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Abstract: Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94−118 have

been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the

potential energy surface approach in multidimensional (β2, γ, β4) deformation space. Taking the heavier 252Cf

nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and

the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present

calculated β2 values and barrier heights are compared with previous calculations and available experiments. The role

of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably

affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112−118 isotopes). Based on the

potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the

nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g.,

the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed.
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1 Introduction

Transuranium nuclei are produced artificially in
heavy-ion induced nuclear fusion reactions. The pro-
duction rates by present production paths are allowed
on an atom-at-a-minute to atom-at-a-month scale ap-
plying currently experimental techniques. There is no
doubt, with the development of radioactive beam facili-
ties, heavy-ion accelerators, and highly effective detector
arrays, that there will be increasing interest in further
attacking transuranium nuclei, especially the island of
stability of superheavy elements [1]. Both physics and
chemistry have arrived on the shore of this fascinating is-
land in experiments [2–4]. As one of the important decay
modes of a heavy or superheavy nucleus, the spontaneous
fission channel is dominated essentially by the barrier size
and shape [5]. Also, the formation probability of such a
nucleus in heavy-ion-fusion reactions is directly related
to the fission barrier, generally including its height and
full-width at half-maximum (FWHM), since the barrier

is a decisive quantity in the competition between neutron
evaporation and fission of a compound nucleus during
the process of its cooling. The production cross section
of such fissioning nuclei has a sensitive dependence on the
barrier shape and height. For instance, a 1 MeV change
in the fission barrier may result in a difference of several
orders of magnitude in survival probability. Moreover,
the fission barrier of very neutron-rich nuclei can affect
the r-process of stellar nucleosynthesis [6, 7]. Therefore,
the fission barrier is a critical quantity for understanding
the questions mentioned above.

Accurately describing fission been a long standing
problem ever since it was deduced, for the first time,
by barrier penetration about 80 years ago [8]. More re-
cently, considerable effort has been made to understand
the fission problem in both theory and experiment. Some
empirical barriers in transuranium nuclei have been de-
termined experimentally [9] and various theoretical ap-
proaches have been used for the study of the fission barri-
ers. It has been found that different deformation degrees
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of freedom can have different influence on the inner and
outer barriers, though the impact may strongly depend
on the proton and neutron numbers and the employed
models. For instance, the heights of the inner and outer
barriers can usually be lowered by the triaxiality and oc-
tupole correlation, respectively [10, 11]. Further, it was
recently found that the outer barriers can also be low-
ered by the triaxiality compared with axially symmetric
results in the actinide region [12, 13]. The most fun-
damental way to determine the nuclear properties is to
start with a real nucleon-nucleon interaction and solve
the appropriate many-body equations in some approxi-
mation. However, due to the computational difficulties
and complications (e.g., the hard-core property in real-
istic nuclear force), in practical calculation, some simple
effective interactions whose parameters are adjusted to
reproduce gross nuclear properties rather than nucleon-
nucleon scattering data, even the one-body potential, are
usually used by combining a phenomenological or self-
consistent mean-field approach. Presently, there are four
types of models which are widely used for investigating
fission barriers, including the macroscopic-microscopic
(MM) models [14–20], the nonrelativistic energy density
functionals based on zero-range Skyrme and finite-range
Gogny interactions [21–24], the extended Thomas-Fermi
plus Strutinsky integral (ETFSI) methods [7, 25], and
the covariant density functional theory (CDFT) [26–29].
The difference in the description of inner fission barrier
height in these models is considerable, which will trans-
late into huge uncertainties in the spontaneous fission
half-lives [30]. The MM approaches with the “oldest”
ages usually have very high descriptive power as well
as simplicity of calculation. In this paper, the multi-
dimensional potential energy surface (PES) calculations
are based on the framework of MM models.

Experimental data show some unexpected spectro-
scopic characteristics in some nuclei, such as wobbling,
signature inversion (or splitting) and chiral doublets [31–
33], indicating the possible appearance of triaxiality.
Prior to this work, we have performed several studies
of the effects of triaxial deformation degree of freedom
on ground and/or yrast state in specific isotopes such
as Ba [34], Nd [35] and W [36] with a similar PES cal-
culation method. Additionally, we have systematically
investigated the octupole effects on outer fission barri-
ers for even-even nuclei with 1026Z6112 [37]. In this
work we perform a systematic investigation of the in-
ner fission barriers in all synthesized tranuranium nuclei
within the triaxial multidimensional PES approach, fo-
cusing on the formation mechanism of the barriers and
triaxiality effects, which is expected to provide a valu-
able reference for experiments, and to some extent even
for more microscopic and relativistic calculations. The
barrier shape, including its height, width and evolution,

