ATLAS collaboration
ρmn [100], the symmetric cumulants SC(m,n) proposed
by the ALICE collaborations [101], and the three plane
event-plane correlators recently measured by the STAR
collaboration at the RHIC energy [102, 103].

Figure 15 displays a set of event-plane correlations
measured by the ATLAS collaboration with respect to
the Pb+Pb collisions at

√
sNN =2.76 TeV. Hydro simu-

lations with the EKRT initial condition using different
types of parameterization of η/s are shown as lines. Hy-
dro predictions generally capture the right trend and sign
of correlations, while the correlation strength is found to
be further affected by the dissipative properties of the
medium [10]. Note that an overall agreement is best
achieved when a constant η/s = 0.2 (ζ/s = 0) is taken
in the simulations. Since all other parameterizations in-
volves a temperature dependent η/s, which on average
introduce effectively smaller dissipations to hydro simu-
laitons, one realizes that the event-plane correlations are
stronger in a more dissipative fluid, which property we

shall detail later in the context of the flow paradigm.
Figure 15 is again a typical example demonstrating

the extraction of η/s from the hydro modeling of heavy-
ion collisions. These flow observables are by far the best
probes for the extraction of η/s of the QGP system in
heavy-ion collisions. It has been found from hydro sim-
ulations that a quite small value of η/s≈0.08 is realized
in the system created from Au+Au at RHIC [104], while
at the LHC energies one would expect a larger value.

In addition to these aforementioned flow observables,
there are many other types of measurements associ-
ated with the obvserved long-range multi-particle cor-
relations, and flow harmonics, supporting the concept
of system collective expansion in nucleus-nucleus colli-
sions. Similar measurements have also been generalized
recently to small colliding systems, e.g., p+Pb at the
LHC energies, where medium collectivity is observed in
collision events of sufficiently high multiplicity. We sum-
marize them in Table 1. Similar to the results shown
in Fig. 13 and Fig. 15, all of these observables agree
with hydrodynamic simulations, to a quantitative level,
upon specified parameterization of initial state, equa-
tion of state, and transport coefficients. Thereby, a flow
paradigm based on hydro modelings of heavy-ion exper-
iments is very well established.

Fig. 15. (color online) Event-plane correlations measured with respect to the Pb+Pb collisions at
√

sNN=2.76 TeV
by the ATLAS collaboration [100], using the scalar-product method. Lines of different colors correspond to hydro
simulations with respect to the Pb+Pb collisions at

√
sNN=5.02 TeV, with various parameterizations of η/s, and

with EKRT initial condition. Reprinted figure with permission from H. Niemi et al, Phys. Rev. C 93, 014912,
2016 (DOI: https://doi.org/10.1103/PhysRevC.93.014912) (Ref. [10]). Copyright 2016 by the American Physical
Society.
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Table 1. A summary of flow observables measured in experiments

flow observables harmonic order involved colliding systems dependence

vn{2} n= 1,2,3,4,5,6 PbPb, pPb, dAu, He3Au centrality, pT, particle species,

AuAu pseudo-rapidity

vn{4} n= 2,3 PbPb centrality

vn{6} n=2 PbPb centrality

vn{8} n=2 PbPb centrality

rn n=2,3 PbPb, pPb centrality,pT,pseudo-rapidity

event-by-event flow distribution P(vn) n= 2,3,4 PbPb centrality

event-plane correlation n�6 PbPb, AuAu centrality, pseudo-rapidity

projection of Vn onto lower haromincs v4{Ψ2}, v6{Ψ3}, v7{Ψ23} PbPb, AuAu centrality, pT

nonlinear medium response coefficients n= 4,5,6,7 PbPb centrality

symmetric cumulants n�5 PbPb, pPb centrality

In the following discussions of the section, we select
several flow observables in experiments. These observ-
ables are categorized into two sets. One is related to the
fluctuations of harmonic flow, and the other contains in-
formation about flow correlations. It is our purpose to
demonstrate, in the framework of flow paradigm, in par-
ticular, in terms of the analytic response relations we
have shown in the previous sections, that these observ-
ables can be understood to a quantitative level. Vari-
ous constraints from these observables, and also schemes
developed correspondingly to reduce uncertainties from
inital state modelings, help to improve the precision in
the extraction of the medium transport coefficients.

3.1 Event-by-Event fluctuations of vn

As discussed, event-by-event fluctuations in the ob-
served flow signatures are mostly from initial state ec-
centricities. Although there is no direct measurement of
initial stages in heavy-ion collisions available, fluctuating
behavior of the flow harmonics provides the best probes
of the fluctuations among the initial state of nucleon-
nucleon collisions. Fluctuations of flow harmonics can be
studied in terms of the probability distribution P(vn) of
the flow magnitude vn, or in a more quantitatively man-
ner, the cumulants of harmonic flow. The quantitative
analysis in this section depends on the linear response
relation, vn=κnεn, which is approximately valid for the
lower order flow harmonics, v2 and v3, although effects
due to nonlinear mode couplings are strong in some par-
ticular observables.
3.1.1 Fitting event-by-event flow fluctuations

The ATLAS collaboration managed to measure the
event-by-event distribution of harmonic flow in Pb+Pb
collisions at

√
sNN =2.76 TeV [101], using an unfolding

procedure to subtract non-flow effects [97, 105]. The
strategy has been applied recently by the CMS collabo-
ration, with respect to the updated Pb+Pb collisions at√

sNN =5.02 TeV [106]. Shown in Fig. 16 are the mea-
sured results of event-by-event distribution of v2 (left
panel), v3 (middle panel) and v4 (right panel), by the

ATLAS collaboration, for different centrality classes.
The first attempt of fitting (and also interpreting) the

probability distribution involves a pure Gaussian param-
eterization, which has been applied in Fig. 16 to fit the
event-by-event flow distribution (indicated as the solid
curves),

P(vn)=
vn

σ2
n

e−v2
n/2σ2

n . (63)

A pure Gaussian corresponds to the Bessel-Gaussian
function with a vanishing mean anisotropy v0=0, which
gives rise to better description of v3 than v2, as expected.
Note that in Fig. 16 the Gaussia fit is only available for
v2 of the ultra-central collisions. However, even for v3,
non-Gaussian behavior is observed in collisions of larger
centralities. It should be noted that the fitting procedure
using a Gaussian function reveals very little information
about the initial state fluctuations, nor about the dissi-
pative properties of the medium evolution. It should also
be noted that the probability distribution of v4 is more
complicated in its physical origin, accounting for nonlin-
ear medium response, which we shall address later.

With the help of the formulae Eqs. (33) to relate mag-
nitudes vn and εn, for the elliptic flow and triangular
flow, one finds a change of variable

P(vn)=
dεn

dvn

P (ε−1
n (vn)), (64)

can be applied to rewrite the distribution function of flow
harmonics in terms of the probability distribution of ini-
tial state eccentricities. For the linear response domi-
nated scenario, in v2 and v3, the above relation is simply
a rescaling of the initial state eccentricity distribution,

P(v2)=
1
κ2

P (v2/κ2), P(v3)=
1
κ3

P (v3/κ3). (65)

For the initial state eccentricity distribution character-
ized by the elliptic-power Eq. (25) or power distribution
Eq. (26), the rescaling introduces one extra parameter,
the linear response coefficient κn. Therefore, it becomes
possible to extract directly the linear response coefficient
from the probability distribution of flow. In addition to

042001-24



Chinese Physics C Vol. 42, No. 4 (2018) 042001

Fig. 16. (color online) Probability distribution of flow magnitude P(vn), measured by the ATLAS collaboration for
the Pb+Pb collisions at

√
sNN =2.76 TeV. Left panel: elliptic flow v2. Middle panel: triangular flow v3. Right

panel: quadrangular flow v4. Figure reproduced from Ref. [97] (DOI: https://doi.org/10.1007/JHEP11(2013)183),
under the CC-BY-NC-ND license.

κn, fitting to flow fluctuations also identifies the param-
eters α and/or ε0, which captures in the initial state the
fluctuation strength and mean eccentricity.

In a similar manner, one may consider applying the
rescaled Bessel-Gaussian function for the parameteriza-
tion of initial state eccentricity fluctuations, so that the
linear response coefficient κn can be determined simul-
taneously with σ and ε0, the parameters in the original
Bessel-Gaussian distribution function. However, because
the Bessel-Gausian function (or Gaussian) is scale invari-
ant, for which a rescaling the distribution is equivalent to
σ→κnσ and ε0→κnε0, the fitting procedure cannot con-
strain the value of κn, nor σ or ε0 individually. Actually,
the ability to disentangle initial state parameters and the
linear response coefficients, relies on the non-Gaussianity
of the flow fluctuations.

The left-hand panel of Fig. 17 presents the extracted
values of κn, from the fit of ATLAS measured v2 and
v3 distributions, with Elliptic-Power and Power param-
eterizations. The linear response coefficients κ2 and
κ3 decrease monotonically as centrality percentile in-
creases. This is expected, since viscous effects get
stronger in smaller collision systems, leading to a sup-
pressed medium response. In comparison with hydro
predictions, the centrality dependence of linear response
coefficients allows one to estimate the value of η/s. In
the left-hand panel of Fig. 17, hydro calculations with
η/s�0.19 (green lines) are found to give rise to the best
description. It should be emphasized that uncertainties
normally induced from initial state effective modelings
are reduced in the present procedure of estimating η/s.

