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Abstract: We propose a strategy to access the qq̄ component of the ρ resonance in lattice QCD. Through a mixed

action formalism (overlap valence on domain wall sea), the energy of the qq̄ component is derived at different valence

quark masses, and shows a linear dependence on m2
π. The slope is determined to be c1=0.505(3)GeV−1, from which

the valence πρ sigma term is extracted to be σ
(val)
πρ = 9.82(6) MeV using the Feynman-Hellman theorem. At the

physical pion mass, the mass of the qq̄ component is interpolated to be mρ=775.9±6.0±1.8 MeV, which is close to

the ρ resonance mass. We also obtain the leptonic decay constant of the qq̄ component to be fρ−=208.5±5.5±0.9

MeV, which can be compared with the experimental value f exp
ρ ≈221 MeV through the relation f exp

ρ =
√

Zρfρ± , with

Zρ≈1.13 being the on-shell wavefunction renormalization of ρ owing to the ρ−π interaction. We emphasize that mρ

and fρ of the qq̄ component, which are obtained for the first time from QCD, can be taken as the input parameters

of ρ in effective field theory studies where ρ acts as a fundamental degree of freedom.
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1 Introduction

The vector meson ρ is a well-known hadron resonance
which appears in the I=1 and L=1 ππ system with the
resonance parameters mρ=775 MeV and Γρ=149 MeV.
On the other hand, ρ is assigned in the quark model to be
the I=1 member of the qq̄ vector meson nonet with mass
around 1 GeV. The connection between the resonance ρ
in experiments and the confined qq̄ quark model ρ was
established by Jaffe by introducing concepts such as or-
dinary and extraordinary hadrons [1]. In this picture,
qq̄ mesons, glueballs, and hybrids are ordinary mesons,
which decay into multi-hadron final states through the
creation of new quanta (qq̄ pairs or gluons) and develop
widths proportional to 1/Nc. In the large Nc limit, ordi-
nary mesons decouple and appear as bound states with
discrete energies, such that the Hilbert space is composed

of discretized bound states and multi-hadron continuum
states. In contrast, extraordinary hadrons show up as
resonances in hadron-hadron interactions but diminish
at large Nc. As far as the ρ meson is concerned, there is
a confined channel corresponding to the quark model ρ
and its excited states, as well as an open channel of ππ
scattering states. The coupling between both channels
results in the ρ resonance of an O(1/Nc) width. This ar-
gument coincides with the result of a chiral perturbation
theory study of ρ [2] which shows that while the ρ mass
keeps almost constant, the width decreases with increas-
ing Nc. This implies that ρ is a well-defined confined qq̄
state in the Nc→∞ limit.

Even though this picture cannot be tested experimen-
tally, since Nc=3 in the real world and ρ usually shows
up as a resonance, one can resort to the lattice QCD
formalism for the related investigation. On the finite
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Euclidean space-time lattice, the eigenstates of the QCD
Hamiltonian have a discrete spectrum. For the case of ρ,
if there exists a Hilbert space expanded by both the non-
interacting ππ states and confined qq̄ states, the QCD
eigenstates can be viewed as state vectors in this Hilbert
space. The last decade witnessed extensive lattice QCD
efforts on the ρ resonance from ππ scattering [3–10],
where the use of the qq̄ operator and ππ operators is re-
quired and the eigen energies are used to extract the reso-
nance parameters of ρ using Lüscher’s formalism [11]. In
addition to the great success in this direction, it is also
an interesting question whether the would-be confined
qq̄ ρ can be accessed directly through the full-QCD lat-
tice calculation. The major consideration is that one can
use an interpolation field operator which couples weakly
to ππ states but which couples almost exclusively to qq̄
confined states. We find that the Coulomb gauge fixed
wall-source qq̄ operator serves this goal. As such, we
can obtain the mass of the ρ bound state and its decay
constant, as well as the chiral behavior of these quanti-
ties. Phenomenologically, the properties of the confined
qq̄ state ρ may shed light on the intrinsic dynamics of the
ρ resonance. This strategy can be potentially extended
to the study of other resonances, such as the ∆ baryon,
K∗ resonance, and so on.