is analyzed. To our knowledge, such systematic investi-
gations of the effects of triaxial degrees of freedom on the
height of inner fission barriers are somewhat scarce for
all even-even transuranium nuclides ranging from 226Pu
to 294Og which have already been synthesized experi-
mentally [4, 38–40]. Moreover, a systematic study may
be the best way to understand the underlying principles
behind the impact of triaxiality on the inner fission barri-
ers, since it can eliminate the arbitrariness of conclusions
with respect to the choice of a specific nucleus. Part of
the aim of this work is to test the model validity and
predictive power, especially extrapolating towards the
the superheavy region, and to find discrepancies for fur-
ther developing the present model. Indeed, for instance,
it has been pointed out that different polarization ef-
fects and functional forms of the densities may appear
in the superheavy region, which can be naturally incor-
porated within the self-consistent nuclear mean-field cal-
culations. However, in the MM models, prior knowledge
about the expected densities and single-particle poten-
tials is needed [41]. In general, the model parameters
may need to be refitted and even the model Hamiltonian
will need to be remodelled (e.g., see Refs. [42–44]).

The rest of this paper is organized as follows. The
theoretical framework and the details of the numerical
calculations are described in Section 2. The calculated
fission barriers, the effect of triaxiality, and the compari-
son with data and other theoretical results are presented
in Section 3. Finally, Section 4 summarizes the main
conclusions of the present work.

2 Theoretical framework

The PES calculation [45] employing in the present
work is based on the MM models [46, 47], which
are approximations of the self-consistent Hartree-Fock
method [48, 49]. Such approaches have been widely used
to reproduce the right bulk properties, e.g., the ground-
state deformations and energies, of a many-body system
in medium and heavy mass nuclei [50, 51]. In this sec-
tion, the common procedures are outlined, with some
helpful references.

The basic idea in the MM models is that the total po-
tential energy of a deformed nucleus can be decomposed
into two parts,

Etotal(Z,N,β̂)=Emac(Z,N,β̂)+Emic(Z,N,β̂), (1)

where Emac is the macroscopic energy given by a smooth
function of nucleon numbers (Z, N) and deformations

(β̂), while Emic represents the microscopic quantum cor-
rection calculated from a phenomenological (non-self-
consistent) single-particle potential well. Generally, the
unified procedure of such an approach is then carried out
in the following five steps [46]:
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(a) Specify the nuclear shape, i.e., shape parameter-
ization.

(b) Calculate the macroscopic energy, e.g., liquid-
drop (LD) energy.

(c) Generate the single-particle potential felt by pro-
tons or neutrons, e.g., the Nilsson, Woods-Saxon (WS),
and folded Yukawa (FY) potentials.

(d) Solve the stationary Schrödinger equation to ob-
tain the single-particle levels and wave functions.

(e) Calculate microscopic (shell and pairing) correc-
tions.

The total potential energy can obviously be obtained
by the sum of macroscopic and microscopic energies
given in steps (b) and (e), respectively. Next, each part
will be introduced according to these five steps.

First of all, the nuclear shape can be conveniently
described by the parametrization of the nuclear surface
or the nucleon density distribution. In the present work,
the nuclear surface Σ is depicted with the multipole ex-
pansion of spherical harmonics Yλµ(θ,φ), that is,

Σ:R(θ,φ)=R0

[

1+
∑

λ

+λ
∑

µ=−λ

αλµY
∗

λµ(θ,φ)
]

, (2)

where R0 is the radius of the isovolume spherical shape,
which is determined by requiring conservation of the nu-
clear volume equal to 4πR30/3, and β̂ stands for all the
deformation parameters applied here. Note that such
parametrization is also convenient to describe the nu-
clear geometrical symmetry. Here, the dominating low-
order quadrupole deformations (α20,α2±2) and hexade-
capole deformations (α40,α4±2,α4±4) have been included.
Meanwhile, the nuclear surface radius R(θ,φ) represents
the distance of a point between the nuclear surface and
the origin of the corresponding coordinate system. Since
only the even λ and µ components are included, the nu-
clear shape will obviously survive three symmetry planes
by such parametrization. Furthermore, once the hexade-
capole deformation is taken into account with the func-
tions of the scalars in the quadrupole tensor α2µ, it can
lead to a three-dimensional calculation with the indepen-
dent coefficients β2, γ and β4 [52], i.e.,
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(3)

Of course, the (β2,γ,β4) parametrization has all the sym-
metry properties (e.g., axial symmetry and reflection
symmetry) of Bohr’s (β2,γ) parametrization [53, 54].

