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1 Introduction

The matter bounce scenario is an alternative to infla-
tion that fulfills the same observational constraints, but
carries definite novel predictions about CMB observables
to be measured in forthcoming experiments. In this re-
gard the matter bounce scenario is distinguishable from
inflation. Scale-invariant perturbations are generated in
a contracting cosmology, which is then thought to be con-
nected to the current phase of expansion of the universe
thanks to the emergence of a non-singular bounce in the
dynamics. This is the theoretical peculiarity of matter
bounce models with respect to inflationary models, as
the cosmological singularity is solved, and completeness
of geodesics is restored.

Cosmological perturbations are also dealt with pecu-
liarly in each of these frameworks. In inflation the differ-
ent dynamical evolutions of the causal horizon and Hub-
ble horizon are at the origin of the generation of scale-
invariant Fourier modes that reenter the horizon. In the
matter bounce scenario it is during the phase of matter-
dominated contraction that Fourier modes of the co-
moving curvature perturbation become scale-invariant.

For a detailed introduction to the generation of scale-
invariant perturbations we refer to Ref. [1], while for a
recent review on the status of matter bounce cosmologies
we refer to Ref. [2].

Similarly to inflation, simple realizations of the mat-
ter bounce scenario have been developed that deploy
scalar matter fields, whose potentials are chosen ad
hoc so as to reproduce a vanishing pressure during the
matter-dominated phase of contraction of the universe
[3]. Differently from inflation, observations allow us to
rule out the matter bounce scenario with a single scalar
field [4]. Indeed, single scalar field matter bounce mod-
els predict an exactly scale-invariant spectrum, while the
actual observed spectrum has a slight red tilt with a spec-
tral index of ns=0.968±0.006 (65%) [5], and a tensor-to-
scalar ratio r significantly larger than the value allowed
by the observational bound r<0.12 (95%) [6].

Nonetheless, there are few instantiations of the mat-
ter bounce scenario that predict a slight red tilt in the
spectrum of scalar perturbations and fulfill the con-
straints on the tensor-to-scalar ratio [7–9]. The mecha-
nisms that are usually considered for this purpose hinge
on the inclusion of additional matter fields [3, 10], on the
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choice of a matter field that has a small sound speed (so
as to enhance the amplitude of vacuum fluctuations) [8],
and finally on the suppression of the tensor-to-scalar ra-
tio during the bounce, that is explained due to quantum
gravity effects [11].

Here we will follow a different theoretical perspective,
closer to the intuition developed in particle physics. In-
deed, we intend not to deploy exotic matter fields, or
matter fields that have not been observed yet in terres-
trial experiments, and not to resort to quantum gravity
effects, extending our framework up to the Planck scale.
In a more conservative fashion we rather consider here
matter fields that belong to the Standard Model (SM) of
particle physics, and that correspond to the simplest and
most conservative extensions of it, so as to encode dark
matter in the picture we will develop. And following
the particle-physics intuition that a definite energy scale
will correspond to definite physical degrees of freedom,
we assume as in Ref. [9] that both the energy scale and
the matter content of the universe during its contracting
phase are comparable to that of the present universe,
which brings us to consider the importance of dark mat-
ter during the pre-bounce matter phase contraction of
the Universe.

We wish to remark that bouncing cosmologies involv-
ing dark matter (and dark energy) have recently received
much attention in the literature, and that distinctive and
falsifiable predictions on CMB observables have been de-
rived that will be tested in the near future [9, 12–18] (for
a recent review see also Ref. [19]). With respect to this
vast literature the gist of our proposal relies on the de-
ployment of fermionic matter fields.

Specifically, we develop here a toy model in which
both matter and dark matter are described by fermionic
fields, the dynamics of which are governed by the Dirac
action on curved space time, and a four-fermion inter-
action term. The latter term is actually due to the res-
olution of the torsional components of the gravitational
connection with respect to fermionic bilinears, and must
be accounted for in the first order formalism. We then
implement a curvaton mechanism, in which the fermion
field with lighter mass is responsible for the generation
of almost scale-invariant curvature perturbation modes,
and the heavy mass field drives the dynamics of the back-
ground. We then argue that while the light fermion field
can be assumed to be a neutrino, the heavy fermion
field can be related to the sterile neutrino, and hence
by decaying into the lighter neutrinos can accommodate
baryogenesis through leptogenesis.

We start in Section 2 by differentiating our approach
from the many others present within the literature. In
Section 3 we then review the instantiation of the mat-
ter bounce mechanism that deploys one fermionic field,
which from now on we will call Fermi bounce cosmology.

In Section 4 we review the curvaton mechanism for a
Fermi bounce cosmology that accounts for two fermionic
species. In Section 5 we deepen the phenomenological
consequences that can be derived for CMB observables,
and comment on the falsifiability of this scenario with re-
spect to the introduction of dark matter. In Section 6 we
study the application of this curvaton model to leptoge-
nesis, and comment on the phenomenological constraints
that can be inferred from the data. Finally, in Section 7
we consider some outlooks and conclusions.

2 The matter bounce scenario

It is nowadays common knowledge that FLRW met-
rics suffer from singularities in all the curvature invari-
ants. It was already remarked by Hawking and Pen-
rose [20] that the initial singularity is unavoidable if
space-time is described by General Relativity and mat-
ter undergoes null energy conditions (NEC). Many non-
singular bouncing cosmologies have since been developed
in order to solve the Big Bang singularity issue, but at
the cost of dismissing some of the assumptions behind
the Hawking-Penrose theorem, most notably NEC.