This paper is organized as follows. Section 2 presents
the derivation of the mπ dependence of the confined qq̄ ρ
mass and the relevant discussion. Section 3 is devoted to
the extraction of the leptonic decay constant of ρ. The
conclusions and a summary can be found in Section 4.

2 ρ meson mass

Gauge configurations of Nf = 2 + 1 domain-wall
fermions with large spatial volume and physical pion
mass have been generated by the RBC & UKQCD Col-
laborations [12]. This work is based on the 48I gauge
ensemble with lattice size L3×T=483×96 [12]. The lat-
tice spacing has been determined to be a−1 = 1.730(4)
GeV, such that the spatial extension of the lattice is
approximately La ∼ 5.5 fm. The light sea quark mass
is set to give the pion mass m(sea)

π
= 139.2(4) MeV.

For the valence quarks, we adopt the overlap fermion
action, which is another realization of chiral fermions
on the lattice. The low-energy constant ∆mix, which
measures the mismatch of the mixed valence and sea
pion masses between the domain-wall fermion and the
overlap fermion, is shown to be very small [13]. Since
the overlap fermion accommodates the multi-mass al-
gorithm and the eigenvectors are the same for different
quark masses, we use 1000 pairs of eigenvectors plus the
zero modes for deflation in calculating quark propaga-
tors for several masses on 45 configurations (see Ref. [14]
for details). The bare mass parameters are chosen as

am(val)
q = 0.00170,0.00240,0.00300,0.00455,0.00600 and

0.02030, which give a pion mass ranging from 114 to
371 MeV. In this way we can discern the chiral behav-
iors of the mass and the leptonic decay constant of the
ρ meson.

We first extract the decay constant of the pion ac-
cording to the partially conserved axial current relation

m2
π
fπ=(mu+md)〈0|ūγ5d|π〉, (1)

which is free of renormalization since the quark mass
renormalization constant Zm and the renormalization
constant ZP of the pseudoscalar density ūγ5d satisfy the
relation ZmZP =1 for overlap fermions. We obtain the
pion masses and π decay constants which are listed in
Table 1. Through a linear interpolation in m2

π
near the

physical pion mass mπ=139.5 MeV, we get fπ=131.3(6)
MeV, which agrees with the RBC & UKQCD result
fπ = 131.1(3) MeV on the same lattice and their final
theoretical prediction fπ = 130.2(9) MeV [12]. RBC
& UKQCD also calculate fπ on a larger lattice with a
smaller lattice spacing, a−1 = 2.359(7) GeV, with a re-
sult fπ = 130.9(4) MeV. Their fπ’s on the two lattices
imply very small finite a artifacts. This comparison can
be taken as a calibration of our formalism.

In the calculation of the two-point functions in the
ρ channel, the quark propagators are generated by spa-
tial wall-sources after the gauge configurations are fixed
to the Coulomb gauge first. This corresponds to using
the Coulomb gauge fixed wall-source operator for the
charged ρ,

O(w)
V,i (t)=

∑

y,z

ū(y,t)γid(z,t). (2)

In principle, this operator couples to all the eigenstates
of the lattice Hamiltonian, which can be taken as the
linear superpositions of ππ(I =1) scattering states and
the confined qq̄ states.