Secondly, up to now, there are several phenomeno-

logical LD models which have been used in the litera-
ture, e.g., standard LD model [55], finite-range liquid-
drop model (FRLDM) [56], finite-range droplet model
(FRDM) [57], Lublin-Strasbourg drop (LSD) model [58],
etc. These macroscopic models with slightly different
properties can be utilized to give the smoothly varying
part of the nuclear energy, in which the dominating terms
involve the volume energy, the surface energy and the
Coulomb energy. Due to the incompressibility of a nu-
cleus (“volume conservation” condition), the volume en-
ergy, which is proportional to mass number A, does not
depend on the nuclear shape, whereas the surface en-
ergy, which tends to hold the nucleus together, and the
Coulomb energy, which tends to pull the nucleus apart,
are shape-dependent. Here, the macroscopic energy cal-
culated in the present work is obtained by the standard
LD model with the parameter set used by Myers and
Swiatecki [55]. Because we are focusing on the PES and
the difference between the critical points (e.g., between
the minimum and saddle point), the potential energy rel-
ative to the energy of a spherical LD has been adopted.
This portion of the standard LD energy can be can be
written as [55, 59, 60]

ELD(Z,N,β̂)={[Bs(β̂)−1]+2χ[BC(β̂)−1]}E(0)s , (4)

where the relative surface energy Bs and Coulomb en-
ergy BC are functions only of nuclear shape, depending
on the collective coordinates {αλµ}. The spherical sur-
face energy E(0)s and the fissility parameter χ are Z- and
N -dependent. The detailed expression of E(0)

s and χ can
be found in Ref. [60].

Thirdly and fourthly, in the one-body mean-field
approximation, for example, the Nilsson (modified
harmonic-oscillator), WS and FY potentials are usually
adopted during the process of real calculations [46, 61,
62]. At present, we use a more realistic diffuse-surface
deformed WS-type nuclear potential. That is, the single-
particle levels and wave functions are determined by solv-
ing the stationary Schrödinger equation numerically with
HWS [63],

HWS = − ~
2

2m
∇2+Vcent(~r;β̂)+Vso(~r,~p,~s;β̂)

+
1

2
(1+τ3)VCoul(~r,β̂), (5)

where the depth of the central part of the WS poten-
tial, which will mainly govern the number of levels in
the potential well, is [59],

V =V0[1±κ(N−Z)/(N+Z)], (6)

with the plus and minus signs for protons and neutrons
respectively, and the values of the constants V0 and κ
given later. Then the spin-orbit potential Vso(~r,~p,~s;β̂),
which mainly controls the relative positions of levels, is
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assumed of the form

Vso(~r,~p,~s;β̂) = −λ
[

~

2mc

]2

{

∇V0[1±κ(N−Z)/(N+Z)]

1+exp[distΣso
(~r,β̂)/aso]

}

×~p·~s,

(7)

where λ is the strength parameter of the spin-orbit po-
tential and the new surface Σso denotes the surface of
the spin-orbit potential. In addition, the Coulomb po-
tential VCoul(~r,β̂) for protons is considered as a uniformly
charged drop in a classical electrostatic potential.

The universal WS parameter set [59] has been ap-
plied in the present work. This parameter set is Z and
N independent and can give a reliable description of the
single-particle states, especially in the medium and heavy
mass regions [64]. As shown in Refs. [47, 59], these pa-
rameters are:

(1) Central potential depth parameters:
V0=49.6 MeV, κ=0.86.

(2) Radius parameters of the central part:
r0(p)=1.275 fm, r0(n)=1.347 fm.

(3) Radius parameters of the spin-orbit part:
r0−so(p)=1.320 fm, r0−so(n)=1.310 fm.

(4) Strength of the spin-orbit potential:
λ(p)=36.0, λ(n)=35.0.

(5) Diffuseness parameters:
a0(p)=a0(n)=a0−so(p)=a0−so(n)=0.70 fm.

These are usually fitted by adjusting their values to opti-
mally reproduce the energies of available single-particle
levels in either spherical or deformed nuclei [65–68]. It
is worth noting that these parameters may be not con-
stant throughout the global nuclear chart and need to be
adjusted somehow when extrapolating to the unknown
region. Based on the above parameters, the WS single-
particle potential felt by protons and neutrons is gener-
ated clearly at the deformation space (β2,γ,β4). Then
the WS Hamiltonian matrix is calculated using the basis
of the axially deformed harmonic oscillator in the cylin-
drical coordinate system. Finally, the single-particle lev-
els and wave functions can be obtained by diagonalizing
the Hamiltonian matrix. Note that the harmonic oscil-
lator eigenfunctions with the principal quantum number
N≤12 and N≤14 are adopted during the calculation as
a basis for protons and neutrons respectively, since such
a basis cutoff can give stable results in the case of its
possible enlargement.