Bouncing mechanisms can be implemented within
frameworks very different from one another. A complete
review, comprehensive of all the bouncing models devel-
oped hitherto, would be too long to give in this paper,
turning far from our current purpose of focusing on a
model of bounce cosmology that accounts for dark mat-
ter and only involves fermionic matter fields. Nonethe-
less, before focusing on fermionic matter bounce models
and their instantiations able to encode dark matter, we
wish to briefly survey the landscape offered within the
literature, and highlight some paradigmatic cases that
have received much attention.

The bouncing behavior of the universe at early time
can be reconstructed from high-energy theory corrections
to the effective equation of motion of the gravitational
field. It is then worth mentioning that quantum the-
ories of gravity, as well as effective models inspired by
the problem of quantum gravity, have driven many au-
thors to efforts in this sector. For this purpose, a charac-
terization of the bouncing mechanisms inspired by loop
quantum gravity and its cosmological applications —
loop quantum cosmology — has been outlined in detailed
analyses [7, 21].

On the other side, there exists a flourishing literature
that takes into account bouncing models from the point
of view of string theory, for a complete review of which
we refer to Refs. [22–24] as preliminary introductions.
The so called Hořava-Lifshitz proposal can also achieve
a bouncing phase for early time cosmology, as empha-
sized in Ref. [25], while the contiguity of the bouncing
scenario of f(R) and Gauss-Bonnet theories can be read
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out respectively from Refs. [26] and [27].
Nevertheless, the bouncing scenario does not neces-

sarily require (quantum) gravitational corrections to the
energy density, but instead many studies deploy fields
that violate the null energy condition in order to achieve
the bounce. Among many examples that can be pointed
out, we may cite the ghost condensate scenario [28], the
so-called Fermi bounce mechanism [30, 31], and the Lee-
Wick theory [32]. Because of their peculiarity of result-
ing from known theories of particle physics, which have
been corroborated on the flat gravitational background
by means of high-energy terrestrial experiments, we will
focus in the next section on the Fermi bounce models.

3 One-field Fermi bounce cosmology

The action for the matter-gravity sector under
scrutiny results from the sum of the gravitational
Einstein-Hilbert action, further endowed with a topolog-
ical term à la Holst, plus a non-minimal covariant Dirac
action. Following previous literature [33], we refer to this
theory as the Einstein-Cartan-Holst-Sciama-Kibble the-
ory (ECHSK). In the first order formalism, when gravity
is coupled to fermion fields, we must allow for a tor-
sionful part of the spin-connection. Thus the ECHSK
theory is necessarily a theory of gravity with torsionful
connection [34]. Nonetheless, a second order approach
is always possible [35], which adopts a torsionless (Levi-
Civita) connection ω̃[e], and thus differs from the former
first order treatment in that a four-fermion interaction
term emerges. Notice however that the action written,
no matter if cast in terms of a torsionful or Levi-Civita
connection, is invariant under diffeomorphisms and local
Lorentz transformations.

From now on we will focus on the ECHSK theory,
which in the first order formalism reads

SHolst=
1

2κ

∫

M

d4x|e|eµI eνJP IJ
KLF

KL
µν (ω),

in which

F IJ
µν (ω)=dωIJ+ωIL∧ω J

L

is the field-strength of ωIJ , the Lorentz spin-connection,
κ=8πGN is the square of the reduced Planck length, and

P IJ
KL=δ

[I
Kδ

J]
L −

1

2γ
εIJKL

involves the Levi-Civita symbol εIJKL and the Barbero–
Immirzi parameter γ. The Dirac action reads SDirac =
1
2

∫
d4x|e|LDirac, in which

LDirac=
1

2

[
ψγIeµI

(
1− ı

α
γ5

)
ı∇µψ−mψψ

]
+h.c.,

α∈R representing the non-minimal coupling parameter.
The crucial observation [36, 37] is that the torsionful
part of the spin-connection can be integrated out of the

ECHSK action via the Cartan equation (see e.g. [38]),
which is instead recovered by varying the ECHSK ac-
tion with respect to the spin-connection ωIJ . One fi-
nally finds that the total action STot=SEH+SDirac+SInt
in which the Einstein-Hilbert action SEH and the Dirac
action SDirac are cast in terms of metric compatible vari-
ables, and an additional term SInt is present, which en-
codes a four-fermion interaction potential. Specifically,
the Einstein-Hilbert action, in terms of the metric com-
patible variables ω̃(e)IJ , reads

SEH=
1

2κ

∫

M

d4x|e|eµI eνJRIJµν ,

while the Dirac action SDirac on curved space-time, once
the covariant derivative with respect to the torsionless
connection has been denoted with ∇̃µ, is recast as

SDirac=
1

2

∫

M

d4x|e|
(
ψγIeµI ı∇̃µψ−mψψ

)
+h.c..

The interaction four-fermion potential is

SInt=−ξκ
∫

M

d4x|e|JL5 JM5 ηLM ,

in which the we have used the definition of the axial cur-
rent JL5 = ψγ5γ

Lψ, and introduced a function ξ of the
real parameters α and γ, namely

ξ :=
3

16

γ2

γ2+1

(
1+

2

αγ
− 1

α2

)
.

Notice that the sign of ξ is crucial while discussing the
physical applications in cosmology of the ECHSK action.
For instance, a positive value of ξ corresponds to a cos-
mological Fermi liquid scenario in which the repulsive
potential is sustaining an accelerated phase of expan-
sion of the Universe [39]. Conversely, a negative value of
ξ provides a violation of NEC, and hence determines a
bounce in cosmological [30, 31] or astrophysical scenarios
— for instance in Ref. [38] it was shown that for a suit-
able choice of the parameter space region of the theory,
black holes may never form.