Simultaneously, the fit of flow event-by-event distri-
bution results in the extracted values of α and ε0, which
are shown in the middle panel and the right-hand panel

of Fig. 17, respectively. Recalling that the parameter α
characterizes the fluctuation strength in the initial state,
the decrease of α from central to peripheral collisions,
indicates an increasing strength of fluctuations. On the
other hand, the background shape of the system gets
more elliptic in non-central Pb+Pb collisions, which is
reflected in the observed growth of ε0. Both trends are
expected. For comparisons, the fluctuation strength and
background shape in MC-Glauber and IP-Glasma are
shown in Fig. 17 as shaded bands. Note that the ex-
tracted values of α and ε0 from the experiementally mea-
sured v2 distributions are not quite compatible with these
effective models, upon the linear medium response.

The cubic order corrections to the linear response
relations are normally tiny, but their effects are not
negligible in the flow event-by-event fluctuations. Ap-
parently, it changes the expected probability distribution
of flow in Eq. (65), which introduces the cubic order re-
sponse coefficient accordingly as an extra parameter. It
is particularly important in the elliptic flow, for which
during analysis we shall assume a constant ratio between
cubic order response coefficient and the linear response
coefficient, κ′ = κ′

2/κ2 � 0.1, for all centralities. This
constant ratio is an empirical assumption, but it is com-
patible with event-by-event hydro simulations, where κ′

is roughly a constant around 0.2. We shall ignore effects
from the cubic corrections in v3. As expected, shown
in Fig. 17, a cubic order correction reduces the value of
the linear response coefficient. However, it does not sig-
nificantly alter the centrality dependence of κ2, nor the
estimated value of η/s. A reduced linear response coef-
ficient requires the system to have a larger eccentricity,
and eccentricity fluctuations, to maintain the gener-
ated flow, which explains the observed decrease of α and
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Fig. 17. (color online) Left panel: Extracted linear response coefficient κn from the fit of flow event-by-event
distributions, with respect to the Pb+Pb collisions at

√
sNN = 2.76 TeV, and p+Pb at

√
sNN = 5.02 TeV. A

corrected estimate of κ2 is obtained accounting for an extra cubic order response in the relations (black points).
Solid green lines are viscous hydro calculations of the linear response coefficient for Pb+Pb collisions, corresponding
to η/s=0.19. Middle panel and the right panel: Extracted values of α and ε0 from the fit of flow event-by-event
distributions (green points). Corrected estimates accounting for a cubit order response are shown as well as black
points. The extracted values are compared with initial state effective models, MC-Glauber (blue bands) and IP-
Glasma (red bands). Figures adapted from Ref. [107] (DOI: https://doi.org/10.1016/j.physletb.2015.01.039), under
the CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).

increase of ε0. With the additional cubic order correc-
tions, extracted values of α and ε0 from experiments are
compatible with MC-Glauber and IP-Glasma.

The ATLAS collaboration has also measured event-
by-event distributions of the quadrangular flow magni-
tude v4. One would expect the linear part of the flow,
vL
4 , to be captured by a power law distribution, as it

originates from pure initial state fluctuations, similar to
v3. However, since quadrangular flow contains strong
nonlinear couplings of V2, the probability distribution
function of the whole magnitude, v4, is supposed to be
a particular convolution of the power and elliptic-power
distributions.

Alternatively, the probability distribution P(vn) can
be quantitatively characterized by moments, or cumu-
lants, of the corresponding harmonic flow vn. Given
the probability distribution function measured in exper-
iments, the moment of harmonic flow 〈〈vm

n 〉〉 can be cal-
culated through the following integral

〈〈vm
n 〉〉=

∫
dvnP(vn)vm

n . (66)

Note that in realistic experiments, 〈〈vm
n 〉〉 is often mea-

sured through an event average with a rapidity-gap to
suppress non-flow contributions. Similarly, the cumu-
lants of harmonic flow can be obtained in both methods
in experiments, from the probability distribution func-

tion, or an average over collision events.
In either way, the obtained moments (or cumulants)

of the harmonic flow can be used to analyze the un-
derlying probability distribution function, according to
Eq. (66). For instance, the mean 〈〈vn〉〉 and the sec-
ond order moment, 〈〈v2

n〉〉 (or the second order cumulant
vn{2}), determine the variance of the distribution func-
tion. The third order and fourth order moments, 〈〈v3

n〉〉
and 〈〈v4

n〉〉, are related to the skewness and kurtosis of the
distribution function, respectively. It should be empha-
sized that moments, or cumulants, of the flow, are very
sensitive probes of the detailed structure of the distribu-
tion function. As a result, moments of flow harmonics
lead to more accurate characterization than a direct fit
of the event-by-event flow distribution.
3.1.2 Cumulants of harmonic flow

There are certain patterns of the flow cumulants ob-
served in experiments, corresponding to the underlying
properties of the probability distribution. These patterns
quantitatively constrain the flow fluctuation behavior.
For the convenience of discussion, we limit ourselves to
the case of linear medium response, vn = κnεn (as in
v2 and v3), so that the patterns in cumulants of flow
harmonics are associated with those in the fluctuations
of initial state eccentricities, through the scaled relation
P(vn) = P(κnεn)/κn. With respect to a specified prob-
ability distribution function, a cumulant of order m is
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identified in the expansion of the cumulant generating
function,

G(kx,ky)≡ln〈〈exp(ikxvx+ikyvy)〉〉
=ln

∫
dvxdvyP(vx,vy)exp(ikxvx+ikyvy),

(67)

with respect to the km term.
A simple example is a Gaussian distribution, from

which, except for the vn{2} being equal to a hydro lin-
ear response to the variance vn{2}=κnσ, all higher order
cumulants vanish,

vn{4}=vn{6}=vn{8}=...=0. (68)

This is understandable, since the generating function of
the cumulant contains only the second order term,

G(kx,ky)=G(k)=−1
2
k2(κnσ)2 . (69)

In a similar way, for a Bessel-Gaussian distribution, the
cumulant generating function is (after an integral over
the relative angle in k),

G(k)=−1
2
k2(κnσ)2+lnJ0(kκnε0) (70)

The expected second order cumulant is vn{2} =
κn

√
σ2+ε2

0, while all higher order cumulants become de-
generate,

vn{4}=vn{6}=vn{8}=...=κnε0 . (71)

The Bessel-Gaussian distribution is a good demonstra-
tion that the second order cumulant is separated from

higher order ones, as long as fluctuations (described in
terms of σ) play a significant role. The experimentally
measured cumulants of elliptic flow from the CMS col-
laboration [108] are shown in Fig. 18, for the Pb+Pb col-
lisions at

√
sNN =2.76 TeV (the left-hand panel), where

one indeed observes the feature that v2{2} is separable
from higher order ones, while higher order cumulants col-
lapse. However, the pattern is not uniquely associated
with a Bessel-Gausian distribution. In particular, the
pattern can be expected in the power distribution and
elliptic-power distribution. Moreover, one notices that
the experimental measurements suggest an ordering in
higher cumulants, although the differences in higher or-
der cumulants are tiny,

v2{2}>v2{4}�v2{6}�v2{8}. (72)

For the power distribution, all the values of cumu-
lants are determined analytically via the single parame-
ter α. With the help of the cumulant generating func-
tion, the second order cumulant is found to be

vn{2}=κn/
√

1+α, (73)

while higher order ones are [54]

vn{4}=κn

[
2

(1+α)2(2+α)

]1/4

,

vn{6}=κn

[
6

(1+α)3(2+α)(3+α)

]1/6

,

vn{8}=κn

[
48(1+5α/11)

(1+α)4(2+α)2(3+α)(4+α)

]1/8

. (74)

Fig. 18. (color online) Cumulants of elliptic flow v2 are measured up to the 8th order in Pb+Pb colli-
sions at

√
sNN = 2.76 TeV and p+Pb collisions at

√
sNN = 5.02 TeV in the same multiplicity range (in

terms of number of offline tracks), from the CMS collaboration. Figure reproduced from Ref. [108] (DOI:
https://doi.org/10.1103/PhysRevLett.115.012301, “Evidence for Collective Multiparticle Correlations in p-Pb Col-
lisions”), under the CC-BY-3.0 license.
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Note that the power distribution is derived assuming N
independent sources on top of a two-dimensional Gaus-
sian desnity profile with α = (N −1)/2. Although in
the large N limit, N 
 1, one expects a strong or-
dering vn{8}  vn{6}  vn{4}  vn{2}. In the oppo-
site limit of N → 1, (limit that corresponds to the case
of strong flow fluctuations), these cumulants converge:
vn{8}≈vn{6}≈vn{4}≈vn{2}. However, for practical N
values corresponding to p+Pb collisions at the LHC ener-
gies, the gap between second order cumulant and higher
order ones becomes sizable, and one finds similar rela-
tions vn{8}� vn{6}� vn{4}<vn{2}, in agreement with
what was found in the p+Pb collisions (right-hand panel
in Fig. 18). It is worth mentioning that, given these flow
cumulants up to v2{8}, the linear flow response coeffi-
cients κ2 and the parameter α, can be solved according
to Eq. (73) and Eq. (74). The corresponding results are
shown in Fig. 17.