Table 1. Pion massesmπ, pion decay constants fπ,
and masses of ρ for different bare valence quark
masses.

am
(val)
q /MeV mπ/MeV fπ/MeV mρ/MeV

0.00170 114(2) 130.3(9) 773(7)

0.00240 135(2) 131.0(9) 775(6)

0.00300 149(2) 131.6(8) 779(6)

0.00455 182(2) ... 784(5)

0.00600 208(2) ... 789(5)

0.02030 371(1) ... 836(3)

For the sink operators of the vector, we use the spa-
tially extended operators OV,i(x,t;r) by splitting the
quark and antiquark field operators with different spatial
displacements r, namely, OV,i(x,t;r)=ū(x,t)γid(x+r,t).
Subsequently, the two-point functions C(t,r) with differ-
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ent spatial separation r are calculated as

C(r,t)=
1

3Nr

∑

x,i,|r|=r

〈0|OV,i(x,t;r)O
(w)†
V,i (0)|0〉, (3)

where Nr is the number of r’s that satisfy |r|=r.
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Fig. 1. (color online) The effective mass plateaus
of ρ at mπ = 208(2) MeV. The blue and black
points are from the correlation functions C(r =
0,t) and C(r = 4.58a,t), respectively. The red
points are from the mixed correlation function
Cmix(t)=C(0,t)+ωC(4.58a,t) with the mixing pa-
rameter ω = 10. The red band shows the fitted
mass in the time range t/a∈[3,13]. The blue line
and the black line are the energies of two non-
interacting pions 2Eπ with the momentum modes
pa=2π/L(0,0,±1) and pa=2π/L(0,±1,±1), re-
spectively.

The effective mass plateaus of C(r,t) with r = 0
(blue points) and r =

√
20a = 4.58a (black points) at

mπ=208(2) MeV are plotted in Fig. 1. It is seen that
the plateaus lie on top of each other in the large-time
range. The difference of the plateaus in the short-time
range shows the r-dependence of the contamination from
higher states. In order to reduce the excited-state con-
tamination, we linearly combine the two correlation func-
tions as Cmix(t) =C(0,t)+ωC(4.58a,t) with an optimal
mixing parameter ω≈10, by which we can get a very flat

effective mass plateau starting from t/a = 3, as shown
in the figure (red points). We fit Cmix(t) using a single-
exponential form in the time range t/a∈ [3,13] and get
mV a=0.456(4) (plotted as a red band), where the error
is statistical and is obtained through a jackknife analy-
sis. We also plot the two lowest ππ P -wave thresholds
2Eπ(001) = 614 MeV (shown in Fig. 1 as a blue line)
and 2Eπ(011) = 761 MeV (shown in Fig. 1 as a black
line) with the relative momenta pa=2π/L(0,0,±1) and
pa=2π/L(0,±1,±1), respectively. Since 2Eπ(001) is far
from the expected ρ mass, the corresponding ππ state
should mix little with ρ and therefore have an energy
close to 2Eπ(001), but we do not observe this state.

The disappearance of the ππ states can be tentatively
understood as follows. The wall-source operator O(w)

V,i (t)
can be re-expressed as

O(w)
V,i (t)=

∑

y,z

ū(y,t)γid(z,t)≡ ¯̂u(0,t)γid̂(0,t), (4)

where û(0,t) and d̂(0,t) are the Fourier transformed
quark fields in the momentum space with the spatial mo-
mentum q=0. Qualitatively in the picture of the non-
relativistic constituent quark model, the matrix element
〈0|¯̂u(0,t)γid̂(0,t)|ρ−〉 can be interpreted as the probabil-
ity amplitude of annihilating a zero-momentum anti-u
quark and a zero-momentum d quark in the ρ− state. If
the ρ− is at rest, then the average momenta of the con-
stituent quarks are zero. Thus there is no suppression
for this matrix element. However, for a P -wave π

−
π

0

scattering state, the two pions must have non-zero rela-
tive momentum. In the center-of-mass frame of the two
pions, let the momenta of π− and π0 be p and−p, respec-
tively. Then the average momenta of the anti-u quark in
π
− and the d quark in π0 are necessarily non-zero. There-

fore the matrix element 〈0|¯̂u(0,t)γid̂(0,t)|π−π0〉 will be
strongly suppressed. On the other hand, we assume the
qq̄ confined states and the non-interacting ππ states es-
tablish a complete state basis for the Hilbert space when
the ρ−ππ coupling is switched off. After inserting these
states, the correlation function Eq. (3) can be expressed
as