It is worth commenting on the most common objec-
tion against this type of model, which concerns the even-
tual appearance of instabilities. For instance, it has been
shown in Ref. [40] that some scalar field actions that vi-
olate NEC might hold ghost and/or tachyonic instabili-
ties, which naturally suggests similar issues might arise
in the Fermi bounce context. Nonetheless, despite the
analysis of Ref. [40] being performed under very general
assumptions, it still relies heavily on the effective La-
grangian being second or higher order in the space-time
derivatives, so the same conclusions cannot be easily ex-
tended to any generic action, nor to a fermionic action
which is not quadratic in the canonical momenta. Fur-
ther work is needed to show whether for the latter system
the linearity in the canonical momenta prevents stability
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issues. For example, within the context of the Galileon
models, several examples in which the NEC can be con-
sistently violated, without any instabilities, were found
in Refs. [41–43].

Nonetheless, here we give a simple argument in fa-
vor of stability that deploys mean field approximation.
It is not difficult to show (for a detailed discussion, we
refer the reader to Ref. [44]) that the four fermion in-
teraction potential can be recast as a redefinition of the
mass. As a hint, we may consider to Fierz decompose the
four-fermion potential, and then focus only on the lower
energy channel of the decomposition, which entails the
densitized field χ=a3/2ψ, from which we can construct
bilinear perturbations,

(
γIeµI ı∇̃µ−m−2ξκ

√−g〈χχ〉
)
χ=0,

the brackets denoting the expectation value of the back-
ground fermion bilinear in the mean field approxima-
tion. At every energy scale lower than the energy scale
of the bounce, the effective mass will remain positive, or
at most — as happens at the bounce — it will vanish.
This suggests there should not be any issue of instabili-
ties that originate from the perturbed fields.

Any successful theory of the early universe must be
able to reproduce the observed nearly scale-invariant
spectrum of adiabatic fluctuations in the CMBR. Scale
invariance has been investigated hitherto within the
framework of bouncing models with a contracting phase,
such as ekpyrotic [45], string gas [46] and pre-Big Bang
scenarios [47]. On the other hand, for a number of these
models it has proven difficult to obtain adiabatic scale in-
variant fluctuations in the contracting phase, mainly due
to issues in resolving the singularity or mode matching
between contracting and expanding phases [47].

Nonetheless, Brandenberger and Finelli, and inde-
pendently Wands [47, 48], have shown that a scale in-
variant power spectrum can be generated in a matter-
dominated contracting universe, proving the existence of
some “duality” between the scale invariant power spec-
trum generated in the inflationary epoch and a contract-
ing matter-dominated phase. During this latter phase,
gauge invariant perturbations that cross the Hubble scale
turn out to be scale invariant because of the time be-
havior of the scale factor — in the cosmological time,
a(t)∼ (−t)2/3. It is also worth mentioning that at non-
singular bounces, scale-invariant modes are matched to
scale-invariant modes in the expanding phase.

A very seminal investigation on the role of fermion
fields in cosmology was reported in Ref. [49], in which a
wide class of generic potentials of the Dirac field’s scalar
bilinear was considered, and a detailed scrutiny of dif-
ferent cosmological scenarios was made available. The
first analyses of the Fermi bounce mechanism then trace
back to Refs. [50, 51], in which the authors realized that

a torsion-induced four-fermion interaction might yield a
non-singular bounce. Further developments include the
study of Ref. [52], deepening the role of a parity-violating
four-fermion self-interaction term within the framework
of a torsion-free theory. Production of scale-invariant
scalar curvature perturbations has been finally investi-
gated in Ref. [31], for the case of one fermion species,
and then extended in Ref. [30] to case of the curvaton
mechanism.

By considering a non-minimal coupling in the Dirac
action (see e.g. Refs [53–55]) and a topological term
for the torsionful components of the spin-connection
ωIJ (see for instance Ref. [37]), the inspection within
Refs. [30, 31] has considerably enlarged the parameter
space of the fermionic theories previously examined in
view of a bounce. This has allowed not only for a four-
fermion interaction which is regulated by the parame-
ters of the theory via the ξ function, but also for the
emergence of a scale-invariant power-spectrum. It is in-
deed thanks to the presence of a torsion background that
the topological term within the Holst action turns from
a surface term into a contribution to the four-fermion
interaction term. It is this latter term that entails an
almost scale-invariant power-spectrum of gravitational
scalar perturbations.

Notice however that the four-fermion density modi-
fies the Friedman equations to have a negative energy
density that redshifts like ∼ a(t)6, thus the issues with
anisotropies are not yet solved in this scenario, when
we only take into account the tree-level contributions to
the energy density. Nonetheless, quantum corrections
to the effective action of fermion fields may provide an
“ekpyrotic-like” contribution that redshifts faster than
∼a(t)6, and is then able to wash out anisotropies when
the universe approaches the non-singular bounce [56].

Finally, we should also mention an important issue,
with relevant observational consequences for the obser-
vation of power spectra and cross-correlation functions
of the CMBR. This has to deal with the semi-classical
limit of fermion fields, and the appropriate way of deal-
ing with objects that fulfil the Pauli exclusion princi-
ple. Dirac fields indeed become physical observables
that satisfy micro-causality only when they form bilin-
ears that belong to the Clifford algebra. We shall then al-
ways deal with these combinations of fields, while adopt-
ing macroscopic states that represent coherent states in
group theoretical meaning — coherent fermionic states
are SU(2) coherent states, known in condensed matter
as BCS states of superconductivity. We refer for this
discussion to the work developed in Ref. [57].

We close this section emphasizing that the advantage
of the Fermi bounce mechanism mainly relies on the fact
that it does not require the existence of any fundamental
scalar field not observed through terrestrial experiments
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in order to drive the space-time background evolution.
The fermionic field added to the gravitational action is
sufficient to account both for the matter bounce scenario
and the generation of nearly scale-invariant scalar per-
turbations.