Fifthly, the microscopic energy arises as a result of
the inhomogeneous distribution of the single-particle en-
ergies and the residual pairing interaction in the nucleus,
mainly consisting of a shell correction δEshell and a pair-
ing correction δEpair, namely,

Emic(Z,N,β̂)=δEshell(Z,N,β̂)+δEpair(Z,N,β̂). (8)

Based on the single-particle levels obtained above, the
shell and pairing corrections at each deformation point
(β2,γ,β4) can be evaluated by means of the Strutinsky
method [48] and Lipkin-Nogami (LN) method [69]. The
Strutinsky smoothly varying part is carried out with a
six-order Laguerre polynomial with the smoothing range
γ=1.20 ~ω0 (~ω0=41/A1/3 MeV). The LN method, in
which particle number projection is approximately con-
served, avoids the spurious pairing phase transition en-
countered in the traditional Bardeen-Cooper-Schrieffer
(BCS) calculation. The monopole pairing has been con-
sidered and its strength, G, is obtained from the average
gap method [70]. In the pairing windows, the respective
states, e.g., half of the particle number Z and N (or 40,
if they are greater than 40) just below and above the
Fermi energy, are included empirically for both protons
and neutrons. Then the energy in the LN approach is
given by [62, 69],

ELN=
∑

k

2v2kek−
∆2

G
−G

∑

k

v4k+G
N

2
−4λ2

∑

k

u2kv
2
k, (9)

where v2k, ek and ∆ denote the occupation probabil-
ities, single-particle energies and pairing gap respec-
tively. The extra Lagrange multiplier λ2 represents the
particle-number-fluctuation constant. Further, the shell
and pairing corrections could be calculated by δEshell=
∑

ei−ẼStrut and δEpair=ELN−
∑

ei, respectively. Here,
∑

ei is the sum of single-particle energies and ẼStrut is
the smoothing energy by the Strutinsky method.

Last but not least, taking both Bohr shape defor-
mation parameters [53] and the Lund convention [71]
into account, the Cartesian quadrupole coordinates X=
β2cos(γ+30

◦) and Y =β2sin(γ+30
◦) are used in the present

work, where β2 specifies the magnitude of the quadrupole
deformation and γ describes nonaxial shapes. In these
calculations, the β2 value “built-in” is always positive
and the γ value covers the range −120◦≤ γ≤ 60◦. Ob-
viously, the three sectors [−120◦,−60◦], [−60◦,0◦] and
[0◦,60◦] describe the identical triaxial shapes at the
ground state. At each (X,Y ) deformation grid, the to-
tal energy of a nucleus is calculated according to the
procedure mentioned above and the PES can finally be
derived from interpolating, using a cubic spline function,
between the lattice points in the (X,Y ) plane. Therefore,
the nuclear properties such as the ground-state equilib-
rium deformations, saddle points, fission paths and so on
can be obtained and analyzed based on the present PES
calculation.

3 Results and discussion

In the present work, we just care about the inner fis-
sion barriers rather than the outer ones. Such a restric-
tion has its own merits. The inner barriers are easier
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to measure than the outer barriers, and they are more
important for the r process since they determine thresh-
olds. In addition, spontaneous fission lifetimes tend to
be dominated by the inner barrier, even if an outer bar-
rier can occasionally have a crucial influence if it is wide
enough. Previous studies [15, 24, 26, 72–74] have shown
that the odd-multipole deformations (e.g., β3) do not
play a role in the inner fission barrier of the actinide
and superheavy regions. This allows us to restrict our
calculations to reflection symmetric shapes. It has also
been shown that the inclusion of triaxiality can improve
the accuracy of the description of the inner fission bar-
riers in the actinide region in almost all state-of-the-art
models [13, 16, 17, 29, 75]. Therefore, taking the im-
portant low-order deformation degrees of freedom into
account, we performed the PES calculation in multidi-
mensional (β2, γ, β4) space, paying attention to the im-
pact of triaxiality on the inner fission barrier, especially
in the superheavy nuclei. To examine the model validity
in the current research, as an example, the 252Cf nu-
cleus is calculated, as it is the closest to the superheavy
region among the nuclei that have experimentally mea-
sured inner fission barriers [9, 76]. Figure 1 shows the
calculated 2D PES (a) and the triaxial and axial 1D po-
tential energy curves (b) for 252Cf. The axial and triaxial
fission paths, saddles and equilibrium deformations can
be clearly seen in Fig. 1(a). For instance, one can see
that this nucleus has a well-deformed prolate shape and

a triaxial-deformed saddle, γ∼ 17◦, which will strongly
modify the fission path. The “real” fission path will go
through the energy valley (denoted by the blue line) with
a non-zero γ deformation in the (β2, γ) plane by avoiding
the maximum of the axially symmetric PES. The prop-
erties of the inner fission barrier, including its height and
width, are shown in Fig. 1(b). The triaxiality lowers the
barrier height of this nucleus by up to 2.66 MeV here.
For comparison, the experimental data and other several
theoretical results of the inner fission barrier for 252Cf are
also shown. Note that these several theoretical results
are, respectively, obtained from the so-called heavy nu-
clei (HN) model [19], the FY single-particle potential and
the FRLDM [17], the Skyrme-Hartree-Fock-Bogoliubov
(SHFB) method [74], the ETFSI methods [7] and the
CDFT theory [13]. It can be seen that all the calculated
values are higher than the data except for the CDFT
value, which has a 40 keV underestimation. Interest-
ingly, our result shows good agreement with experimen-
tal data, at least in this nucleus, with only a ∼30 keV
difference.