C(r,t) =
1

3Nr

∑

i,|r|=r

[

〈0|OV,i(0,t;r)|ρ−〉
1

2mρ−V
〈ρ−|O(w)†

V,i (0)|0〉

+
∑

p

〈0|OV,i(0,t;r)|π−(p)π0(−p)〉
(

1

2Eπ(p)V

)2

〈π−(p)π0(−p)|O(w)†
V,i (0)|0〉+...

]

, (5)

where V = L3a3 is the spatial volume of the lattice,
1/(2mρ−V ) comes from the nomalization of |ρ−〉, and
(1/(2Eπ(p)V ))2 comes from the ππ state |π−(p)π0(−p)〉.
So the contribution of ππ states has an additional 1/L3

suppression factor.

This discussion also applies to the ππ state near
the threshold 2Eπ(011) = 761 MeV. So we argue that
the plateau comes predominantly from the would-be qq̄
confined state instead of the corresponding scattering
state. In order to understand this theoretically, let us
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consider a two-state system composed of the qq̄ con-
fined state |ρ〉 and the non-interacting ππ state |ππ〉
with H0|ππ〉 = E1|ππ〉, H0|ρ〉 = E2|ρ〉, where H0 is
the Hamiltonian without coupling between ρ and ππ.
With the interaction of ρ and ππ included, the effective
Hamiltonian can be written as the following 2×2 ma-
trix in the representation space spanned by |ρ〉 and |ππ〉,

H=H0+HI=

(

E1 x

x E2

)

. Upon introducing the parame-

tersM= 1
2
(E1+E2) (we assume E2>E1), ∆=E2−E1 , and

δ=
√

1+4x2/∆2, the eigenvalues of H are E±=M±1
2
∆δ,

which satisfy H|α±〉=E±|α±〉 with |α±〉=a±|ππ〉+b±|ρ〉.
The explicit expressions of a± and b± are

(

a− b−

a+ b+

)

=
1√
2δ

(√
δ+1 −

√
δ−1√

δ−1
√
δ+1

)

. (6)

Subsequently, the Coulomb wall-source two-point func-
tion (note that the state normalization factor 1/2E has
been absorbed into the definition of |...〉, since 〈...|...〉=
1) can be expressed as

C(t) = 〈OP (t)O
+
W (0)〉

= 〈0|OP |α−〉〈α−|O+
W |0〉e−E−t

+〈0|OP |α+〉〈α+|O+
W |0〉e−E+t. (7)

Applying the relation 〈0|OW |ππ〉=0 and defining ZP =
〈0|OP |ρ〉 and ZW=〈0|OW |ρ〉, the above equation can be
rewritten as

C(t) = ZPZW (b2−e
−E−t+b2+e

−E+t)

= ZPZW e−(M+ 1
2
∆)t

[

1+
1

2
x2t2(1+O(∆t))

]

, (8)

where M+1
2
∆=E2 is exactly the mass of the qq̄ confined

state ρ (H0|ρ〉=E2|ρ〉) as defined before. One can also
estimate x as follows [15]. According to Fermi’s Golden
Rule, the partial decay width of ρ→ππ is expressed as
Γ = 2π〈x2〉ρ(E) (note that x = 〈ρ|HI |ππ〉), where the
angle bracket means the average over the spatial angle
with 〈x2〉= x2/3, and ρ(E) =L3kE/(16π2) is the spec-
tral density. Thus we have Γ = x2L3kE/(24π), which
gives an estimate ax ∼ 0.025 using the physical width
Γρ∼150 MeV and a−1=1.73 GeV. If one uses the single-
exponential function to fit the correlation function, the
contribution of the x2 term will give roughly ≤1% rela-
tive deviation from E2, which is much smaller than the
statistical errors and negligible. Thus we have argued
that the plateau corresponds to the mass of the qq̄ con-
fined state ρ