4 Two-field curvaton mechanism

In this section we review the curvaton mechanism
for Fermi bounce cosmologies, which was first studied in
Ref. [30]. We will deploy a similar strategy to the one
outlined in Ref. [30] for the analysis of the curvature per-
turbations. Nonetheless, we are aware that, in order to
prove cosmological perturbations of fermionic fields to be
non-vanishing at the linear order, the procedure first de-
scribed in Ref. [57] must be implemented. We will then
move consistently along the lines drawn in Ref. [57]. The
manipulation of the perturbed fermionic bilinear that we
perform here will give at the end very similar results to
those in Ref. [30]. There are only a few differences that
concern the observable quantities for CMBR, namely the
scalar power spectrum and the tensor to scalar ratio pa-
rameter r, but these are not significant experimentally,
and are completely due to the four-fermion interaction
between the two fermionic species that we are taking into
account here.

Differently from the approach within Ref. [30], in
which four-fermion interaction terms were added for each
of the fermionic species considered by simply following
a phenomenological recipe, the four-fermion terms we
focus on here follow directly from the ECHSK action.
As a consequence, when two fermionic species are taken
into account, a novel four-fermion interaction term be-
tween the two species arises. We will then show that
once a mass hierarchy between the two species is con-
sidered, the curvaton mechanism is again realized: the
spacetime background evolution encodes a bounce, and
a scale-invariant scalar power spectrum is generated.

4.1 The ECHSK action and background dynam-

ics

We start directly from the action for gravity and
Dirac fermions in which torsion has been integrated out,
namely

S=SGR+Sψ+Sχ+SInt , (1)

where again the Einstein-Hilbert action is written using
the mixed-indices Riemann tensor RIJ

µν=F
IJ
µν [ω̃(e)], i.e.

SGR=
1

2κ

∫

M

d4x|e|eµI eνJRIJµν , (2)

the Dirac action Sψ on curved space-time is

Sψ=
1

2

∫

M

d4x|e|
(
ψγIeµI ı∇̃µψ−mψψψ

)
+h.c., (3)

and finally the interaction terms of the theory read

SInt=−ξκ
∫

M

d4x|e|
(
JLψ J

M
ψ +2JLψ J

M
χ +JLχ J

M
χ

)
ηLM , (4)

which only involve the axial vector currents Jψ and Jχ of
the ψ and χ fermionic species, but in the three possible
combinations.

For the two fermionic species the Dirac Lagrangians,
provided with interactions, respectively read

LTotψ =
1

2

(
ψγIeµI ı∇̃µψ−mψψψ

)
+h.c.

−ξκJLψ (JKψ +JKχ )ηLK , (5)

and

LTotχ =
1

2

(
χγIeµI ı∇̃µχ−mχχχ

)
+h.c.

−ξκJLχ (JKχ +JKψ )ηLK , (6)

with the energy-momentum tensors

Tψµν=
1

4
ψγIe

I
(µı∇̃ν)ψ+h.c.−gµνLTotψ , (7)

and

T χµν=
1

4
χγIe

I
(µı∇̃ν)χ+h.c.−gµνLTotχ . (8)

The background dynamics of the fermionic bilinears
must be solved along the lines of Ref. [57]. Nonethe-
less, the conclusions are here quite similar to what was
found in Ref. [30]. On the states of semiclassicality (re-
spectively) for the ψ-fermion field, namely the coherent
state |αψ〉, and for the χ-fermion field, namely the coher-
ent state |αχ〉, we can easily recover (see e.g. Ref. [57])
that on-shell,

〈ψ̄ψ〉αψ=
nψ
a3
, 〈χ̄χ〉αχ=

nχ
a3
, (9)

in which the fermionic densities arise from the integra-
tion of the modes’ distributions of the coherent states,
i.e.

nψ=

∫
dµ(k)|αψ(k)|2 , nχ=

∫
dµ(k)|αχ(k)|2 , (10)

dµ(k) denoting the appropriate relativistic measure on
the Fourier mode space.

Using the Fierz identities, evaluating the product of
the fermionic bilinears on the coherent states, the first
Friedmann equation can be used, accounting for the con-
tributions due to the two fermionic species, as follows:

H2=
κ

3

mψnψ+mχnχ
a3

+ξ
κ2

3

(nψ+nχ)
2

a6
, (11)

in which the double product of fermionic densities in the
last term now accounts for the interaction between the
two fermionic species.

The scale factor of the metric is easily determined to
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be

a=

(
3κ(mψnψ+mχnχ)

4
(t−t0)2−

ξκ(nψ+nχ)
2

(mψnψ+mχnχ)

) 1
3

,

(12)
and its value in t0, when the bounce takes place, imme-
diately follows,

a0=

(
− ξκ(nψ+nχ)

2

mψnψ+mχnχ

) 1
3

'
(
−ξκ(nψ+nχ)

2

mψnψ

) 1
3

. (13)

4.2 Cosmological perturbations

Cosmological perturbations can be studied in the flat
gauge, in which the curvature perturbation variable is
proportional to the perturbation of the energy density of
the system,

ζ=
δρ

ρ+p
. (14)

Perturbations of the energy densities of the fermionic
species are linear in the perturbations of the fermionic
bilinear. In Ref. [57] it has been shown that linear per-
turbations of the fermionic bilinear are non-vanishing.
Thus also the curvature perturbation variable defined in
Eq. (14), linear by definition, is non-vanishing for fermion
fields.

Note that within the formalism introduced in
Ref. [57], given a generic operator O in the spinorial in-
ternal space, the n-th infinitesimal order expansion of
the expectation value (on a quantum macroscopic coher-
ent states) of the fermionic bilinear ψOψ is defined by
the expansion

δn(〈ψOψ〉αψ )≡n!〈α′ψ|ψOψ|α′ψ〉
∣∣∣
O(δαn

ψ
)
, (15)

in which the perturbation of the modes distribution func-
tion α′ψ'αψ+δαψ+... has been considered. For simplicity
of notation, we will remove the subscript αψ, and de-
note perturbations of fermionic bilinears on the coherent
space simply as δ〈ψOψ〉.

