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Two-neutron halo state of 15B around 3.48 MeV by
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Abstract: We investigate low-lying bound states of the neutron-rich nucleus 15B by assuming it is a three-body

system made of an inert core 13B and two valence neutrons. The three-body wave functions are obtained using the

Faddeev formalism. Special attention is paid to the excited state at 3.48(6) MeV observed in the 13C(14C,12N)15B

reaction, whose properties are less clear theoretically. In our three-body model, besides the ground state 3/2−1 , a

second 3/2−2 state is discovered at around 3.61 MeV, which might be identified with the excited state observed at

3.48(6) MeV. We study this 3/2−2 state in detail. It turns out to be a two-neutron halo state with a large matter

radius rm≈4.770 fm.

Keywords: two-neutron halo, boron isotopes, three-body system, Faddeev equation

PACS: 21.10.Gv, 21.45.-v DOI: 10.1088/1674-1137/42/6/064103

1 Introduction

Neutron-rich nuclei have attracted much attention in
the last few decades, and many novel structures are ex-
pected in these nuclei, such as neutron halos [1–4], Bor-
romean structures, Efimov-like systems [1], two-neutron
emissions [5], etc. In this article, we would like to study
the neutron-rich nucleus 15B theoretically. Although dis-
covered more than fifty years ago [6], it is fair to say
that the spectrum of 15B has not been thoroughly un-
derstood yet. Experimentally, 15B has been studied us-
ing the in-beam γ-spectroscopy technique [7] and multi-
nucleon transfer reactions [8]. Two bound excited states
at Ex=1.327, 2.734 MeV are observed in the γ-ray spec-
trum, and five excited states at Ex = 3.48(6), 4.90(6),
5.95(8), 7.63(8), 10.25(8) MeV in the 13C(14C,12N)15B
reaction, but the spins/parities of these states have not
been determined experimentally yet. Recently, there
have also been many effects made to measure reaction
cross sections for 13B, 14B, and 15B on different tar-
gets [9, 10]. On the theoretical side, at least four in-
fluential predictions can be found in the literature, in-
cluding three shell-model calculations [7, 11, 12] and
one antisymmetrized-molecular-dynamics (AMD) calcu-

lation [13]. In these theoretical studies, properties of the
excited state at Ex=3.48(6) MeV are less clear, and dif-
ferent models predict different energies and spin/parity
assignments.

In this article, we would like to help clarify the prop-
erties of the excited state at 3.48(6) MeV, which is just
beneath the two-neutron disintegration threshold and is
probably a three-body bound state. Thanks to the large
hierarchy between the neutron separation energies of 13B,
14B, and 15B, it is plausible that 15B could also be studied
using a three-body model made of an inert 13B core and
two valence neutrons. These neutron separation energies
can be found in Table 1, and indeed, we have

Sn(
15B),Sn(

14B)¿Sn(
13B). (1)

Similar hierarchical structures of nucleon separation en-
ergies can also be found in other three-body nuclei, such
as the two-neutron nuclei 6He, 11Li [14, 15], 12Be [16, 17],
14Be [18], 17B [19], 22C [20], 23N [21], and the two-proton
nuclei 17Ne [22, 23], 18Ne, 28S [24], etc, and are viewed
as clues of internal three-body structures. For other in-
teresting discussions on nuclear three-body systems, see,
for example, Refs. [25–28].
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The rest of this article is organized as follows. In Sec-
tion 2, we briefly review the Faddeev formalism that is
used to solve the three-body Schrödinger equation, and
introduce the corresponding interaction models. In Sec-
tion 3, we present the numerical results concerning the
two-body and three-body calculations. We end this ar-
ticle with conclusions in Section 4.

Table 1. Physical properties of 13B, 14B and 15B.
All energy scales are in units of MeV, and all
lengths are in units of fm. The experimental data
are taken from Ref. [29] unless otherwise noted.
Experimental errors are shown in brackets. Data
in square brackets are based on theoretical expec-
tations rather than experimental measurements.