In the elliptic-power distribution, the additional pa-
rameter ε0 that describes a mean eccentricity in the
reaction-plane breaks azimuthal symmetry, and the
derivation of cumulant generating function is compli-
cated. Nevertheless, following the calculation of mo-
ments, the elliptic-power distribution leads to the an-
alytical expression [55]

fm≡〈(1−v2
n)m〉= α

α+m
(1−v2

0)
m

×2F1

(
m+

1
2
,m;α+m+1;v2

0

)
, (75)

where we assume v0=κnε0 as the linear response to the
mean eccentricity. Using this equation, one obtains from
the standard definition of cumulants from moments,

vn{2}=(1−f1)1/2

vn{4}=(1−2f1+2f2
1−f2)1/4

vn{6}=
(

1+
9
2
f2
1−3f3

1 +3f1(
3
4
f2−1)−3

2
f2−1

4
f3

)1/6

.

(76)

These are analytical expressions of cumulants obtained
with respect to the elliptic-power distribution, as a func-
tion of parameters (ε0,α). To demonstrate the order-
ing of cumulants, let us consider the limit of large α,
α
 1, but keeping αε2

0 a constant (so that ε2
0  1 is a

small variable). This is a plausible assumption regard-
ing nucleus-nucleus collision events with small centrality
percentile, because larger α corresponds to systems of
a large number of independent sources, thus there are
more central collisions. Similarly, treating ε0 as a small
quantity from the constant constraint of αε2

0, implies a
background of the collision system with a small elliptic-
ity. Given these conditions, one is allowed to expand the
expressions in Eqs. (76) in series of 1/α and/or ε2

0. Note

that the expansion must be carried out simultaneously
regarding O(1/α) ∼ O(ε2

0). To the leading order, one
finds the ratios between cumulants,

v{4}
v{2} =

√
αε2

0

1+αε2
0

+O
(

1
α

)

v{6}
v{4} = 1− 1+αε2

0

2(αε2
0)2α

+O
(

1
α2

)

v{8}
v{6} = 1− 1

22(αε2
0)α

+O
(

1
α2

)
, (77)

which reflect a similar ordering pattern as in Eq. (72) in
this limit.

Actually, the tiny splitting in higher order cumulants
predicted in the power and the elliptic-power distribu-
tion functions, and observed in experiments, is a generic
feature of non-Gaussianity. It can be realized in ef-
fective models, such as MC-Glauber [109], where non-
Gaussianity is introduced from the background shape,
extra correlations among sources, etc.

Shown in Fig. 19 are the results of cumulant ratios of
initial ellipticity from event-by-event simulations of MC-
Glauber model (symbols), which, upon a linear hydro
response, is identical to the cumulant ratios of elliptic
flow v2, e.g.,

v2{4}
v2{2}=

ε2{4}
ε2{2} ,

v2{6}
v2{4}=

ε2{6}
ε2{4} (78)

The curves in Fig. 19 are parameterizations with an
elliptic-power distribution. While the elliptic-power dis-
tribution gives a consistent estimate of the splitting be-
tween v2{2} and v2{4}, it overestimates the gaps among
v2{4}, v2{6} and v2{8}.

The success of the elliptic-power distribution in de-
scribing the cumulant ratios (at least up to the fourth
order cumulant), comparing to the Bessel-Gaussian, is
to large extent due to the fact that the initial state ec-
centricity is bounded by unity. The upper bound on the
initial eccentricity induces a major source of the non-
Gaussianity in the initial eccentricity fluctuations, and
also in the event-by-event flow fluctuations. In particu-
lar, the upper bound on the ellipticity induces skewness
of the v2 fluctuations.

Using event-by-event hydro simulations of the
Pb+Pb collisions in centrality class 50%-55%, the dis-
tribution of elliptic flow in- (vx) and out-of- (vy) the
reaction-plane are shown as the histogram in Fig. 20.
The magnitude of the flow is v2=

√
v2

x+v2
y. Correspond-

ingly, initial state event-by-event distributions of εx and
εy scaled by a linear hydro response coefficient κ=0.21
are shown for comparisons. Note this linear response
coefficient is a real quantity, which applies for both vx

and vy. There are two characteristic properties of the
non-Gaussian fluctuations associated with the v2 distri-
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bution, as one finds in Fig. 20. The first is reflected in
the skewness. The two-dimensional distribution of E2 is
symmetric under vy ↔−vy, as required by parity. Thus
one observes in Fig. 20 (a) the symmetric distribution of
εy, leading to a symmetric distribution of vy via linear
hydro response. On the other hand, the distribution of εx

is mostly found as positive, reflecting a non-zero mean
〈〈εx〉〉 = ε0, and 〈〈vx〉〉 = v0. Together with the upper
bound condition ε2 �1, the corresponding x-component
of initial eccentricity εx is negatively skewed1) Upon a
linear hydro response, negative skewness is achieved in
the event-by-event distribution of vx, seen as the com-
parison of histograms in Fig. 20 (b).

0.500

0.600

0.700

0.800

0.900

1.000

(a)

ε2{4}/ε2{2}

0.988

0.990

0.992

0.994

0.996

0.998

1.000

 0 10 20 30 40 50 60 70 80
Centrality(%)

(b)ε2{8}/ε2{6}
ε2{6}/ε2{4}

Fig. 19. (color online) Cumulant ratios of the
elliptic anisotropy obtained from event-by-
event simulations with MC-Glauber model,
for the Pb+Pb collisions at

√
sNN = 2.76

TeV. Lines of the same order correspond to
paramterizations with elliptic-power distribution
function. Reprinted figure with permission
from L. Yan, J.-Y. Ollitrault, and A. M.
Poskanzer, Phys. Rev. C 90, 024903, 2014 (DOI:
https://doi.org/10.1103/PhysRevC.90.024903)
(Ref. [55]). Copyright 2014 by the American
Physical Society.

In addition to the skewness, one also observes from
the simulations that the variance in the vy distribution
and the variance in the vx distribution,

σ2
y≡〈〈v2

y〉〉, σ2
x≡〈〈(vx−v0)2〉〉 (79)

are not equal: σy>σx, another signature of non-Gaussian
fluctuations.
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Fig. 20. (color online) Shaded area: Histograms
of vx (b) and vy (a) event-by-event distributions
from hydro simulations. Lines: Histograms
of εx and εy distributions scaled by linear
repsonse coefficient κ = 0.21. Reprinted fig-
ure with permission from G. Giacalone et
al, Phys. Rev. C 95, 014913, 2017 (DOI:
https://doi.org/10.1103/PhysRevC.95.014913)
(Ref. [98]). Copyright 2017 by the American
Physical Society.

To quantify skewness of the distribution via the non-
zero third order moments, one needs the following non-
zero third order moments

s1=〈〈(vx−v0)3〉〉, s2=〈〈(vx−v0)v2
y〉〉. (80)

where s1<0 describes the negatively skewed distribution
of vx. The skewness s1 defines the standardized skewness

γ1≡ s1

σ3
x

. (81)

Therefore, in terms of the non-Gaussian fluctuations
characterized by σ2

y−σ2
x, s1 and s2, the cumulants of flow

are

v2{2} =
√

v2
0+σ2

x+σ2
y,

v2{4} � v0+
σ2

y−σ2
x

2v0

−s1+s2

v2
0

,

v2{6} � v0+
σ2

y−σ2
x

2v0

−
2
3
s1+s2

v2
0

,

v2{8} � v0+
σ2

y−σ2
x

2v0

−
7
11

s1+s2

v2
0

, (82)

1) The convention of negative skewness of a distribution is reflected as the distribution being concentrated on the right side, while
positive skewness corresponds to a left-side concentrated distribution.
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where higher order cumulants are expanded in powers of
fluctuations. The present analysis focuses on the domi-
nant source of non-Gaussian fluctuations in the elliptic
anistotropy, assuming a linear hydro response. Account-
ing for these fundamental concepts in the flow paradigm,
the derived results in Eqs. (82) provide a very simple in-
terpretation of the fine splitting structures in higher or-
der cumulants of v2: the splitting in higher order cumu-
lants is solely generated by skewness s1. It then allows
one to get some interesting findings. Especially, with
respect to the fact that the splittings in cumulants are
analytically related to the skewness up to the leading
order in the expansion of fluctuations, one expects the
differences

v2{4}−v2{6}=− s1

3v2
0

,

v2{6}−v2{8}=− s1

33v2
0

, (83)

or equivalently [98, 110],

v2{6}−v2{8}=
1
11

(v2{4}−v2{6}). (84)

The skewness of v2 is present only in the distribution
of vx, which is not approachable in experiment on an
event-by-event basis. However, since s1 is related to the
splitting of higher order cumulants of v2, under the as-
sumption that fluctuations are sub-dominant, one finds
the standardized skewness Eq. (81) approximates to the
following quantity γexp

1 ,

γ1≈γexp
1 ≡−6

√
2v2{4}2 v2{4}−v2{6}

(v2{2}2−v2{4}2)3/2
. (85)

Eq. (85) can be verified in event-by-event hydro simu-
lations. Shown in the left-hand panel of Fig. 20 are the

skewness results calculated from hydrodynamics with re-
spect to Pb+Pb collisions at