If we now take into account the two fermionic species
with different values of the bare mass, we find that the
two main contributions to the variation of the energy
densities read

δρ=mχδ〈χχ〉+mψδ〈ψψ〉+... , (16)

having neglected contributions suppressed by ξκ. On
the other hand, similarly to Eq. (11), the denominator
of Eq. (14) becomes

p+ρ=
mχnχ+mψnψ

a3
+2ξκ

(nχ+nψ)
2

a6
. (17)

Not surprisingly, at the zeroth order in ξκ a similar result
to that in Ref. [30] is obtained. For values of mχ<<mψ,
this reduces the expression of the curvature perturbation

variable to

ζ'mχδ〈χχ〉
mψ〈ψψ〉

, (18)

if it also holds that

mψnψÀmχnχ . (19)

Therefore, as in Ref. [30], we proceed to write the
autocorrelation function for ζ(t,x) in the notation of
Ref. [57] as

PS≡Pζ=
m2
χ

m2
ψ

δ2〈χχχχ〉
4〈ψψ〉2

, (20)

in which we are now assuming that:
1) mψ >> mχ, which entails suppression at super-

horizon scale of the perturbations due to the ψ field —
wavenumbers of perturbations of ψ-bilinears are more
blue-shifted than perturbations of χ-bilinears;

2) cross-correlation between perturbations of the ψ
field and perturbations of the χ field are negligible, since
they are due to an interaction involving a graviton loop,
the latter being suppressed by the fourth power of the
Planck mass Mp.

The perturbations to the χ field are then computed
resorting to the same kind of assumptions outlined in
Refs. [30, 31], but following the procedure outlined in
Ref. [57]. The analysis we report below shows explicitly
that at perturbative level the fluctuations that are re-
covered are free of gradient and ghost instabilities, which
often exist in other bouncing cosmologies. This refines
our previous heuristic argument given in Section 3.

First, we notice that away from the bounce the scale
factor reads a(η)'η2/η20 , with

η0=[κ(mψnψ+mχnχ)]
−1/2 , (21)

which becomes, because of the requirement specified in
Eq. (19),

η0'(κmψnψ)
−1/2 . (22)

The dynamics of the perturbations of the χ-field bilinear,
which differently from Ref. [30] is now provided with a
four-fermion term interaction with the ψ field, can then
be found once the equations of motion for the field are
solved: (

γIeµI ı∇̃µ−mχ−2ξκ〈χχ〉+〈ψψ〉
)
χ=0, (23)

in which we have used the mean field approximation
for the terms arising from the four-fermion interactions.
Upon reshuffle of the equation of motion for the χ-spinor
and densitization of its components we find
(
γIeµI ı∇̃µ−mχ−2ξκ

√−g(〈χ̃χ̃〉+〈ψ̃ψ̃〉)
)
χ̃=0. (24)

Deploying the background solution for the densities of
the two fermionic species, this can be rewritten as

(
ıγµ∂µ−mχa(η)−

2ξκ(nχ+nψ)

a2(η)

)
χ̃=0. (25)

065101-6



Chinese Physics C Vol. 42, No. 6 (2018) 065101

The appearance in Ref. (25) of the density numbers for
both the fermionic species is peculiar of the theory un-
der scrutiny here, derived directly from the ECHSK ac-
tion, and represents a main difference with respect to
the analysis in Ref. [30], especially for what concerns
CMBR phenomenology — the other main phenomeno-
logical difference will be spelled out in the next section,
and concerns baryogenesis.

Following the recipe implemented in Refs. [30, 31],
we can find solutions for the spinorial components of the
Dirac equation (25) in terms of the spinorial functions

f̃±h=
1√
2
[ũL,h(k,η)+ũR,h(k,η)],

g̃±h=
1√
2
[ṽL,h(k,η)+ṽR,h(k,η)]. (26)

These are recovered by rescaling densitized spinors up to
ũ= a3/2u and ṽ= a3/2v. Densitized spinors are in turn
expressed in terms of their chiral and helical components

ũ(t,k)=
∑

h

ũh(t,k)=
∑

h

(
ũL,h(k,η)

ũR,h(k,η)

)
ξh , (27)

ṽ(t,k)=
∑

h

ṽh(t,k)=
∑

h

(
ṽR,h(k,η)

ṽL,h(k,η)

)
ξh , (28)

in which we have introduced the helicity 2-eigenspinor,
written in terms of the unit vector k̂, which is

ξh=
1√

2(1−hk̂z)

(
h(k̂x−ık̂y)
ık̂x−hk̂y

)
, k̂·σξh=hξh, (29)

σ standing for the Pauli matrices.
We can recast Eq. (25) in terms of the f̃h functions:

f̃ ′′±h+ω
2(k,η)f̃±h=0, (30)

in which we have introduced an effective frequency, de-
fined by

ω2(k,η)=k2+m2
χa

2+ımχa
′+2ξκ(nχ+nψ)

(
mχ

a
−ı a

′

a3

)
.

(31)

In this framework χ is a curvaton, and does not con-
tribute to drive the dynamics of spacetime background.
So the condition mχ¿mψ holds naturally, and the sec-
ond term of the effective frequency can then be neglected.
For the third and the last term, which are imaginary,
we proceed to smooth them out, by taking the time-
averaged evolution at super-Hubble scales. Thanks to
this consideration, the effective frequency will turn out
to depend mainly on the gradient term k2 and the effec-
tive mass term 2ξκ(nχ+nψ)mχ/a, in which the effect of
the new interaction between the two fermionic species is
evident.