Nowadays, it is well understood that the minima
(ground or shape-coexisting states) and maxima (or
saddle points) can be attributed to shell effects, whose
microscopic mechanism originates from the nonuniform
distribution of the single-particle levels in the vicinity
of the Fermi surface [48]. Minima correspond to regions
of low level density, e.g., a region with a large energy gap,

Fig. 1. (color online) (a) Calculated two-dimensional PES in (β2, γ, β4) deformation space for the selected nucleus
252Cf. At each (β2, γ) grid point, the PES has been minimized with respect to the deformation parameter β4. The
PES minimum, namely, the ground state (GS), is indicated by the black circle. The red square and blue triangle
represent the axial saddle (AS) and triaxial saddle (TS) along the axial (red line) and triaxial (blue line) fission
paths, respectively. The energy contours are at 200 keV intervals. (b) Calculated potential energy curves against
β2 for

252Cf. At each given β2 point, the energy has been minimized with respect to γ and β4 deformations. Similar
to (a), the red solid line displays the potential energy curve for the axially symmetric solution with γ=0◦, whereas
the blue solid line shows the corresponding curve along the triaxial part of the fission trajectory which has the
lowest energy as a function of β2. For convenience of description, the energy curve is normalized with respect to
the ground-state energy. The experimental and other several theoretical fission barriers are shown for comparison.
Further details are given in the text.
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whereas saddle points usually occur in the vicinity of
level crossings, regions of high level density. The fis-
sion barrier (namely, the energy difference between the
ground-state minimum and the corresponding saddle
point) is certainly related to the level density near the
Fermi level. For additional clarity and emphasis, Fig. 2
shows calculated proton and neutron single-particle lev-
els near the Fermi surface at three typical deformation
points (ground-state minimum, axial and triaxial sad-
dles) for the selected 252Cf nucleus. The single-particle
level density near the Fermi level at the ground-state
minimum is lower than those at the saddles, indicating
a large negative shell correction energy. Especially, it
is very clear that the highest neutron level density is
near the Fermi level at the axial saddle point, as seen in
Fig. 2(b), since at both the ground-state minimum and
triaxial saddle the levels are shifted up above the Fermi
level and down below the Fermi level (leading to a rela-
tively lower level density). The decrease of the triaxial
saddle (or the lowering of the barrier due to triaxial-
ity) can certainly be understood by such a level density
change.

Fig. 2. (color online) Calculated proton (a) and
neutron (b) single-particle levels near the Fermi
surface for 252Cf at three typical deformation grid
points, that is, GS, AS and TS points, as seen in
Fig. 1. The red lines indicate the Fermi energy
levels.

To give a better understanding of the macroscopic
and microscopic contributions in the calculated PES,
especially at critical minima and saddle points, Fig. 3
shows the calculated potential energy curves and cor-
responding histograms for 252Cf. It can be seen from
Fig. 3(a) that the inclusion of triaxiality does not change
the first minimum but strongly affects the shape and
height of the first barrier. The macroscopic energy
changes smoothly and the triaxiality will lead to an addi-
tional energy increase. However, the microscopic energy
fluctuates significantly and can be strongly affected by

the triaxiality, mostly determining the positions of the
minima and saddles. Note that at the zero deformation
point, the reason for Emacro=0 is that the macroscopic
energy is normalized to the spherical liquid drop, as men-
tioned in the theoretical part. More intuitively, Fig. 3(b)
shows us to what extent the energy of the minimum and
saddles are affected by the macroscopic energy and mi-
croscopic correction.

Fig. 3. (color online) (a) Similar to Fig. 1(b), cal-
culated potential energy curves against β2 for
252Cf, but together with the macroscopic and mi-
croscopic components. The circle, triangle and
square symbols represent the ground state (GS),
axial saddle (AS) and triaxial saddle (TS), respec-
tively. Note that, for simplicity, the β4 deforma-
tion is not considered here. (b) The calculated
total energy and its macroscopic and microscopic
contributions at the GS, AS and TS points of part
(a).