√
sNN =2.76 TeV, given a

constant η/s=0.08, as a function of centrality. The sim-
ulations are initialized via the MC-Glauber model, from
which the standardized skewness of initial eccenticity εx,
γε

1 is obtained (blue points), according to Eq. (81) but
with a replacement of vx by εx in calculating s1 and
σx. The open symbols in the left-hand panel of Fig. 21
correspond to the exact predictions of the standardized
skewness from hydrodynamics following Eq. (81), while
the shaded band is obtained with respect to the approx-
imated estimate from Eq. (85), in terms of flow cumu-
lants. The agreement between γ1 and γexp

1 is remark-
able, up to 60% of centrality, where flow fluctuations
are significant that the assumption applied in Eq. (85)
breaks down. Hydro predicted γexp

1 of v2 is compatible
with the experimental results from the ATLAS collabora-
tion, as can be seen in the comparison in the right-hand
panel of Fig. 21. Recently the CMS collaboration has
extended the measurements of the standard skewness to√

sNN=5.02 TeV [106].
In the case of the absolute linear medium response,

the effects of medium dynamics drop out of the defini-
tion of the standardized skewness, hence one may iden-
tify γ1 with γε

1 . However, Fig. 20 displays sizable devia-
tion between γ1 and γε

1 in collisions of centrality greater
than 30%, indicating the role of the nonlinear medium
response. Actually, one observes |γ1|<|γε

1 |, which means
that medium dynamics from hydro washes out the skew-
ness of initial eccentricity fluctuations, so that the gener-
ated v2 distribution is less skewed. This effect is mostly
due to the cubic order response in v2, which gets stronger
as centrality grows, in line with the trend observed in
Fig. 20.
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Fig. 21. (color online) Left: The standardized skewness of elliptic anisotropy from event-by-event hydro simulations
with respect to Pb+Pb collisions of

√
sNN =2.76 TeV. Symbols correspond to the results calculated according to

Eq. (81) for the initial ellipticity (blue points) and v2 (open symbols). The shaded band corresponds to γexp
1 ,

obtained following Eq. (85). Right: Comparison of hydro predictions on γexp
1 to experimental results from the

ATLAS collaboration. Reprinted figure with permission from J. Noronha-Hostler et al, Phys. Rev. C 93, 014909,
2016 (DOI: https://doi.org/10.1103/PhysRevC.93.014909) (Ref. [21]). Copyright 2016 by the American Physical
Society.
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In addition to the corrections from cubic order re-
sponse to the fluctuations of v2, the effects beyond the
linear medium response are more pronounced in the
higher flow harmonics. For instance, the quadrangu-
lar flow v4 has a negative value of v4{4}4 found in
non-central collisions in experiments [111], which has
a natural origin from the nonlinear couplings of v2

2 , as
2〈〈v4

2〉〉2−〈〈v8
2〉〉 [112].

3.2 Correlations among harmonic flow

In experiments, the flow fluctuations measure the
fluctuating properties of flow magnitude vn, by corre-
lating flow of the same harmonic orders. Correlations of
harmonic flow involving mixed harmonic orders, on the
other hand, reflect the correlation nature of flow magni-
tude vn and phase Ψn. In experiments, there have been
several types of correlators investigated so far, which we
discuss within the context of the flow paradigm.

The event-plane correlators. At first, the event-
plane correlators, measured by the ATLAS collaboration,
were designed to detect the correlations among phases of
different flow harmonics, on an event-by-event basis. It
was later realized that event plane correlators also in-
volve contributions through the correlated flow magni-
tudes. In practice, there exists subtle difference in the
definitions of event-plane correlators owing to the issues
of detector resolution [113]. In the present discussion,
we take the definition of event-plane correlators using
the Pearson correlation coefficient, although the original
results obtained by the ATLAS collaboration using the
scalar-product method are slightly different, under some
circumstances. For instance, for the correlation V4 and
V2 one defines,

ρ24=
Re〈〈V ∗

4 V 2
2 〉〉√〈〈v2

4〉〉〈〈v4
2〉〉

=〈〈cos4(Ψ2−Ψ4)〉〉w , (86)

which is identical to the ATLAS measured event-plane
correlator between Ψ2 and Ψ4. The notation 〈〈〉〉w, fol-
lowing Ref. [100], denotes the measured event-plane cor-
relations with the scalar-product method. The Pearson
correlation coefficient has a clear physical interpretation,
quantifying the correlation strength between the complex
quantities V 2

2 and V4. It is thus clear that correlation be-
tween magnitudes also contributes to ρ24.

For mixings among more than two harmonic or-
ders, the Pearson correlation coefficient definition dif-
fers slightly from event-plane correlations measured by
the scalar product method. For instance, the correlation
among V2, V3 and V5 is

ρ235=
Re〈〈V ∗

5 V2V3〉〉√〈〈v2
5〉〉〈〈v2

2v
2
3〉〉

, (87a)

〈〈cos(2Ψ2+3Ψ3−5Ψ5)〉〉w=
Re〈〈V ∗

5 V2V3〉〉√〈〈v2
5〉〉〈〈v2

2〉〉〈〈v2
3〉〉

. (87b)

Note that the deviation comes from correlation between
v2 and v3, 〈〈v2

2v
2
3〉〉 �= 〈〈v2

2〉〉〈〈v2
3〉〉. The absolute value of

the Pearson correlation coefficient is strictly constrained
between 0 and 1, with 1 corresponding to absolute (anti)-
correlation, while 0 indicates the case with no correlation
at all. Event-plane correlators among flow harmonics
have been measured at the LHC energy involving V2, V3,
V4, V5 and V6 (see Fig. 15).

With the characterization of flow harmonics in terms
of the medium response to initial geometrical properties,
one can understand the event-plane correlations in the
flow paradigm. For the convenience of discussion, we
take the correlation between V2 and V4 as an example.
Recalling that V4=κ4E4+χ422V

2
2 +δ4, it is not difficult to

recognize that the Pearson coefficient reaches unity (ab-
solute correlation) once the linear medium response κ4E4

and residual δ4 in V4 are neglected, namely, V4 is linearly
dependent on V 2

2 . On the other hand, if one considers
only the generation of V4 from linear flow response to an
initial eccentricity E4, the resulting correlation is

ρ24=
Re〈〈E∗

4E2
2 〉〉√〈〈ε2

4〉〉〈〈ε4
2〉〉

=〈〈cos4(Φ2−Φ4)〉〉w . (88)

Namely, the event-plane correlation is identical to the
participant-plane correlation. Since the realistic flow
generation interpolates between linear response and non-
linear mode couplings, the expected event-plane correla-
tion would be between these two extreme scenarios.

Figure 22 illustrates the expected event-plane correla-
tion ρ24, between the linear and nonlinear dominated ex-
treme scenarios. There are two lines corresponding to the
case generated by linear flow response, considering ini-
tial state fourth order eccentricity characterized in terms
of moments or cumulants. Since the relative contribu-
tion of linear flow response to V4 decreases as centrality
grows, the correlation ρ24 gets stronger towards periph-
eral collisions. Similarly, it is understandable that when
there are larger dissipations in the medium, the linear
medium response gets more damped than the nonlinear
mode couplings, and the induced correlation ρ24 should
be stronger. A similar strategy has been generalized to
all the observed event-plane correlators from the ATLAS
collaboration, which leads to successful estimates, except
〈〈cos(2Ψ2+4Ψ4−6Ψ6)〉〉 [114].

It should be noted that the correlation Eq. (86) mea-
sured in experiments involves three-particle correlations
(in the numerator), and the rms value of v4 and fourth
order moment of elliptic flow (in the denominator). The
correlation feature of the mixed harmonics is entirely
captured in the three-particle correlations in the numer-
ator, while the denominator in Eq. (86) plays a role of
normalization. Direct measurements of the numerator
can be carried out in three-particle correlations, which
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Fig. 22. (color online) The event-plane correlator
ρ24 measured by the ATLAS collaboration, with
respect to Pb+Pb at

√
sNN = 2.76 TeV. The

blue lines are those expected from the medium
response scenarios, when linear or nonlinear part
of the quadrangular flow dominates, respectively.
Hydro prediction with η/s = 1/4π interpolating
the two scenarios is shown as the green solid line.
Reprinted figure with permission from D. Teaney
and L. Yan, Phys. Rev. C 90, 024902, 2014 (DOI:
https://doi.org/10.1103/PhysRevC.90.024902)
(Ref. [114]). Copyright 2014 by the American
Physical Society.

Fig. 23. (color online) Symbols correspond to the
symmetric cumulants SC(4,2) (red) and SC(3,2)
(blue) measured by the ALICE collaboration.
Lines of different types are hydrodynamic pre-
dictions with various parameterizations of η/s.
Figure reproduced from Ref. [115] (DOI: http://
dx.doi.org/10.1016/j.nuclphysa.2017.04.016), un-
der the CC-BY-4.0 license (http:// creativecom-
mons.org/licenses/by/4.0/).

was done recently by the STAR collaboration [102, 103],

Cm,n,m+n≡Re〈〈eimφ1
p+inφ2

p−i(m+n)φ3
p〉〉∼Re〈〈VmVnV ∗

m+n〉〉.
(89)

Despite the difference in magnitudes obtained in the
three-particle correlations comparing to the event-plane
correlators (for obvious reasons), the signs of the corre-
lations agree in these measurements, as expected. It is
worth mentioning that some particular correlations in-
volving dipolar flow V1 get extra contributions from the
condition of moment conservation, such as C112. It is in-
teresting to notice from the STAR measurements that a
positive C123 is observed, which implies that in V3 there
is a nonlinear coupling of modes between V1 and V2.