Notice also that the imaginary part of the effective
frequency can be suppressed in the contracting phase

far from the bounce, which ensures initial states for
fermionic perturbations to be close to the vacuum fluc-
tuations in Minkowski space. Eventual deviations from
scale invariance of the perturbations (before exiting the
Hubble radius), which may arise along with the uni-
verse’s contraction because of the presence of the imagi-
nary part in Eq. (31), can be switched off by proper fine
tuning, requiring the imaginary part to be at most of the
same order as the real one.

Finally, we can find solutions that interpolate among
two different limits:

1) When the gradient term is dominant, namely at
sub-Hubble scales with |kη| À 1, we impose the initial
condition for the Fourier modes of the fermionic bilin-
ear, which are the observable quantity, resorting to a
Wentzel-Kramers-Brillouin (WKB) approximation. This
yields

f̃±h' 4

√
mχ

2k
e−ikη . (32)

This initial condition exactly coincides with the vacuum
fluctuations. Second, we study the asymptotic solution
to the perturbation equation in the limit of |kη| ¿ 1,
i.e. at super-Hubble scales. To apply the relation
a(η)'η2/η20 and Eq. (22), one can write down the effec-
tive mass term as

− γ

η2
with γ=−2ξ(nχ+nψ)mχ

nψmψ

. (33)

2) When the (other) asymptotic solution of the equa-
tion of motion has a leading term of the form

f̃±h'c(k)η
2(1+γ−

√

1+4γ)

3−
√

1+4γ , (34)

c(k) being a k dependent coefficient that must be deter-
mined by matching the above two asymptotic solutions
(32) and (34) at the moment of Hubble crossing.

The asymptotic solution at super-Hubble scales is
therefore determined to be

f̃±h' 4

√
mχ

2k
(kη)

1+γ−
√

1+4γ
3−
√

1+4γ , (35)

having now normalized the expectation value of a
fermionic bilinear in the asymptotic future.

After the contraction phase, the universe would even-
tually enter the non-singular bouncing phase by avoiding
the spacetime singularity due to the help of the back-
ground fermionic condensate. During this phase, the evo-
lution of the Hubble parameter H can be approximated
as a linear function of the cosmic time t [3, 58]. Accord-
ingly, the scale factor behaves roughly as a∼exp(t2). In
this case, one can read that the evolution of the non-
singular bounce can occur when the scale factor reaches
the minimal value. By inserting back into the pertur-
bation equation (30), the latter can be solved both nu-
merically and semi-analytically. The procedure is similar
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to the analyses performed in Ref. [32] (see also Ref. [4]
for the observational constraint on the growth of pri-
mordial fluctuations during the bounce). We can learn
that, for a fast bounce with the energy scale much lower
than the Planck scale, the perturbations passing through
the non-singular bouncing phase would not be much af-
fected by the background evolution. In the present study,
for simplicity we assume that the perturbations were al-
most conserved during the non-singular bounce and can
be smoothly inherited from the contracting phase to the
expanding phase.

4.3 Power spectrum of scalar gravitational per-

turbations

We now consider all the necessary ingredients to cal-
culate the power spectrum of the primordial scalar gravi-
tational perturbations. Indeed, if we substitute Eq. (35)
into Eq. (20), we find that the power spectrum of the
primordial curvature perturbations is expressed by the
relation

PS=
m3
χ|δαχ|2
m2
ψn

2
ψ

k2

4π2
(kη)

4(1+γ−
√

1+4γ)

3−
√

1+4γ , (36)

in which we have used Eq. (9). Exact scale invariance of
the power spectrum corresponds to the value γ=2 (i.e.
ξ=−nψmψ/[(nχ+nψ)mχ]). In this case, during the mat-
ter contracting phase, the amplitude scales as η−2 and
the power spectrum generated in the fermion curvaton
mechanism is

PS=
m3
χδnχ

m2
ψn

2
ψ

1

4π2a2η2
, (37)

in which we have assumed δnχ= |δαχ|2 to retain only a
mild, and phenomenologically negligible, dependence on
k.

Evaluating Eq. (37) at the end of the matter con-
tracting phase tE, when the scale factor equals the value
aE, enable us to recast it as

PS=
m3
χδnχ

m2
ψn

2
ψ

H2
E

16π2
, (38)

in which we have used ηE = 2/HE = 2/(aEHE). In
Eq. (38) we used the notation HE and aE respectively
for the values of the comoving Hubble parameter and of
the scale factor at the end of matter contracting phase,
just right before the time tE at which the phase transi-
tion takes place and perturbations, before reentering the
Hubble horizon, become constant.

Slight deviations of γ from 2 in Eq. (36) entail the
derivation of phenomenologically allowed relations for
the spectral index, i.e.

nS−1≡
dlnPS
dlnk

'−2

3
(γ−2). (39)

Consistently with the estimate of the spectral index de-

rived in Eqs. [5, 6], which sets ns=0.968±0.006, γ takes
values in the range

γ=2.048±0.009. (40)

Consistently, for this range of values the power spectrum
appears to be red-tilted.

5 CMBR phenomenology and dark mat-

ter

In this section, we show how hot dark matter con-
straints can be satisfied in a heuristic but successful fash-
ion within the two-fermion-species toy model we have
discussed so far. But before tackling hot dark matter
constraints we first focus on the phenomenological con-
sequences of the toy model for CMBR observables.

5.1 Constraints for the mass from CMBR

We start by commenting on the production of pri-
mordial gravitational waves, and hence on the testable
implications for the scalar to tensor ratio. We notice
that the dynamics of primordial gravitational waves are
uniquely determined by the spacetime background dy-
namics, and that their evolution is decoupled from other
perturbation modes at linear order. Thus the deriva-
tion of the tensor perturbations power spectrum follows
Ref. [3], and allows us to find

PT=
1

ϑ2
H2
E

a2EM
2
p

, where ϑ=8π(2q−3)(1−3q). (41)

The coefficient q is typically required to be less than
unity, and is determined by the detailed procedure of
the phase transition, since it represents a background
parameter associated with the contracting phase.