C(t)≈ZPZW e−E2t. (9)
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Fig. 2. (color online) The ρ mass mρ=775.9±6.0
MeV at the physical point is interpolated by
mρ(mπ)=mρ(0)+c1m

2
π [16]. The red band shows

the error of the interpolation. For comparison, the
experimental value of mρ=775 MeV is plotted as
the blue cross.

We follow a similar analysis procedure for the cor-
relation functions at other pion masses. The extracted
masses of ρ are listed in Table 1 and are also plotted in
Fig. 2 with respect to m2

π
, by which the chiral behavior

of mρ can be investigated. From Fig. 2 it is seen that mρ

is very linear in m2
π
for mπ ranging from 114 MeV to 371

MeV. A correlated jackknife analysis using the form [16]

mρ(mπ)=mρ(0)+c1m
2
π
, (10)

gives mρ(0)=766(7) MeV and c1=0.505(3)GeV−1 with
χ2/d.o.f = 0.13. The ρ mass at the physical mπ is
mρ=775.9±6.0±1.8 MeV, where the second error is due
to the 0.23% uncertainty of the lattice spacing. Our data
cannot discern higher order terms in mπ. We would like
to point out that our study is the first to be carried out
in the chiral region around the physical point and with
chiral fermions, although there have been many lattice
studies on this topic [17–20]. We note that c1 is pre-
cisely determined, and potentially serves as a constraint
on the chiral perturbation study of ρ. Furthermore,
c1 is exactly the valence or connected insertion part of
the πρ sigma term from the Feynman-Hellman theorem
σ(val)
πρ

=m2
π
dmρ/dm

2
π
=c1m

2
π
, since the sea is fixed in our

partially quenched calculation of mρ. From the fitted c1
in Eq. (10), we find σ(val)

πρ
=9.82(6) MeV. One can deter-

mine the disconnected part from a direct calculation of
the mψ̄ψ matrix element in the disconnected three-point
correlator.

3 Leptonic decay constant of the ρ me-

son

The calculation of the decay constant of the charged
ρ is straightforward [15, 21–25]. For the charged ρ, for
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example, ρ−, fρ− is defined by

〈0|J (−)
µ (0)|ρ−(~p,ζ)〉=mρfρ−εµ(~p,ζ), (11)

where J (−)
µ (x)=(ūγµd)(x) is the charged vector current

and εµ(~p,ζ) is the ζ-th polarization vector of ρ− with
ζ=1,2,3. The spatial components of J (−)

µ (x) are actually
the operators OV,i(x;r=0); therefore, the matrix element
defined in Eq. (11) can be extracted from C(r=0,t). The
key challenge is to divide out the matrix element of the
wall source operator 〈0|O(w)

V,i |V (~p,ζ)〉. Usually this ma-
trix element can be derived by calculating the wall-wall
correlation function

C(w)(t) ≡
∑

r

NrC(r,t)=
1

3

∑

i

〈0|O(w)
V,i (t)O

(w),†
V,i (0)|0〉

=
1

3

∑

x,r,i

〈0|OV,i(x,t;r)O
(w),†
V,i (0)|0〉, (12)

where the last equation uses the definition of C(r,t) in
Eq. (3).