Symmetric cumulants SC(m,n) One difficulty
in the measurement of flow is the subtraction of non-flow
contributions. Non-flow effects also present in the event-
plane correlators, as expected since there are moments
involved in the definition of event-plane correlators, e.g.
in Eq. (86) and Eq. (87). To subtract non-flow effects,
analogous to the cumulants of flow which suppress non-
flow by construction, the correlations among mixed flow
harmonics can be studied in the so-called symmetric cu-
mulants [101, 116].

SC(m,n)=〈〈v2
nv2

m〉〉−〈〈v2
n〉〉〈〈v2

m〉〉 (90)

where m �=n refers to different harmonic orders. As ex-
pected in a cumulant, self-correlations are subtracted in
the definition, and so are non-flow contributions. Ap-
parently, the symmetric cumulant vanishes once there is
no correlation between vn and vm. Although the defini-
tion of symmetric cumulant relies only on correlations of
flow magnitudes, symmetric cumulant gets contributions
from the correlation of flow phases. In Fig. 23, symmet-
ric cumulants are measured and shown with mixings be-
tween V2 and V3, and V2 and V4. Both of the observed
symmetric cumulants present a trend of increasing corre-
lation strength towards large centrality percentiles. The
correlation between V2 and V3 is negative, while it is
positive between V2 and V4, consistent with what was
observed in the event-plane correlators. The correlation
magnitude and trend are captured by the corresponding
hydrodynamic simulations with specified values of η/s.

Following the same strategy, the observed correlation
patterns in the symmetric cumulants can be understood
in terms of flow response. Before proceeding, we define
the normalized symmetric cumulant [101],

sc(m,n)=
SC(m,n)

〈〈v2
m〉〉〈〈v2

n〉〉
. (91)

Eq. (91) captures the same correlation behavior as in
Eq. (90), but it is normalized by taking a ratio with re-
spect to 〈〈v2

m〉〉〈〈v2
n〉〉. One advantage of the normalized

symmetric cumulant is, statistical errors of the measured

042001-32



Chinese Physics C Vol. 42, No. 4 (2018) 042001

event-averaged quantities cancel out in the ratio to some
extent. Again, let us take the correlation between V2 and
V4 as an example. Substituting the response relation of
V4 in sc(2,4), one realizes the relation

sc(2,4)=
( 〈〈v6

2〉〉
〈〈v2

2〉〉〈〈v4
2〉〉

−1
)

ρ2
24 . (92)

According to Eq. (92), the normalized symmetric cumu-
lant is factorized into a factor that records the fluctua-
tion property of v2 (in terms of ratios of moments) and
the event-plane correlator ρ24, both of which are measur-
ables in experiments. Since the underlying assumption
behind Eq. (92) is the flow response relation in the flow
paradigm, the validity of Eq. (92) provides an ideal test
of the flow paradigm we have been discussing so far.
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Fig. 24. (color online) A comparison between the
normalized symmetric cumulant sc(4,2) (open
symbols) and the factorization relation Eq. (92)
(red points). Reprinted figure with permis-
sion from G. Giacalone et al, Phys. Rev. C
94, 014906, 2016 (DOI: https://doi.org/10.1103/
PhysRevC.94.014906) (Ref. [117]). Copyright
2016 by the American Physical Society.

By taking both the fluctuations of v2 and event-plane
correlators from experimental results, Fig. 24 depicts
the comparison of the normalized symmetric cumulant
sc(2,4) and the factorization relation in Eq. (92). Al-
though the v2 fluctuations and event-plane correlator re-
sults are adopted from the ATLAS collaboration, which
has different acceptances in transverse momentum pT

and pseudo-rapidity η compared to ALICE, quantitative
agreement is achieved in Fig. 24. Let us emphasize again
that the comparison made in Fig. 24 does not involve any
hydro simulations with respect to particular parameteri-
zations, but it manifests the success of the flow paradigm.

4 Flow paradigm in small colliding sys-
tems

In general, small colliding systems, such as p+Pb, are
considered in heavy-ion experiments as a baseline of the
nucleus-nucleus collisions, where the generated system is
not recognized as thermalized. Therefore, techniques of
perturbative calculations based on QCD dynamics can
be applied for theoretical predictions. The observed cor-
relation patterns in small colliding systems are accord-
ingly expected to be distinguished from those induced by
the medium collective expansion in nucleus-nucleus col-
lisions. However, long-range multi-particle correlations
were observed in the recent experiments at RHIC and
the LHC energies, in the very high multiplicity events of
the small colliding systems: p+Pb [88, 99, 99, 108, 118–
122], d+Au [123], He3+Au [124] and even p+p [87, 125].
These long-range correlation patterns lead to similar
measurements of flow harmonics, and fluctuations and
correlations of these flow. These flow observables are
comparable to the results found in nucleus-nucleus col-
lisions on a general ground. Besides, long-range corre-
lations in small colliding systems can be quantitatively
measured. The measured harmonic flow in small collid-
ing systems can be captured by hydrodynamic simula-
tions [30, 126–132], provided the geometrical information
of the initial states is incorporated properly.

Based on the observed long-range multi-particle cor-
relation patterns and successful applications of hydro-
dynamics, it appears tempting to generalize the flow
paradigm in the small colliding systems, so that the ob-
served flow harmonics can be similarly understood as
fluid response to the initial state geometrical properties
of these systems. However, there are issues that makes a
straightforward generalization questionable. In this sec-
tion, after summarizing some of the experimental obser-
vations related to the phenomenon of medium collective
expansion in small colliding systems, in comparison with
the results from hydrodynamic simulations and qualita-
tive (or quantitative) estimate from the idea of the flow
paradigm, we discuss some challenges in the theoretical
aspect of applying hydrodynamics in small colliding sys-
tems.

4.1 Collectivity in small colliding systems

Application of the flow paradigm to small colliding
systems requires medium collective expansion. There
has been evidence collected from various measurements
of the flow harmonics in experiments at RHIC and the
LHC energies that supports a medium collective ex-
pansion scenario in the small colliding systems. Apart
from experiments, theoretical calculations with viscous
hydrodynamics with a proper initialization, or AMPT
model [133], also reproduce to a quantitative level the
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flow observables, emphasizing the role of late stage evo-
lution in the formation of the observed long-range cor-
relations. With the help of the medium response rela-
tions established in the flow paradigm based on previ-
ous studies of nucleus-nucleus collisions, these observed
correlation signatures in small colliding systems can be
understood consistently.
4.1.1 Experimental evidence

As we have learned from analyses in nucleus-nucleus
collisions, the medium collective expansion of a collid-
ing system results in long-range correlation in rapidity,
which is recognized as the “ridge” at Δφ=0 and at large
relative rapidity in the two-particle correlation function.
The non-zero “ridge” leads to the measured harmonic
flow in the Fourier decomposition of the two-particle
correlation function. Fig. 25 displays the two-particle
correlation function measured in p+Pb collisions, at√

sNN=5.02 TeV, by the CMS collaboration [118]. In col-
lision events with low multiplicity productions, as shown
in Fig. 25 (a), there is no such long-range structure ob-
served, consistent with the traditional understanding of
p+Pb collisions. Quite differently, the “ridge” becomes
obvious in the two-particle correlation function in high
multiplicity events, shown in Fig. 25 (b).

Actually, Fig. 25 reveals an interesting trend that
the observed long-range correlation patterns exhibit only
in events with sufficiently high multiplicity productions,
in the small colliding systems. Indeed, similar be-
havior of the long-range azimuthal correlations is con-
firmed in measurements with respect to d+Au [123],
He3+Au [124] at RHIC, and also p+p collisions at the
LHC energies [119, 125]. It is also realized that the
fourth power of the four-particle cumulant of elliptic flow
v2{4}4 from p+Pb collisions changes sign as multiplic-
ity decreases [88, 119, 125]. The role of high multiplic-
ity productions in the flow paradigm implies high en-
ergy/entropy density of the created medium, which is
necessary for the collective evolution according to fluid
dynamics. Observing the long-range correlation patterns
in high multiplicity events is already an indication that
the system evolution in small colliding systems is com-
patible to what one would expect in a flow paradigm.

Along the same line of analysis, two-particle corre-
lation functions can be decomposed into Fourier har-
monics to extract harmonic flow, which gives the flow
of two-particle cumulant vn{2}. To further investigate
and identify the effect of medium collective expansion,
flow harmonics are expected as well from multi-particle
correlations. The measured cumulant of elliptic flow in
the p+Pb system can be found in the right-hand panel
of Fig. 18, by the CMS collaboration [108]. It is evi-
dent from the flow cumulants that the measured elliptic
anisotropy presents, in up to eight-particle correlations,
which strongly supports the idea of medium collectivity.

Fig. 25. (color online) Two-particle correlation
function of the p+Pb colliding system at

√
sNN=

5.02 TeV, for the (a) low and (b) high multiplicity
production events, measured by the CMS collab-
oration. Figure reproduced from Ref. [118] (DOI:
https://doi.org/ 10.1016/j.physletb.2012.11.025),
under the CC-BY-NC-ND license.