AX Jπ T Sn S2n

13B 3/2− [3/2] 4.879(17) 8.248(10)
14B 2− [2] 0.970(21) 5.848(21)
15B 3/2− [30] [5/2] 2.780(3) 3.747(21)

2 Faddeev formalism and interaction

models

In the present work, we solve the three-body wave
functions using the Faddeev formalism proposed in
Ref. [31],

ΨJM=ΨJM
1 (x1,y1)+ΨJM

2 (x2,y2)+ΨJM
3 (x3,y3),

(T1+V3b−E)ΨJM
1 =−V23(Ψ

JM
1 +ΨJM

2 +ΨJM
3 ),

(T2+V3b−E)ΨJM
2 =−V13(Ψ

JM
1 +ΨJM

2 +ΨJM
3 ),

(T3+V3b−E)ΨJM
3 =−V12(Ψ

JM
1 +ΨJM

2 +ΨJM
3 ), (2)

with (xi,yi) one of the three Jacobi coordinate systems,

xi=
√

Ajkrjk, yi=
√

Ai,jkri,jk,

rjk=rj−rk, ri,jk=ri−(Ajrj+Akrk)/(Aj+Ak),

Ajk=AjAk/(Aj+Ak),

Ai,jk=(Aj+Ak)Ai/(Ai+Aj+Ak).

Ti=Txi+Tyi is the corresponding relative kinetic energy,
Vjk is the two-body interaction between clusters j and k,
and V3b is the three-body force introduced to take into
account all those effects that go beyond the two-body
interactions. The indices (i,j,k) take values in (1,2,3)
cyclically. The Faddeev equations Eq. (2) are solved by
first transforming from the Jacobi coordinate system to
the hyperspherical coordinate system

(xi,yi,sj ,sk,I)≡(xi,yi,Ωxi
,Ωyi

,sj ,sk,si)

=⇒(ρ,θi,Ωxi
,Ωyi

,sj ,sk,si)≡(ρ,Ω5i,sj ,sk,si),

with ρ2=x2
i+y2

i the hyperradius, and θi=arctan(xi/yi)
the hyperangle. (sj ,sk,si) are the spins. We then in-
troduce the hyperharmonic functions of (Ω5i,sj ,sk,si),

excluding only the dependence on ρ,

Y
LiSiJisi,JM
Kilxi

lyi
(Ω5i,sj ,sk,si)=ϕ

lxi
lyi

Ki
(θi)

{

(

[Ylxi
(Ωxi

)

⊗Ylyi
(Ωyi

)]Li
⊗
[

Xsj
⊗Xsk

]

Si

)

Ji
⊗Xsi

}

JM
,

with

ϕ
lxi

lyi

Ki
(θi)=N

lxi
lyi

Ki
(sinθi)

lxi (cosθi)
lyi

×P
lxi

+1/2,lyi
+1/2

ni (cos2θi).

Here, (lxi
,lyi

) are the orbital angular momenta.
Ylxi

mxi
(Ωxi

) and Xsi
are the spherical and spin harmon-

ics, respectively, with square brackets being the stan-
dard Clebsch-Gordan combination of two angular mo-

menta. P
lxi

+1/2,lyi
+1/2

ni (cos2θi) are the Jacobi polynomi-
als. Ki=lxi

+lyi
+2ni (ni=0,1,2,···) is the hyper-angular-

momentum. The normalization constant N
lxi

lyi

Ki
is given

by

N
lxi

lyi

Ki
=

[

2(Ki+2)Γ (Ki+2−ni)Γ (ni+1)

Γ (ni+lxi
+3/2)Γ (ni+lyi

+3/2)

]1/2

.

With the help of hyperharmonic functions, the Faddeev
components ΨJM

i could be rewritten as

ΨJM
i (xi,yi)=ρ−5/2

∑

lxi
lyi

LiSiJisi,Ki

X
LiSiJisiJ
i,Kilxi

lyi
(ρ)

×Y
LiSiJisi,JM
Kilxi

lyi
(Ω5i,sj ,sk,si). (3)

After inserting Eq. (3) into the Faddeev equations, one
obtains a set of coupled ordinary differential equations
for XLiSiJisiJ

i,Kilxi
lyi

(ρ), which can be solved using the modern
numerical algorithms for differential equations. We rec-
ommend Ref. [31] for a detailed discussion on the imple-
mentation of the Faddeev formalism including the three-
body forces.

To predict physical properties of 15B quantitatively,
we need to determine first the neutron-neutron and
neutron-core interaction models by fitting experimen-
tal data. Here, we assume that the 13B ground state
has the neutron configuration (0s1/2)

2(0p3/2)
4(0p1/2)

2.
The ground state, first and second excited states
of 14B are assumed to have the neutron config-
urations (0s1/2)

2 (0p3/2)
4 (0p1/2)

2 (1s1/2)
1, (0s1/2)

2

(0p3/2)
4(0p1/2)

2(1s1/2)
1, and (0s1/2)

2 (0p3/2)
4(0p1/2)

2

(0d5/2)
1, respectively, which are consistent with the

Nordheim weak rule for the odd-odd nuclei [32], as well
as the explicit shell-model calculations in Ref. [33]. No-
ticeably, the ground state and the first excited state of
14B are assumed to have the same neutron configuration,
and the splitting in their energies corresponds to the hy-
perfine structure resulting from the spin-spin interaction
between the 13B core and the valence neutron.