However, very large statistics are required to ob-
tain a satisfactory signal-to-noise ratio for this kind
of correlation function. The reason for noisy C (w)(t)
is explained as follows. Using the spectral expression
C(r,t)=

∑

i

Φn(r)e
−Ent, when t→∞ one has

C(w)(t) ≈
∑

r

NrΦ1(r)e
−E1t. (13)

In practice, we calculate C(r,t) for r ranging from 0 to
10a and observe the profile of Φ1(r) for t=7a where all
C(r,t) are almost saturated by the ground state. The
Φ1(r) at mπ=208(2) MeV (normalized as Φ1(0)=1) is
plotted in Fig. 3 as red points. It is seen that Φ1(r)
damps rapidly with r and can be parameterized as

Φ1(r)=Φ1(0)e
−
(

r

r0

)

b

, (14)

with the parameters b=1.60 and r0=5.88a. The curve
illustrates this parameterization in the figure.

We have checked this at other pion masses and find
Φ1(r) is similar for all the cases and is very insensitive to
mπ. This means that when calculating the wall-to-wall
correlation function C(w)(t), the C(r,t)’s (see Eq. (12))
with very large r contribute only noise and make C (w)(t)
very noisy. In order to circumvent this difficulty, we
introduce a cutoff rc to exclude the contributions of
C(r,t)’s with r > rc from C(w)(t), and use the correla-
tion function [26]

C(w)(rc,t)=
∑

r≤rc

NrC(r,t), (15)

to approximate C(w)(t). Letting I1(r
′) =

∫ r′

0
drr2Φ1(r),

one can see that the ratio C(w)(rc,t)/C
(w)(t) can be de-

picted by the ratio I1(rc)/I1(∞) at large t. The ratio
I1(rc)/I1(∞) using the parameterization above is also

plotted in Fig. 3. It approaches 1 beyond rc =15a and
is equal to 0.995 at rc =20a, whose deviation from 1 is
already much smaller than the statistical error. So we
take C(w)(20a,t) as a satisfactory approximation of C (w)

throughout this work.
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Fig. 3. (color online) The red points show Φi(r),
showing a fall-off of C(r,t) when r increases. The
parameterization of Φ1(r) is plotted by the curve.
The blue points are the ratios I1(rc)/I(∞) at dif-
ferent rc.

Using these parameters, the theoretical ratio
C(w)(rc,t)/C

(w)(t) deviates from 1 by roughly 0.5% at
rc=20a in the time range where the ground state dom-
inates, which is much smaller that the relative error of
C(w)(rc,t). So we take rc=20a in practice. With this pre-
scription, we jointly fit the following functions to extract
the decay constant,

C(0,t) =
∑

n

2mnL
3fnZ

(w)
n e−mnt,

C(w)(20a,t) ≈
∑

n

2mnL
3(Z(w)

n )2e−mnt, (16)

where Z(w)
n is the matrix element of the wall source op-

erator between the vacuum and the n-th state, and fn
is the decay constant of the n-th state according to the
definition in Eq. (11). In practice, two exponentials are
used in the fit and f1 is taken as the bare decay constant
of ρ. (The second term is introduced to account for the
contamination of higher states.) Since f1 is sensitive to
the value of m1, we adopt the single-elimination jack-
knife analysis procedure as follows. On each jackknife
re-sampled ensemble, we first obtain the mass parame-
ter m1 from Cmix(t) defined previously, and then extract
f1 through a joint fit to Eq. (16) with m1 fixed. After
that, we quote the jackknife error of f1 as the statistical
error.

In calculating the renormalization constant ZV of
the vector current, we use the relation ZV =ZA (ZA is
the renormalization constant of the axial vector current)
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since the overlap fermions obey exact chiral symmetry
on the lattice. Following the non-perturbative renormal-
ization procedure in Ref. [27], we calculate ZA from the
Ward identity for a few bare quark masses, which gives
ZA = 1.1045(8) in the chiral limit. ZA and the renor-
malized decay constant fρ at different mπ are listed in
Table 2. Figure 4 shows the chiral behavior of fρ, from
which we get

fρ±=208.5±5.5±0.9 MeV (17)

through a linear interpolation inm2
π
in the neighborhood

of the physical pion mass, or specifically, in the range
m2

π
∈ [0.012,0.044]GeV2. We do not include the result

at mπ=0.371 GeV for the interpolation since the linear
fit in m2

π
is invalid at this mπ. The first error is statis-

tical and the second is the combined uncertainty of ZV ,
the scale parameter a−1, and the approximated wall-wall
correlation function.