If we assume that the universe is evolving through the
bounce, and neglect for the moment its fermionic con-
traction phase, we can estimate the maximal amplitude
of the Hubble rate to be of the same order of magnitude
as

mψ√
ξ
. So at the fermionic matter-bounce phase the am-

plitude of the Hubble parameter cannot be bigger than
mψ√
ξ
, which allows us to approximate it with its maxi-

mal value |HE|' mψ√
ξ
, and find the corresponding power

spectrum

PT'
1

ϑ2
m2
ψ

|ξ|M 2
p

. (42)

Finally, the tensor to scalar ratio, which is by definition
r≡PT/PS, is easily recovered to be

r=
16π2

ϑ2
m2
ψ

m3
χ

n2ψ
δnχM2

p

, (43)

in which the condition of scale invariance γ'2 has been
assumed. This result is the same as was already derived
in Ref. [30].
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Cosmological observations constrain the power spec-
trum of scalar perturbations to be PS ' 2.2×10−9 [59],
and set an upper bound on the detection of primordial
gravitational waves, allowing for the tensor-to-scalar ra-
tio values within the range r<0.12 (95%) [6]. If we ne-
glect, as a working assumption, the null hypothesis for
r and estimate it with its higher bound r∼0.12, we can
constrain up to two parameters of the theory. Therefore,
deploying the experimental value and bound respectively
for PS and r, we use Eqs. (38) and (43) to derive con-
straints on the masses of the fermion fields involved.

The first constraint we can derive is on the mass of
the heavy species, which is the same as in Ref. [30], i.e.

m2
ψ.10−11 |ξ|M 2

p . (44)

Differently from Ref. [30], if we now assume the to-
tal mass hierarchy (19) we find that large values of
|ξ|=(nψmψ)/[(nχ+nψ)mχ] are favored, once we look at
values of γ that allow for a nearly scale-invariant power
spectrum (γ ' 2). The constraint (44) now links the
mass of the heavy species to the GUT scale, if we make
a proper choice of ξ'104.

The second constraint we can derive on the masses
of the two fermionic species arises from combining
Eqs. (38) and (43) into

m2
ψ

m3
χ

n2ψ
δnχM2

p

∼O(102) . (45)

This value is actually slightly different from the one re-
ported in Ref. [30], and can be easily achieved within
this scenario, while linking the mass of the light species
to the mass of the heavy one.

Fig. 1. (color online) The power spectrum of scalar
(blue line) and tensor (red line) perturbations is
displayed for parameter scales ξ=103, mψ=1015

GeV and mχ = 10−3 eV. After a time scale
t > 5×1012 (Planck time units), their ratio, i.e.
the r-parameter, converges to r'10−7.

In Fig. 1, we display the numerical results of power
spectra of scalar and tensor perturbations, for ξ = 103,

mψ=1015GeV and mχ=10−3eV. For these parameters,
the r-parameter rapidly converges to r'10−7 in a time
t'1012tPl'10−31s, which is close to the reheating time
scale in inflationary scenarios.

5.2 Including dark matter

So far we have developed a fermion curvaton mech-
anism consistent with the latest cosmological data. The
gist of this framework is in the realization of a see-saw
mechanism that has phenomenological consequences in
cosmology. Assuming that the fluctuation of the abun-
dance of the light χ fermions is related to the abundance
of the heavy ψ fermions by

δnχ'
n2ψ
m3
χ

10−7 , (46)

we can concretely realize a see-saw mechanism in this
framework. The two fermionic species accounted for
should correspond to:

1) a regular neutrino, which would correspond in this
framework to the light χ-fermion species, the mass of
which would be then mχ<10−3 eV, fulfilling in this way
the constraints from Big Bang nucleosynthesis and being
consistent with all the experimental data [60, 61];

2) a sterile neutrino, which would drive the pri-
mordial spacetime background dynamics, namely the ψ
species. Its mass would be at the GUT scale for a choice
of the ratio that appears in Eq. (46). Nonetheless, in this
model even smaller values than the GUT scale would be
consistent for the mass of the background species ψ.

We end this section with a comment on the pertur-
bation theory in fermion field cosmologies. For this type
of cosmology, the stress energy tensor behaves as a per-
fect fluid only at the background level. But if we con-
sider perturbations, anisotropic components may appear
in the stress-energy tensor. These latter would not affect
our conclusions on the curvature perturbations generated
in the primordial era, but may affect the propagation of
primordial gravitational waves, and thus the estimate of
the scalar to tensor ratio. This is a very interesting topic
which deserves further investigation, especially in light
of the considerations in Ref. [57].

6 Baryogenesis in the curvaton Fermi

bounce scheme

In this section, we discuss a scenario in which baryo-
genesis is realized from the decay of the ultra-massive
fermions, described by the ψ-species, into the SM par-
ticles, corresponding to the χ-species. Thus ψ is now
defined as a singlet of the SM gauge group. Conse-
quently, this ultra massive field is not protected by the
electroweak symmetry, and for the Georgi’s missing sin-
glet mechanism, it should have a mass much higher than
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the SM vacuum expectation value (VEV) scale [62]. We
will not only show that the correct baryon asymmetry is
reproduced, but we also set severe limits on the bounce
scale. In Fig. 1, we obtain a number density asymmetry
|nB−L| which is compatible with the baryogenesis consis-
tency condition nB/s∼10−10.
6.1 Minimal coupling with SM leptons

The ψ-species can be then identified with the right-
handed (RH) neutrino, considering a type I see-saw
mechanism for the left-handed (LH) neutrino mass. A
Fukugita-Yanagida leptogenesis mechanism [63, 64] can
be then realized, once all the Sakharov conditions [65]
are satisfied.