Aside from the mean field, which determines the
single-particle levels, the pairing correlations can also af-
fect the calculated barrier to some extent. For example,
it has been pointed out that there may be a rather large
difference in the predicted barrier heights between dif-
ferent pairing models [26, 29, 77]. In addition, with the
dynamical coupling between shape and pairing degrees
of freedom, the fission barrier also will be reduced by sev-
eral units of least-action of fission paths [78]. Here, to
obtain a crude estimation of the contribution due to the
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pairing correlation, as shown in Fig. 4, the microscopic
energy correction has been further divided into shell and
pairing corrections. One can see that the β4 deformation
can slightly modify the different energy components. As
expected, it is found that the shell corrections are fully in
agreement with the cases of the density distribution, as
seen in Fig. 2. For instance, the ground-state minimum
has the lowest level density, corresponding to the largest
negative shell correction and the smallest negative pair-
ing correction, whereas the axial saddle point has the
highest level density, corresponding to a positive shell
correction and the largest negative pairing correction. It
seems that the triaxiality will change the single-particle
levels by changing the phenomenological mean field, then
change the shell and pairing corrections and finally have
an effect on the fission barrier.

As a basic rule of scientific research, theoretical quan-
tities generally need to be confronted with the corre-
sponding experimental data and/or other accepted the-
ories. Table 1 shows such two comparable quantities,
the calculated ground-state equilibrium deformation pa-
rameter β2 and inner fission barriers Bf , for 13 even-even
transuranium nuclei where the inner fission barriers have
been determined experimentally. The experimental β2
values are deduced from the intrinsic quadrupole moment
related to the reduced electric quadrupole transition
probability B(E2) [79]. The other theoretical values are,
respectively, obtained from the so-called HN model [80],
the FY single-particle potential and the FRDM [81], the
Hartree-Fock-BCS (HFBCS) [82], and the ETFSI meth-
ods [83]. For the inner fission barriers, the experimental
or empirical values are taken from Refs. [9, 76] and the
other theoretical values come from the FY single-particle

potential and the FRLDM [17], the SHFB method [74]
and the CDFT [13] in addition to the above mentioned
HN [19] and ETFSI [7] methods. It is clearly seen that
all calculated β2 values are lower than the experimental
results. The barriers calculated by different theories are
unevenly distributed on both sides of the experimental
values. None of the theories can completely reproduce
the experimental data or even, as seen in the Bf column,
always come close to the experimental data. It is hard to
absolutely say which one is the best, in particular when
extending to unknown nuclei. However, it seems that
these theories can to a large extent reproduce the de-
formed shapes and barrier amplitudes and support one
another.

Fig. 4. (color online) (a) Similar to Fig. 3(b), but
the microscopic energy is further divided into shell
and pairing corrections. (b) The same as in (a),
but the β4 deformation is included in the calcula-
tion.

Table 1. The calculated results (PES) for ground-state equilibrium deformation parameter β2 and inner fission
barriers Bf for 13 available even-even actinide nuclei. The β2 values of the HN [80], FY+FRDM (FFD) [81],
HFBCS [82], and ETFSI [83] calculations and experiments (Exp.) [79], and the Bf inner fission barriers of the
HN [19], FY+FRLDM (FFL) [17], SHFB [74], ETFSI [7], CDFT [13] calculations and experiments (Exp.) [9, 76]
are given for comparison.

nuclei
β2 Bf/MeV

PES HN FFD HFBCS ETFSI Exp.a PES HN FFL SHFB ETFSI CDFT Exp.

236Pu 0.215 0.215 0.215 0.26 0.22 — 5.72 b 5.4 4.5 4.7 4.8 — 5.70
238Pu 0.220 0.223 0.226 0.24 0.24 0.282 6.32 6.1 5.3 5.4 5.4 5.96 5.60
240Pu 0.225 0.231 0.237 0.25 0.24 0.290 6.48 6.4 6.0 5.9 5.8 5.92 6.05
242Pu 0.227 0.233 0.237 0.24 0.26 0.298 6.38 6.3 6.4 6.3 6.2 5.77 5.85
244Pu 0.229 0.235 0.237 0.23 0.26 0.292 6.16 6.0 6.6 6.5 6.4 5.40 5.70
246Pu 0.233 0.239 0.250 0.25 0.26 — 5.76 5.7 6.3 6.5 6.2 4.76 5.40
242Cm 0.229 0.235 0.237 0.25 0.26 — 6.59 6.7 6.6 6.0 6.1 6.49 6.65
244Cm 0.231 0.237 0.249 0.25 0.26 0.296 6.49 6.6 6.9 6.4 6.4 6.34 6.18
246Cm 0.233 0.240 0.249 0.27 0.26 0.298 6.29 6.2 7.0 6.7 6.5 5.84 6.00
248Cm 0.236 0.242 0.250 0.28 0.26 0.286 5.90 5.9 6.8 6.7 6.5 5.35 5.80
250Cm 0.234 0.242 0.250 0.24 0.26 — 5.39 5.3 5.9 6.5 6.5 4.79 5.40
250Cf 0.240 0.246 0.250 0.28 0.26 0.298 5.85 6.5 7.1 6.8 6.7 5.70 5.60
252Cf 0.237 0.246 0.251 0.25 0.26 0.304 5.33 5.8 6.1 6.7 6.2 5.26 5.30

a The uncertainties are less than 0.015; see Ref. [79] for details.
b The bold italic denotes that this fission barrier, among these theoretical values, is relatively close to experimental data.
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Fig. 5. (color online) (a) The difference of
quadrople deformation β2 between theory and
available data for transuranium Pu, Cm and Cf
nuclei. (b) Similar to (a) but for the difference of
inner fission barrier Bf .