In addition to these qualitative agreements with the
medium collective expansion, there is also evidence that
is quantitatively consistent with the flow paradigm esti-
mate. Compared to the flow multi-particle cumulants in
Pb+Pb collisions, one observes similar hierarchy order-
ing from v2{2} to higher order cumulants as in Eq. (72),
v2{2} > v2{4} � v2{6} � v2{8}, which implies similar
non-Gaussian properties of flow fluctuations. Follow-
ing the analysis in the flow paradigm, we understand
the ordering in flow cumulants as an indication of non-
Gaussianity, especially, the non-Gaussianity in the initial
state ellipticity fluctuations, upon a linear fluid response.
In a p+Pb colliding system, the background of the ini-
tial state geometry is dominated by the shape of the
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proton, which is approximately spherical. The elliptic
eccentricity in p+Pb is purely fluctuation-driven, and its
event-by-event fluctuations can be described by a power
distribution function, Eq. (24).

Fig. 26. (color online) Relations betweeen cumu-
lant ratios measured by the CMS collaboration,
for the p+Pb collisions at

√
sNN =5.02 TeV and

Pb+Pb collisions at
√

sNN = 2.76 TeV. Solid
lines are expected analytical relations in the
flow paradigm, in terms of the power distribu-
tion. Figure reproduced from Ref. [108] (DOI:
https://doi.org/10.1103/PhysRevLett.115.012301,
“Evidence for Collective Multiparticle Correla-
tions in p-Pb Collisions”), under the CC-BY 3.0
license.

The power distribution allows one to relate the ratio
between flow cumulants analytically. Fig. 26 shows the
measured ratios of the cumulants of the elliptic flow in
p+Pb collisions and Pb+Pb collisions by the CMS col-
laboration [108]. Solid lines correspond to the expecta-
tions from the power distribution, which are compatible

with the measured data of p+Pb collisions within sys-
tematic and statistical uncertainties. This comparison
provides quantitative evidence for the collectivity expan-
sion in the high multiplicity events of p+Pb collisions.

Recently, similar analyses with respect to the flow
cumulant were carried out by the ATLAS collabora-
tion [121, 122], and extended to the high multiplicity
events in p+p collisions. Given the observed hierarchy
of the flow cumulants, the analytical description using
the power distribution function determines an effective
number of independent sources. It is interesting to notice
that the extracted number of independent sources by the
ATLAS collaboration are compatible for p+p and p+Pb
collisions, provided the multiplicity productions in these
systems are comparable. It is worth mentioning that this
observation is consistent with some theoretical analyses
based on hydrodynamics, which suggest that the system
multiplicity plays a dominant role in collective evolution,
rather than the system size [26, 134, 135].

In addition to the flow cumulants of v2, there are
other signatures related to flow harmonics that are cap-
tured in the flow paradigm. For instance, the differen-
tial spectrum of elliptic flow of identified particles in the
small colliding systems present mass ordering [120, 123],
i.e., the anisotropic momentum spectra of heavier par-
ticles get pushed towards larger transverse momentum
owing to the radial flow [136], an interesting feature an-
ticipated due to the conversion to particles from fluid
excitations, although it should be noted that mass or-
dering is not an ad hoc feature characterized in hy-
dro modelings [137]. Besides, the measured flow ob-
servables in small systems also include triangular flow
v3 [122, 124], quadrangular flow v4 [122], and correla-
tions of these flow observables in terms of symmetric cu-
mulants [119]. These observables are compatible with
the flow paradigm expectations as well. For instance, it
is noticeable that in the small systems, that the hierar-
chy of anisotropic flow exists from lower to higher order
harmonic orders. The sign of the measured symmetric
cumulant, e.g., SC(2,3) < 0, agrees with the expected
correlation pattern induced by initial state geometry [61].

4.1.2 Results from hydrodynamic simulations

When solving viscous hydrodynamics with respect to
small colliding systems, the essential adjustments are in
the effective descriptions of initial state, compared to the
hydro simulations with respect to nucleus-nucleus colli-
sions. Especially, one should be cautious about poten-
tial contributions from effects of small scales, e.g., sub-
nucleon structures. For high multiplicity events in the
light-heavy colliding systems, the background geometry
of the created system is to a large extent determined
by the configuration of the light nucleus, such as a pro-
ton, deuteron, or He3. Additionally, the resulting ini-
tial state density profile after nucleon-nucleon collisions
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is affected by details of energy deposition. Taking these
factors into account on various grounds makes hydro pre-
dictions strongly model-dependent. For instance, it was
realized that the IP-Glasma realization without intrinsic
proton shape deformation under-predicts the observed
elliptic flow in p+Pb collisions [132].

Fig. 27. (color online) Symbols: Elliptic flow v2

and triangular flow v3 measured in He3+Au colli-
sions at

√
sNN=200 MeV, by the PHENIX collab-

oration. Lines: Results from hydrodynamic sim-
ulations and AMPT. Reprinted figure with per-
mission from A. Adare et al (PHENIX Collabora-
tion), Phys. Rev. Lett. 115, 142301, 2015 (DOI:
https://doi.org/10.1103/PhysRevLett.115.142301)
(Ref. [124]). Copyright 2015 by the American
Physical Society.

Nevertheless, an overall agreement of predictions
from hydro modelings of small colliding systems and ex-
perimentally measured flow harmonics is achieved.

As an example, Fig. 27 presents the measured elliptic
flow and triangular flow in the He3+Au collisions, at the
RHIC energy

√
sNN = 200 MeV [124]. Note that there

is an intrinsic triangular asymmetry of the colliding sys-
tem, determined by the configuration of He3. Model cal-
culations based on viscous hydrodynamics, or transport
model [133], are shown as lines of different types. For
the He3 system, intrinsic geometry is dominated by the
the three nucleons, not the detailed geometrical config-
uration of the proton. Thereby, with the effective mod-
elings of initial state by the MC-Glauber model [128]
or IP-Glasma [138], hydrodynamic simulations with η/s
equal or close to 1/4π lead to compatible results of v2

and v3, although the results over-predict in comparison
with experiment. The over-predictions can be remedied
in the hydro calculations with larger dissipative correc-
tions. In an alternative approach [130], hydro results

from Glauber+SONIC coupled to hadron transport cal-
culations, which effectively introduces extra sources of
medium dissipations, do lead to reasonable predictions,
in spite of the fact that the initial state is modeled with
a similar MC Glauber. When fluid velocity in the initial
state is assumed, the flow harmonics from hydro predic-
tions are enhanced, as seen in the results from super-
SONIC simulations [139] in Fig. 27.

To further examine the response relations in a
flow paradigm, we look at the simulated results from
Glauber+SONIC simulations [130] for different colliding
systems. Shown in Fig. 28 is a scatter plot of the ratio
of elliptic flow magnitude at pT=1 GeV to the initial ec-
centricity, v2/ε2, as a function of ε2, from p+Au (black),
d+Au (red) and He3+Au (blue) collision events. Freeze-
out temperatures are used to control the life-time of hy-
dro evolution during system expansion. The left-hand
figure in Fig. 28 has a Tfo = 170 MeV, while the right-
hand one is obtained with Tfo=150 MeV. Each point in
the figure corresponds to one single event. A constant
value in the plots indicates a linear flow response relation
between v2 and ε2, which is observed in the three collid-
ing systems, except in d+Au with a sufficiently large
ε2. The breaking of linear response relation in d+Au
is understood as follows: at very large ε2, the initial
density profile is composited by two separated hotspots,
which hardly merge during expansion at later stages of
the medium evolution, leading to a very small value of
v2. Apart from the discrepancy in d+Au of large ε2, the
linear response relations of elliptic flow are valid in the
hydro simulations of small colliding systems.

4.2 Challenges of the flow paradigm

This section is devoted to a discussion on challenges
in the flow paradigm, from the theoretical aspect. The
discussion is on a more general ground with respect to
all the colliding systems in heavy-ion experiments, albeit
the situation is obviously more serious in small colliding
systems. It should be emphasized that, so far, there have
not been strong violations of the expected features from
the flow paradigm observed in experiments, from large
colliding systems of Au+Au, Pb+Pb, to the recent mea-
surements in small systems, p+Pb, d+Au and He3+Au.
The discussion will not be conclusive, but give a some-
what brief description of the recent developments in the
theory of hydrodynamics beyond local thermal equilib-
rium.

The flow paradigm is quite well-established in large
colliding systems, where the observed long-range multi-
particle correlation patterns are understandable as a con-
sequence of medium response to initial state geometry.
In small colliding systems, although the system size de-
creases dramatically (roughly by a factor of 10), hydro
modelings provide reasonable characterizations of the
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Fig. 28. (color online) Scatter plot of v2/ε2 at pT=1 GeV from Glauber+SONIC hydro simulations with respect to
p+Au (black symbols), d+Au (red symbols) and He3+Au (blue symbols) collisions. Different freeze-out temper-
atures, Tfo =150 MeV (left panel) and Tfo =170 MeV (right panel), are applied to control the life-time of hydro
evolution of the medium collective expansion. Reprinted figure with permission from J. L. Nagle et al, Phys. Rev.
Lett. 113, 112301, 2014 (DOI: https://doi.org/10.1103/PhysRevLett.113.112301) (Ref. [130]). Copyright 2014 by
the American Physical Society.

system collective expansion, with predictions capturing a
wide spectrum of the observed flow harmonics. The suc-
cess of the flow paradigm based on hydrodynamics raises
a question : what is the limit of applying fluid dynam-
ics in heavy-ion collisions? Or alternatively, what is the
smallest droplet of fluid system generated in heavy-ion
collisions?