For the neutron-neutron interaction, we adopt the
Gogny-Pires-Tourreil (GPT) potential [34]. For the
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neutron-core interaction, we adopt a Gaussian form with
the spin-dependent interaction given by the Garrido-
Fedorov-Jensen (GFJ) ansatz [23, 35],

Vn-core(r)=exp(−r2/b2)(VC+VSOL·sn+VSSJn·sc), (4)

with L the orbital angular momentum, sn the spin of
the valence neutron, sc the spin of the 13B core, and
Jn = sn+L. Naively, there could be other choices for
spin-dependent interactions, like

VSSsn·sc+VSOn
L·sn+VSOc

L·sc,

VSSsn·sc+VSOL·(sn+sc),

VSSsn·sc+VSOL·sn, etc.

However, Ref. [35] shows that choices different from
Eq. (4) would probably lead to wrong predictions for
the excited states, even if the ground-state properties
are forced to be reproduced exactly.

Table 2. Interaction parameters for the neutron-
core interaction used in this work. All lengths are
in units of fm, while all energies are in units of
MeV.

parameter b VC V
(l6=2)
SO V

(l=2)
SO VSS

value 2.28 −87.4 −13.65 −27.165 −3

Table 3. Three-body interaction parameter sets
used in this work, with all lengths in units of fm,
and all energies in units of MeV.

parameter V3BA V3BB V3BC

r3B 4.0 5.0 6.0

V3B -5.69 -3.44 -2.54

The free parameters b, VC, VSO, and VSS in Eq. (4) are
determined by reproducing the following conditions: the
root mean square (RMS) radius of 13B r0 =1.23A1/3 =
2.89 fm; the ground state 2− of 14B with the valence
neutron in the 1s1/2 orbit has the energy ε[1s1/2(2

−)]=
−0.970 MeV, beneath the 13B+n threshold [29]; the first
excited state 1− of 14B with the valence neutron in the
1s1/2 orbit has the energy of ε[1s1/2(1

−)]=−0.316 MeV,
beneath the 13B+n threshold [36]; the last neutron in the
13B ground state 3/2− occupies the 0p1/2 orbit, and its
energy can be estimated by the neutron separation en-
ergy of 13B, i.e., ε[0p1/2(1

−)]=−4.879 MeV [29]; and the
excited state 3− of 14B with the valence neutron in the
0d5/2 orbit has the resonance energy ε[0d5/2(3

−)]=0.41
MeV, above the 13B+n threshold [29]. The values of b,
VC, VSO, and VSS determined thereby are summarized in
Table 2. We also need to introduce a three-body interac-
tion of Gaussian type to account for deviations between
computed results with only bare two-body interactions
and experimental data, as well as to simulate the effects

of core deformations and/or core excitations [17],

V3b(ρ)=V3B exp

[

−

(

ρ

r3B

)2
]

. (5)

Explicitly, three three-body interaction parameter sets
are considered in this work (see Table 3).

3 Numerical results

Numerical results for the two-body and three-body
calculations are discussed as follows. With the interac-
tion parameters in Table 3, the RMS matter radii and
single-particle energies of various 13B and 14B states can
be found in Table 4. The valence-neutron radius and the
total matter radius of the 14B ground state are given by
rn = 5.51 fm and rm[1s1/2(2

−)] = 3.14 fm, respectively.
The matter radius turns out to be a bit larger than the
naive estimation r0=1.23A1/3=2.94 fm, revealing the ex-
istence of a neutron halo in the 14B ground state. Sim-
ilar arguments can also be applied to the first excited
state 2−. The density distributions of the valence neu-
tron in various 13B and 14B states are shown in Fig. 1.
The resonance state 3− of 14B is located by calculating
the two-body scattering process of the valence neutron
and 13B and determining its resonant peak in the energy
curve (see Fig. 2).