Before continuing the investigation, we would like
to further evaluate the different theoretical results by
comparing the differences between calculated and exper-
imental data. Figure 5(a) and (b) show the differences
between calculated and experimental quadrople defor-
mations β2 and inner fission barriers Bf , respectively. It
is seen that the calculated β2 values are systematically
underestimated, especially in the present work. Con-
cerning this discrepancy, a corrected formula, e.g., for
protons in the WS case, βρ2'1.10β2−0.03(β2)3, has been
suggested by Dudek et al. [84] by analyzing the rela-
tionship between the WS potential parameters and the
nucleonic distributions. It is also pointed out that the
vibration effect, e.g., the zero-point motion, which would

imply that the experiment-comparable deformations are
not static values but rather are the most likely deforma-
tions calculated from the solutions of the collective mo-
tion, may be partly responsible for such shape inconsis-
tency [85]. From Fig. 5(b), one can see that in most nu-
clei theoretical calculations overestimate the fission bar-
riers, especially in Cm and Cf isotopes. It can be seen
that the present PES calculation displays a relatively
high descriptive power. The rms (average) deviations of
the present PES, HN, FFL, HFB, ETFSI and CDFT re-
sults are 0.38 (0.26), 0.44 (0.28), 0.87 (0.48), 0.87 (0.45),
0.72 (0.34) and 0.32 (−0.16) MeV, respectively. It seems
that apart from the CDFT result, our calculation gives
the best description of experimental data. However, the
CDFT result is somewhat far from the other theoretical
calculations, and the very small average derivation may
originate from the fluctuation of the calculated values
above and below the zero line (the distribution of our
results is mostly above zero). In addition, our calcula-
tion gives a similar trend to the HN calculation but has
smaller rms and average deviations. All these facts make
us confident of the validity of our approach and of our
investigation of the impact of triaxiality on the fission
barrier.

Taking the above facts into account, systematic mul-
tidimensional PES calculations for 95 transuranium nu-
clei (including 49 actinide and 46 superheavy members)
have been carried out, focusing on the influence of triax-
iality on the inner fission barrier. Figures 6 and 7 show
the calculated potential energy curves with and without
the triaxial deformation degree of freedom for these nu-
clei. Note that the selected 95 nuclei ranging from Pu
(Z=94) to Og (Z=118) isotopes, as seen in Figs. 6 and
7, have already been synthesized experimentally [4, 38–
40]. From these two figures, it is found that the ground
states of these nuclei are deformed and one can see the

Fig. 6. (color online) Similar to Fig. 1(b), calculated potential energy curves of 49 even-even actinide nuclei with
946Z6102. The solid black circles show the available data for the height of the inner fission barrier [9, 76], as
seen in Table 1.
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Fig. 7. (color online) The same as in Fig. 6 but for 46 even-even superheavy nuclei with 1046Z6118.

properties of the inner fission barriers including their
heights, widths and the evolution with various nucleon
numbers. Obviously, for the actinide nuclei triaxiality
has a considerable impact on the inner fission barriers
and makes the calculated barrier heights agree reason-
ably with available data. From the lower left to the up-
per right corner of Fig. 6, the triaxiality decreasing the
fission barrier widths gradually changes to reducing the
heights. The fission path has been strongly modified by
the triaxiality, which will lead to a significant reduction
of the penetration probability [86]. In the superheavy
region, as shown in Fig. 7, one can clearly see that the
situation is more complicated than in the case of the ac-
tinides. The barrier shape and the effect of triaxiality
in the lighter Rf and Sg isotopes are similar to those in
the heavier actinide nuclei. However, in other nuclei the
shapes of the fission barriers are rather different. For in-
stance, from the “south-west” to the “north-east” direc-
tion, the fission barrier becomes wider and wider until it
collapses in the intermediate section. Correspondingly,
the energy curve, especially the triaxial one, becomes
softer and softer (i.e., there is no easily recognizable sad-
dle point in the heavier Rf and Sg isotopes, Hs and Ds
isotopes) until the bimodal barriers appear, e.g., in the
FI, Lv and Og isotopes. The bimodal barriers which ap-
pear are strongly affected by the triaxiality, as seen in
Fig. 7.