Although it is natural to implement viscous hydro-
dynamics for the description of medium collective ex-
pansion in the flow paradigm, the picture of medium re-
sponse relies on the dominance of hydrodynamic modes,
over non-hydro modes from many origins. The applica-
bility condition of hydrodynamics must be satisfied to
ensure hydro mode evolution. There are two crucial is-
sues one needs to take into account regarding the appli-
cability of viscous hydrodynamics in heavy-ion collisions:
1) the thermalization of the created quark-gluon system;
and 2) the validity of truncation of the gradient expan-
sion in viscous hydrodynamics.
4.2.1 Thermalization of QGP

Thermalization is a necessary condition for viscous
hydrodynamics, so that hydro variables are well-defined
in theory. However, to realize a thermalized medium
in heavy-ion collisions in a short time scale is challeng-
ing for the weakly-coupled QCD dynamics, even in large
colliding systems (cf Ref. [28] for a recent review). In
particular, considering the required starting time for hy-
dro modelings determined by phenomenological analyses,
namely, the required thermalization time, being around
O(1) fm/c, perturbative QCD gives a much longer esti-
mate of time scale τ �1.5α−13/5

s Q−1
s [140]1).

Using the condition of the onset of hydrodynamics
rather than local thermal equilibrium, the discrepancy
in the time scale of thermalization can be partly reme-
died. The onset of hydrodynamics, sometime known
as hydrodynamization, refers to a state of the medium
at which a system starts to evolve hydrodynamically.
By solving kinetic theory for a weakly-coupled medium,
for the pre-equilibrium evolution in heavy-ion experi-
ments, it is indeed confirmed that hydrodynamization
does not require local thermal equilibrium [141], with
deviations from thermal equilibrium correspond to vis-
cous corrections [142]. Actually, in the result of the
Boltzmann equation, hydrodynamization is achieved ear-
lier than isotropization [143], at which the longitudinal
pressure PL and transverse pressure PT,

PL=
∫

d3p

(2π)3p0
p2

zf(t,�x,�p),

PT=
∫

d3p

2(2π)3p0
(p2

x+p2
y)f(t,�x,�p), (93)

become comparable. The condition of PL≈PT is known
as isotropization. In Eq. (93), f(t,�x,�p) is the phase space
distribution of the out-of-equilibrium system. One may
check that, for the Bjorken flow, the pressure difference
is related to viscous corrections in hydrodynamics,

PL−PT=−2η/τ+O(1/τ 2), (94)

which gives an explicit example showing the relation be-
tween viscous corrections in hydrodynamics and effects
of out-of-equilibrium dynamics. For strongly coupled
systems, numerical simulations have been developed to
mimic colliding systems of different system sizes, based

1) Even with the strong coupling constant taken at a relatively large value, αs ∼0.3, the saturation scale Qs expected in nucleus-
nucleus collisions cannot result in a thermalization time scale comparable to O(1) fm/c. The expected time scale from perturbative QCD
is even longer in small systems, as Qs is smaller.
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on gauge/gravity duality techniques (cf. Ref. [144, 145]).
A short time scale of hydrodynamization that is compa-
rable to the estimate in the flow paradigm is realized.

Despite the progress made in the analyses of thermal-
ization or the onset of hydrodynamics, by solving out-
of-equilibrium dynamical evolutions, an alternative is to
amend the hydrodynamic framework to include out-of-
equilibrium effects. Such a strategy leads to the develop-
ment of anisotropic hydrodynamics (ahydro) [147, 148].

Fig. 29. (color online) Convergence of ahydro and
vahydro in comparison with the exact solution of
Boltzmann equation with relaxation time approx-
imation. The parameter η/s can be understood
as a quantity controlling deviations of the system
from local thermal equilibrium. Reprinted figure
with permission from D. Bazow, U. Heinz, and M.
Strickland, Phys. Rev. C 90, 054910, 2014 (DOI:
https://doi.org/10.1103/PhysRevC.90.054910)
(Ref. [146]). Copyright 2014 by the American
Physical Society.

In anisotropic hydrodynamics, following the stan-
dard derivation of hydrodynamics from kinetic theory,
the gradient expansion is made on top of an anisotropic
background. For instance, for a system with Bjorken
boost invariance, the Romatschke-Strickland distribu-
tion function [149] can be used to effectively describe
an anisotropic background,

f(t,�x,�p)=fiso

(√
�p2+ξ(τ)p2

z/Λ(τ)
)

, (95)

with ξ characterizing momentum anisotropy, and Λ(τ)
the energy scale. By doing so, out-of-equilibrium ef-
fects of the system are to some extent absorbed into
the anisotropic background. Similar gradient expansion
including higher viscous corrections can be applied it-
eratively, leading to the viscous version of anisotropic
hydrodynamics (vahydro) [146]. Therefore, one expects
improvements in the solution of out-of-equilibrium evo-
lution, compared to the traditionally derived viscous hy-
drodynamics. This is demonstrated in Fig. 29, where the

produced entropy density of a Bjorken boost invariant
system is calculated in viscous hydrodynamics, ahydro,
vahydro and the corresponding Boltzmann equation with
relaxation time approximation. The relaxation time,
which characterizes how fast the system relaxes towards
equilibrium, is taken inversely proportional to the local
temperature, τrel ∝ η/sT . As a result, η/s effectively
controls the deviations of the system from local equilib-
rium. Ahydro and vahydro do have a better convergence
behavior towards the exact solution from the Boltzmann
equation, even though the system is sufficiently far from
local thermal equilibrium, with η/s∼104. One may refer
to Ref. [150] for a detailed review of ahydro.

4.2.2 Gradient expansion in viscous hydrodynamics

Although ahydro (or vahydro) extends the framework
of hydrodynamics to out-of-equilibrium systems, which
accordingly helps to relieve the tension between out-of-
equilibrium system evolution and the flow paradigm, it
does not conceptually provide an answer to the question
raised in this section. Especially, the present success of
the flow paradigm relies on the application of second or-
der viscous hydrodynamics, as a truncated gradient ex-
pansion at the second order with respect to an isotropic
background.

In the canonical formulation of viscous hydrodynam-
ics, the gradient expansion corresponds to viscous correc-
tions to the system evolution order-by-order. It requires
a convergence condition of the gradient expansion, so
that viscous hydrodynamics can be applied to a system in
when higher order viscous corrections are subdominant.
For the practical formulation of hydrodynamics, trun-
cation of the gradient expansion is commonly taken at
second order to avoid acausal mode evolution. For a rel-
ativistic fluid, the convergence condition of the gradient
expansion is reflected by the smallness of the Knudsen
number Kn, (recall the definition of the Knudsen num-
ber as a ratio between a microscopic scale, e.g., mean-
free path lmft, and a macroscopic scale, e.g., system size
L, Kn∼ lmft/L). As a result, when the system size gets
smaller and smaller, as in the cases of small colliding sys-
tems in heavy-ion collisions, the convergence of gradient
expansion is more likely to be violated. It is indeed found
in realistic hydro simulations, that the Knudsen number
in small colliding systems is larger than that in nucleus-
nucleus collisions [18].

A large Knudsen number in small colliding systems
implies the significance of higher order terms in the gra-
dient expansion or higher order viscous corrections, in
the application of hydrodynamics. Besides, one also no-
tices that the inclusion of higher order viscous corrections
extends the applicability of hydrodynamics in an out-
of-equilibrium system, owing to the correspondence be-
tween effects of out-of-equilibrium dynamics and viscous
corrections. However, to include higher order viscous
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corrections in a theoretical framework of hydrodynamics
is complicated, due to fact that the gradient expansion
leading to viscous hydrodynamics is asymptotic (zero ra-
dius of convergence) rather than convergent [151].

The divergence of the gradient expansion was recently
explored in the context of Bjorken flow [152, 153], where
analysis is simplified as a consequence of symmetry con-
ditions. For instance, the expansion rate of the Bjorken
flow is solely determined by the proper time, ∇·u=1/τ .
Accordingly the measure of out-of-equilibrium can be
chosen to be the dimensionless quantity,

w=τT. (96)

so that the gradient expansion of hydrodynamic vari-
ables in hydrodynamics is written in terms of 1/w. One
may check that in the Bjorken flow, the Knudsen number
Kn∼ 1/w. In particular, the function f(w)≡ τ∂τ lnw =
1+ τ

4
∂τ lnε, that characterizes the decay rate of the local

energy density in a system experiencing Bjorken expan-
sion, is expanded as [154]

f(w)=
∑

n

fnw−n . (97)

For the function f(w), it is clear that the gradient ex-
pansion is divergent, since the constant coefficients fn

exhibits a facotrial growth at large n. Nevertheless, the
expansion is Borel resummable. To do so, the first step
is to take a Borel transformation, leading to the Borel
transform of f(w),

fB(ξ)=
∑

n

fn

n!
ξn . (98)

An analytical continuation should be applied to fB(ξ)→
f̃B(ξ) to help locate the singularities of the function, be-
fore the inverse Borel transformation giving rise to the
resum of a generalized gradient expansion,

fR(w)=w

∫
C

dξe−wξf̃B(ξ). (99)

The integration follows a contour C between the origin
and infinity on the complex plane of ξ. Corresponding
to the fluid dynamics derived using gauge-fluid duality,
a set of singular poles can be identified [155]. In addi-
tion to the part that is analytic, the singular poles result
in exponential decay modes in the inverse transform fR.
The lowest order one is

δfR∼w−γe−wξ0 , (100)

where γ and ξ0 are constant obtained with respect to the
singularities of f̃B(ξ).