Table 2. The renormalization constant ZA ob-
tained at different pion masses, which also gives
ZV by the relation ZA=ZV for overlap fermions.
The renormalized decay constants fρ are also
listed.

mπ/MeV ZA fρ/MeV

114(2) 1.103(4) 206(7)

135(2) 1.103(3) 208(7)

149(2) 1.104(2) 211(6)

182(2) 1.104(2) 215(5)

208(2) 1.105(1) 217(5)

371(1) 1.105(1) 223(3)

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.03  0.06  0.09  0.12  0.15

f ρ
(G

eV
)

mπ
2(GeV2)

fρ

Fig. 4. (color online) The decay constant fρ ob-
tained at different pion masses. The curve shows
the linear interpolation in terms of m2

π.

In τ decays, the branching fraction of the process
τ → ρ

−ντ is Bρ = 25.21(33)%, which results from sub-
tracting the 0.31(32)% non-ρ(770) contribution from the

τ → π
−
π

0ντ branching fraction 25.52(9)%) [28]. Bρ
gives f exp

ρ−
= 221.1±1.6 MeV when Γρ is taken into ac-

count. On the other hand, the partial decay width
Γ (ρ0→e+e−)=7.04(6) keV [28] gives f exp

ρ0 =221(1) MeV

if one takes the quark-model value Q̄2
ρ0 = 1/2 of ρ0 ef-

fective charge squared. f exp

ρ0 ≈f exp

ρ±
is the natural result

of the conservation of the vector current (CVC). The ex-
perimental values deviate from our prediction by roughly
6%. This discrepancy can be understood as follows. If
the qq̄ confined state ρ we have obtained is viewed as
the free (bare) ρ state, fρ is actually the transition am-
plitude of the free ρ to a gauge boson (W± for charged
ρ and photon for the neutral ρ). When the ρ−π inter-
action is switched on, according to the LSZ reduction
formula, the amplitude f exp

ρ
of the physical ρ is related

to fρ by f exp
ρ

=
√

Zρfρ with Zρ ≈ 1.13 [29] the on-shell
wave function renormalization coming from the ρ self-
energy. In other words, the 6% deviation from f exp

ρ
is

exactly described by
√

Zρ≈1.06.

4 Conclusion

To summarize, we argue that the qq̄ wall source oper-
ator in a fixed gauge can strongly suppress P -wave scat-
tering states such that the qq̄ component of an ordinary
meson, such as ρ, can be accessed in a lattice QCD study.
For the case of ρ, this qq̄ component can be taken as the
bare qq̄ confined state with a mass of mρ=775.9±6.0±1.8
MeV at the physical pion mass, which is almost the same
as the pole mass of the ρ resonance. This observation
reinforces the chiral perturbation theory study and the
so-called ordinary meson argument of the ρ resonance
that the ρ−π interaction does not shift the mass of ρ
much but contributes to its width. mρ is almost linear
in m2

π
and the slope c1 =0.505(3)GeV−1 also gives the

valence πρ sigma term, which gives σ(val)
πρ

=9.82(6) MeV
from the Feynman-Hellman theorem. We also extract
the leptonic decay constant of the bare ρ

± state to be
fρ± = 208.5±5.5±0.9 MeV at the physical mπ, whose
deviation from the experimental value f exp

ρ
≈ 221 MeV

is explained by f exp
ρ

=fρ±
√

Zρ with Zρ≈1.13 being the
on-shell wavefunction renormalization of ρ owing to the
ρ−π interaction. This study may shed new light on the
nature of the ρ resonance and also be helpful to under-
stand the properties of other hadron resonances.
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