In addition, in the MM calculation, besides a rel-
atively large and reasonable deformation space, the
isospin dependence of the spin-orbit coupling strength
and the nuclear surface diffuseness parameter has been
found to be an important factor in the accurate descrip-
tion of nuclear ground-state properties, especially for the
extreme isospin nuclei [87, 88]. Similarly, aside from the
fact that the inclusion of some critical deformation de-

grees of freedom may greatly decrease the fission barrier,
it was shown in our previous work that the adjustment of
the potential parameters (e.g., the strength of the spin-
orbit potential, λ, and the nuclear surface diffuseness, a)
can also affect the height of the fission barrier [34]. In
the present transuranium region (in particular the su-
perheavy region), it is certainly of interest to examine
to what extent the fission barrier will be affected by a
similar adjustment of the model parameters. To search
for high-isospin candidates far from decay stability, as a
reference, an empirical formula Z=A/(1.98+0.0155A2/3)
for the β-stability line is used here, which denotes the

Fig. 8. (color online) Similar to Fig. 1(b), but the
energy curves with adjusted surface diffuseness a
(a) and spin-orbit strength λ (b) for the selected
neutron-deficient nucleus 254Rf. All other poten-
tial parameters are identical with those of univer-
sal values. The red (blue) lines denote the po-
tential energy curves along the of axial (triaxial)
fission path.
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location of the maximum of the binding energy per nu-
cleon or the minimum of the Q-value for β-decay [89, 90].
With this in mind, we take the neutron-deficient super-
heavy 254Rf nucleus as an example to investigate the ef-
fects of the spin-orbit coupling strength and the nuclear
surface diffuseness on potential energy curves with and
without triaxiality, as shown in Fig. 8. The parameters
(a, λ) are slightly modified between a narrow domain on
the basis of the initial values (0.70, 36), namely the uni-
versal values, according to the isospin-dependent func-
tion relationship given in Ref. [87]. Of course, the in-
creased combination (0.73, 38) of the (a, λ) parameters
for protons is accordingly expected in this proton-rich
nucleus. One can see from Fig. 8 that the fission barrier
can be slightly raised, indicating that the correspond-
ing fission probability will increase to some extent. A
further test and improvement of model parameters, in-
cluding the macroscopic part, will be done in our future
work.

4 Summary

In summary, we have systematically presented the ax-
ial and triaxial fission barriers for 95 even-even transura-
nium nuclei ranging from 228Pu to 294Og. The calcula-
tions were carried out using the pairing self-consistent
potential energy surface approach with universal Woods-
Saxon parameter set in multidimensional (β2, γ, β4) de-
formation space with the inclusion of triaxial shape de-
gree of freedom. Our analysis shows that the main con-
tribution of the fission barrier originates from the mi-
croscopic energy, especially the shell correction, though
the pairing correction and macroscopic energy sometimes
play a rather important role. Relative to the axially

symmetric case, by allowing for triaxial deformation, the
height and/or width of the inner fission barrier may be
reduced considerably in most nuclei (e.g., more than 4
MeV in 252Cf), which will lead to a significant increase
of the penetration probability in the spontaneous fission
process. A systematic comparison of the present results
with experimentally determined fission barriers shows a
reasonable agreement (with rms deviation of 0.38 MeV)
in the available actinide nuclei. Calculated energy curves
with and without triaxial deformation in the actinide and
superheavy regions indicate the influence of triaxiality
on not only the heights but also the widths of the fission
barriers with increasing nucleon number. Similar to mass
calculations, it seems that to ensure the right fission bar-
riers without unnecessary loss of CPU time, the selection
of suitable deformation space is important, since missing
any critical deformation degree of freedom may result
in an overestimation of the calculated barriers. How-
ever, the underestimation of the theoretical calculations
may be attributed to the choice of the potential param-
eters to some extent. For instance, the adjustment of
the strength of spin-orbit coupling and the surface dif-
fuseness will increase the height of the fission barrier.
Therefore, besides the macroscopic energy, the perfect
combination of the deformation space and potential pa-
rameter set will be a critical condition to guarantee good
fission barriers in such phenomenological nuclear mean-
field calculations. This systematic investigation should
be helpful to test and develop the model in future as
well as to understand and predict the fission properties
in the even-even transuranium nuclei synthesized so far.
A similar formulation for dynamic fission barriers is cur-
rently under way by including the Coriolis effect in the
model Hamiltonian.
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17 P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson,
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27 Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Phys.

Rev. C, 81: 064321 (2010)
28 P. Ring, H. Abusara, A. V. Afanasjev, G. A. Lalazissis, T.
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70 P. Möller and J. R. Nix, Nucl. Phys. A, 536: 20 (1992)
71 G. Andersson, S. E. Larsson, G. Leander, P. Möller, S. G. Nils-
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78 J. Zhao, B. N. Lu, T. Niks̆ić, D. Vretenar, and S. G. Zhou,
Phys. Rev. C, 93: 044315 (2016)

79 B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data
Nucl. Data Tables, 107: 1 (2016)

80 A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C, 63:
034306 (2001)
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