In total, the resummation procedure for f(w) leads
to a trans-series consisting of polynomials of 1/w and
the exponential decay parts, instead of the normal gradi-
ent expansion. The physical interpretation of the trans-
series is to identify the polynomial of 1/w as the corre-

sponding resummation of hydro modes, while non-hydro
modes are recognized as short-lived decay modes [155].
With respect to the fluid dynamics derived from gauge-
gravity duality, non-hydro modes are found to coin-
cide with quasi-normal modes in gravitational fluctua-
tions [155, 156]. The appearance of the exponential de-
cay parts in the Borel resummation is contour dependent,
but there exists an unambiguous and physically sensible
result in the trans-series. It is a resumed result where
the exponential decay parts cancel consistently, which,
as will become clear later, corresponds to the hydrody-
namic attractor solution, a property related to the theory
of resurgence in quantum theories (cf. Ref. [157–160]).

The above analysis employs only the formal behav-
ior of the gradient expansion of the hydro function f(w).
The obtained structure can be validated in practical hy-
dro calculations. For instance, the Muller-Israel-Stewart
(MIS) hydrodynamics has the following equations of mo-
tion regarding Bjorken flow,

τ∂ε=−4
3
ε+Φ,

τπ∂Φ=
4η

3τ
−4τπΦ

3τ
−λ1Φ

2

2η
−Φ, (101)

where Φ=−πξ
ξ, and τπ, λ are second order transport co-

efficients. The MIS hydro equations can be written as
a nonlinear differential equation in terms of f(w), with
solutions obtained accordingly.

In Fig. 30, the numerical solutions to MIS hydro, with
respect to various initial conditions, are displayed in thin
blue lines. As time evolves (w increases), the hydro solu-
tions tend to collapse towards an attractor solution. The
attractor solution associated with the nonlinear differ-
ential equation can be identified numerically, or analyti-
cally through the slow-roll approximation. The attractor
solution is numerically solved and shown as the magenta
line in Fig. 30. Starting from different initial conditions,
one indeed observe a trend of exponential decay from
the random hydro solutions towards the hydro attrac-
tor. Actually, one can even determine that to the lin-
earized order, the decay mode of the MIS hydrodynamics
is consistent with that expected in the generalized Borel
resummation, Eq. (100). Note that a large w indicates
the system is close to local thermal equilibrium, which
explains the agreements of the numerical solution with
the analytical expectations from first and second order
viscous hydro, in Fig. 30.

Figure 30 is a good demonstration of the existence
of the hydro attractor, and the non-hydro mode decay.
The hydro attractor effectively extends the description of
hydrodynamics for out-of-equilibrium systems, regarding
the small w region in Fig. 30. Note that at the initial
state τ0 = 0.5 fm/c in the Au+Au collisions at RHIC,
w can be as small as 0.5. For a system evolution even
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out-of-equilibrium, the hydro attractor captures contri-
butions from the summed hydro modes, while non-hydro
modes are short-lived, and decay exponentially towards
the hydro attractor. The existence of attractor solutions
can be used to explain why (second order viscous) hy-
drodynamics provides such a remarkable description in
heavy-ion collisions, from large to small colliding sys-
tems, despite the apparent challenges from thermaliza-
tion and out-of-equilibrium influences.

Fig. 30. (color online) Solutions of MIS hydro in
the Bjorken expansion, with respect to various
initial conditions (blue lines). The thick ma-
genta line is the numerically determined hydro
attractor. Hydro expectations from first and
second viscous hydro are shown as the red dashed
and green dotted lines. Reprinted figure with
permission from M. P. Heller and M. Spaliński,
Phys. Rev. Lett. 115, 072501, 2015 (DOI:
https://doi.org/10.1103/PhysRevLett.115.072501)
(Ref. [154]). Copyright 2015 by the American
Physical Society.

The existence of hydro attractors appears promising
regarding the extension of hydro modeling in heavy-ion
collisions, and hence for a generalized application of the
flow paradigm, to an out-of-equilibrium system. It offers
a possible answer to the questions raised at the beginning
of this section, that the application of hydrodynamics
is extended to cases when hydrodynamic attractor so-
lution dominates. Nonetheless, so far, the analyses of
out-of-equilibrium system evolution, and the incorpora-
tion of hydrodynamics in the out-of-equilibrium system
with an attractor solution are carried out in the context
of Bjorken expansion with respect to conformal symme-
try [161, 162]. Realistic systems in heavy-ion collisions
are more complicated with much weaker symmetry con-
straints [163], especially in the case of QCD dynamics,
in which the role of hydrodynamic attractors has not yet
been clarified.

5 Summary

Based on the success of hydro modelings of heavy-ion
collisions, the flow paradigm is established to analyze the
observed of harmonic flow Vn. In the flow paradigm, var-
ious properties of the harmonic flow can be interpreted
as a consequence of the medium collective expansion re-
garding the initial state geometrical information.

Although the flow paradigm relies heavily on a hy-
dro description of the medium collective expansion, it
captures the conceptual ideas of medium collective evo-
lution. Especially, the physics picture constructed in
the flow paradigm helps to reduce the influence of ef-
fective parameterizations in model simulations. In the
flow paradigm, fluid dynamics is often employed to take
into account the effect of medium collective expansion,
and particularly fluid dynamics captures the hydro mode
mode evolution associated with the decomposed modes
according to the azimuthal symmetry. The decomposed
modes in harmonics, with respect to the initial state
geometrical fluctuations, are characterized as the ini-
tial state eccentricities En’s. These eccentricities En’s
are responsible for the observed anisotropic momentum
spectrum in experiments, and hence the harmonic flow,
upon medium response relations. These response rela-
tions (Eqs. (31)) proposed in the flow paradigm, have
been examined to a quantitative level, in event-by-event
hydrodynamic simulations. Some of the experimentally
measured signatures, such as the factorization relations
among different types of symmetric cumulants, and the
relative scales of the measured nonlinear medium re-
sponse coefficients χ’s, are found to be consistent within
the medium response framework to a quantitative level.

In the flow paradigm, given these medium response
relations, one is allowed to disentangle the physics infor-
mation of initial state fluctuations, from the dynamics of
medium evolution, from the measured flow harmonics.
This is of great significance because it provides poten-
tially model-independent analyses in heavy-ion collisions,
with emphases laid directly on the properties of the ini-
tial state and medium transport. We have presented in
this review, as an example, that the event-by-event fluc-
tuations of elliptic flow v2 reveal the fluctuation behavior
of initial ellipticity ε2. Through the fit of the probabil-
ity distribution function via an elliptic-power function,
the linear medium response coefficient κ2 is approach-
able, together with the parameters associatd with initial
state. In addition to the flow fluctuations, another way
of extracting the medium dynamical properties comes
from the analyses of flow correlations. This is again,
a model-independent procedure. In the flow correlations
involving higher order harmonics, proper cancellations in
the ratio of different types of the harmonic flow lead to
the measurements of medium response coefficients, χ’s.
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Although the flow paradigm is mostly established in
high energy nucleus-nucleus collisions, its generalization
to small colliding systems appears straightforward. In
the recent experiments involving small colliding systems,
the scenario of medium collective expansion gets sup-
port from the similar results of long-range multi-particle
correlations. Quantitatively, these correlations are com-
patible with hydrodynamics in terms of the predicted
harmonic flow, of various types. For instance, the ellip-
tic and triangular flow from two-particle correlations in
He3Au, dAu and even proton+proton, can be well re-
produced by viscous hydrodynamics. In particular, the
fluctuations of v2 in proton-lead collisions, which exhibit
a consistent pattern with the power distribution func-
tion, have not only been used as the most convincing
evidence of the medium collective expansion, but also
provide information of the fluctuating initial state.

The success of the flow paradigm depends on the ap-
plications of viscous hydrodynamics in the quark-gluon

systems created in heavy-ion collisions. However, the
application hydrodynamics in small colliding systems,
where one requires the thermalization of quarks and glu-
ons to be approached in an extremely short time scale,
is questionable. It then motivates the extension of the
flow paradigm, or to say, the extension of the theoretical
framework of viscous hydrodynamics, to systems which
are out of local thermal equilibrium. In addition to
the theoretical studies of the thermalization process in
weakly-coupled or strongly-coupled systems, one promis-
ing progress is the discovery of hydrodynamic attractors,
although the present investigations of hydrodynamic at-
tractors are mostly limited to cases with stong symmetry
conditions.

The author is grateful to Jean-Yves Ollitrault for
carefully reading the manuscript and very valuable com-
ments.
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