Table 4. RMS matter radii and energies of various
states in 13B and 14B obtained by parameters in
Table 2, with all lengths in units of fm, and all en-
ergies in units of MeV. rm(

14B)≡rm[1s1/2(2
−)] is

the RMS matter radius for the 13B ground state,
while rm(

13B)≡rm[0p1/2(1
−)] is the RMS matter

radius for the 14B ground state.

rm(13B) rm(14B) rm[1s1/2(1−)]

2.88 3.14 3.51

ε[0p1/2(1−)] ε[1s1/2(2−)] ε[1s1/2(1−)] ε[0d5/2(3−)]

−4.919 −0.917 −0.316 0.410

In the three-body calculation of 15B, one has to first
carry out the so-called Pauli blocking procedure to re-
move the deeply bound states of the neutron-core two-
body interaction, which are assumed to be occupied by
core neutrons in 13B already. This is done through a su-
persymmetry transformation [37–39]. In our calculation,
we use the hyperspherical harmonics expansion heavily,
and it is important to check its convergence. The trun-
cation of the hyperspherical harmonics expansion is con-
trolled by the hypermomentum K. In Fig. 3, we show
the convergence of the 15B ground state energy Egs in
the three-body interaction parameter set V3BA as Kmax

increases. The V3BB and V3BC parameter sets show
similar convergence behavior and are not discussed ex-
plicitly here. One can see intuitively that for Kmax∼20,
hyperspherical harmonics expansion already shows good
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convergence for the ground-state energy. A similar check
has also been carried out for the 3/2

−

2 state. We find
that the energy of the 3/2−2 state decreases gradually as
Kmax increases, affected a bit more significantly by the
K truncation compared with the ground-state energy.
Therefore, in our calculation, we take Kmax = 22 to do
our best to relieve the impact of the K truncation, which
is also consistent with other calculations on core+n+n
systems (see, e.g., Refs. [16, 21]).

core neutron

ground- state valence neutron

excited- state valence neutron

0 1 2 3 4 5 6
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Fig. 1. (color online) The density distribution of
neutrons in the subsystem 14B. The blue curve
is the density distribution of the core neutron in
13B and the orange and green curves are the neu-
tron density distributions of the valence neutron
in the ground state and first excited state of 14B,
respectively.
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Fig. 2. (color online) Two-body cross section of the
valence neutron and 13B as a function of the two-
body total energy ε. The resonance state 3− cor-
responds to the peak in the energy curve.

We calculate the energies of the ground state 3/2
−

1

and the excited state 3/2−2 (with respect to the n+13B
threshold), along with their RMS matter radii, using the
two-body and three-body interaction models in Tables 2
and 3. The results are listed in Table 5 with all energies
given with respect to the 13B+n+n threshold, and are
numerically close to each other, revealing encouraging ro-
bustness of our predictions. The three-body interaction

parameter sets in Table 3 are chosen to reproduce the
ground state energy of 15B Egs =−3.747 MeV exactly.
The RMS radius of the ground state 3/2−1 is found to
be about 3.085∼3.104 fm, corresponding to the size of a
stable nucleus with A≈16. In other words, the ground
state 3/2−1 is not a halo nucleus, which is consistent with
the large two-neutron separation energy. To explic-
itly see the effects of the three-body interaction, we also
do the calculation by switching off the three-body inter-
action for comparison, and find that, in this case, the
ground-state energy turns out to be −2.696 MeV. This
shows that the three-body interaction indeed plays an
important role in our calculations.

5 10 15 20
- 4.5

- 4.0

- 3.5

- 3.0

- 2.5

Kmax

E
g
s

(M
e
V

)

Fig. 3. Convergence of the 15B ground state en-
ergy as a function of the maximum K value in
the hyperspherical harmonics expansion.

Table 5. Energies and RMS radii of the ground
state 3/2−1 and the excited state 3/2−2 , calcu-
lated with three different three-body interaction
parameter sets. Quantities with ∗ correspond to
the excited state. All energies are in units of MeV,
while all lengths are in units of fm.

Egs rm E∗ r∗m
V3BA −3.7475 3.085 −0.1293 4.770

V3BB −3.7470 3.095 −0.1320 4.763

V3BC −3.7465 3.104 −0.1481 4.739

Exp. −3.747(21) − −0.267(64) −

The excited state 3/2−2 , on the other hand, is quite
interesting. First, its excitation energy is about E∗ =
3.598 ∼ 3.615 MeV, which is energetically close to the
third excited state observed experimentally at Ex =
3.48(6) MeV. It is thus plausible to identify these two
states. This identification is consistent with the WBT
and WBT∗ shell model calculations, which predict that
the third excited state has spin/parity 3/2− as well. The
tiny difference between our three-body calculation and
the experimental measurement may be a result of unre-
solved experimental errors or theoretical defects in model
building. In the following discussions, for simplicity, we
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shall ignore the difference between theoretical predictions
and experimental measurements.

Second, the tiny energy and the large RMS matter ra-
dius of the 3/2

−

2 state indicate that it has a two-neutron
halo. Indeed, the matter radius r∗m ≈ 4.763 fm corre-
sponds to the size of a stable nucleus with A≈58.

To illustrate the inner structure of the 3/2−2 state fur-
ther, we calculate the RMS distance between two valence
neutrons and that between the 13B core and the center
of mass of the valence neutron pair, denoted by rnn and
rc,nn, respectively. The numerical results can be found in

Table 6. It is interesting to note that rnn

rc,nn

≈
r∗
nn

r∗
c,nn

≈1.86.

Table 6. RMS distances between two valence neu-
trons rnn and from the 13B core to the valence
neutron pair rc,nn in the 15B ground state 3/2−1
and the excited state 3/2−2 . Quantities for the
excited state are superscribed by an extra ∗. All
lengths are in units of fm.

rnn rc,nn r∗nn r∗c,nn

V3BA 5.86 3.15 15.26 8.20

V3BB 5.94 3.19 15.23 8.18

V3BC 6.00 3.23 15.12 8.12

Fig. 4. (color online) Spatial distribution of two
valence neutrons in the ground state 3/2−1 of
15B with the three-body interaction parameter set
V3BA.

The spatial distributions of the valence neutrons can
be calculated by

P (rnn,rc,nn)≡r
2
nnr

2
c,nn

×

∫

∣

∣ΨJM(rnn,rc,nn)
∣

∣

2
dΩ

rnn
dΩ

rc,nn
,

which are displayed pictorially in Figs. 4 and 5 with
the three-body interaction parameter set V3BA. For

the ground state 3/2
−

1 , the spatial distribution function
P (rnn,rc,nn) is peaked at around (rnn,rc,nn) = (4.4,2.4)
fm, while for the excited state 3/2

−

2 , P (r∗nn,r
∗
c,nn) has a

global maximum at around (12.5,6.7) fm, as well as a
secondary maximum at around (4.1,2.2) fm. The domi-
nant occupation probabilities of valence neutrons for the
ground state and 3/2−2 excited state are given in Table
7, with three different three-body interaction parameter
sets. Once again, one observes excellent convergence of
numerical results among different interaction parameter
sets.

Fig. 5. (color online) Spatial distribution of two
valence neutrons in the excited state 3/2−2 of
15B with the three-body interaction parameter set
V3BA.

Table 7. Dominant occupation probabilities of va-
lence neutrons for the ground state and 3/2−2 ex-
cited state of 15B, calculated using three different
three-body interaction parameter sets.

3/2−1 V3BA V3BB V3BC

(1s1/2)2 96.10% 96.25% 96.28%

(0d5/2)2 2.10% 2.01% 1.98%

(0d3/2)2 1.40% 1.33% 1.32%

3/2−2 V3BA V3BB V3BC

(1s1/2)2 86.32% 86.32% 86.36%

(0d5/2)2 7.23% 7.23% 7.21%

(0d3/2)2 4.82% 4.82% 4.81%

4 Conclusions

In summary, in this article we investigate the low-
lying bound states of 15B by assuming it is a three-body
system made of an inert 13B core and two valence neu-
trons. It is plausible to identify the excited state 3/2−2
appearing in our model with the experimentally observed
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excited state at Ex=3.48(6) MeV. Such an identification
is also consistent with the WBT and WBT∗ shell model
calculations. We then study in detail the properties of
the ground state 3/2−1 and the excited state 3/2−2 , cal-
culating their energies with respect to the three-body
disintegration threshold, RMS matter radii, wave func-
tions, occupation probabilities, etc. Our calculations are
carried out with three different three-body parameter
sets, and numerical predictions show excellent conver-

gence behavior. It is found that unlike the ground state
3/2−1 , the excited state 3/2−2 has a giant two-neutron halo
with the matter radius comparable to the size of a stable
nucleus with A≈58. These results might be helpful for
deepening our understanding of dripline phenomenology.

D. B. would like to thank Huabin Cai, Daming Deng,

Bin Hong, Songju Lei, Hao Lu, Wan Niu, Xin-xing Shi

and Xin Zhang for discussions.
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