A minimal Lagrangian for this instantiation of the
see-saw mechanism reads

L=yψlαφα+mψψ
TC−1ψ+mχχ

TC−1χ

+
ξ

M2
Pl

(ψγ5γµψ)(χγ
µγ5χ)+h.c.,

in which we have reinserted M 2
Pl = κ−1. We empha-

size that within our model the four-fermion interaction
term is recovered from integrating out (non-dynamical)
torsion in the ECHSK theory. At the same time, the
bouncing evolution of the background itself, as specified
in Section. 4.1, is due to the four-fermion interaction,
when negative values of ξ are taken into account.

The decay channels of the heavy fermion to the SM
particles are

ψ→lφ, ψ→ l̄φ̄,
in which l are lepton fields, φ denotes the Higgs, and y is
the Yukawa matrix of the ψ and l generations. In partic-
ular, we assume that the number of ψ-generations will be
more than one. Such a Lagrangian mediates L-violating
channels with several different L-number assignments for
ψ. For instance, if L:ψ=0, the first Yukawa term violates
the L-number of ∆L=1. However, such an assignment
for the lepton number of ψ is problematic, since ψ could
also couple to quarks, destabilizing the proton. A strong
fine-tuning for the coupling of ψ to the quarks should be
then invoked. The most elegant choice is to consider a
L-preserving Yukawa term, while the L-number is vio-
lated by the Majorana mass term. This choice coincides
with L :ψ=1, as for RH neutrinos. On the other hand,
the CP violation is encoded in the complex phases of
the Yukawa coupling y, which is a matrix in the space of
leptonic generations of ψ.

Below we will then consider the case of a negligi-
ble four-fermion interaction between the extra massive
fermion and the light one. This imposes a bound on the
suppression scale ξM−2

Pl .
The decay width of the heavy neutrino ψ at tree level

is

ΓD=Γ (ψ→φl)+Γ (ψ→φ̄l̄)=
1

8π
y†ymψ , (47)

while the annihilation cross section σ(ψψ→ χχ) is as-
sumed to be subdominant, for the moment. Once the
temperature of the universe drops below the critical value
T̄ = mψ, the heavy neutrinos cannot follow the rapid
variation of the equilibrium distribution. The deviation
from thermal equilibrium is related to too high a number
density of heavy fermions, compared to the equilibrium
density. However, the heavy fermion decay, and a lep-
ton asymmetry, could be generated owing to the pres-
ence of CP -violating transitions. CP -violating transi-
tions involve the quantum interference between the tree-
level amplitude and the one-loop diagrams (vertex and
self-energy contributions). The resulting CP violation
parameters can be conveniently defined as

εDa≡
Γ (ψ→lφ)−Γ (ψ→ l̄φ̄)
Γ (ψ→lφ)+Γ (ψ→ l̄φ̄) . (48)

At tree-level, this parameter is equal to zero. However,
the CP asymmetry appears at the leading order of per-
turbation theory y2 (1-loop), entailing the two contribu-
tions

εMa =− 1

8π

Im(y†y)2ik
(y†y)

, (3level)+(self energy), (49)

where i,k are ψ-generation indices,

εVa =−
1

8π
f

(
mψi

mψi

)
Im(y†y)2ik
(y†y)

, (50)

and

f(x)=
√
x

{
1−(1+x)ln

(
1+x

x

)}
(51)

These results hold for mψ >> |Γ | – for small mass dif-
ferences, we may expect an enhancement of the mixing
contribution.

6.2 The Boltzmann equations

The generation of a baryon/lepton asymmetry can
be treated with Boltzmann equations. While accounting
for these latter, we have to consider the main processes,
which are the decays and inverse decays of the heavy
fermions, and the lepton number conserving ∆L=0 and
violating ∆L=2 processes. These processes read, respec-
tively,

dnψ
dt

+3Hnψ = −γ(ψ→lφ)+γ(lφ→ψ)

−γ(ψ→ l̄φ̄)−γ(l̄φ̄→ψ), (52)

dnl
dt

+3Hnl = γ(ψ→lφ)−γ(lφ→ψ)

+γ(l̄φ̄→lφ)−γ(lφ→ l̄φ̄), (53)

dnl̄
dt

+3Hnl̄ = γ(ψ→ l̄φ̄)−γ(l̄φ̄→ψ)

+γ(lφ→ l̄φ̄)−γ(l̄φ̄→lφ), (54)
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with the reaction densities expressed as follows,

γ(ψ→lφ)=
∫

dΦ123fN(p1)|M(ψ→lφ)|2, (55)

and

γ(lφ→ l̄φ̄)=
∫

dΦ1234fl(p1)fφ(p2)|M′(ψ→lφ)|2 , (56)

where H is the Hubble parameter, dΦ1,..,n denotes the
phase space integration over particles in the initial and
final states,

dΦ1,..,n=
d3p1

(2π)32E1

...
d3pn

(2π)32En
(2π)4δ4(p1+...−pn) (57)

and the weights

fi(p)=exp(−βEi(p)), ni(p)=gi

∫
d3p

(2π)3
fi(p) (58)

represent the Boltzmann distribution (for simplicity we
use a Boltzmann distribution rather than Bose-Einstein
or Fermi-Dirac distributions, neglecting the distribution
functions in the final state, which is a good approxima-
tion for small number densities) and the number density
of particle i=N,l,φ at temperature T = 1

β
, respectively,

and M and M′ denote the scattering matrix elements
of the indicated processes at T =0 (the prime indicates
that in 2→2 scatterings the contribution of the internal
resonance state has been subtracted).

The ratio of number density and entropy density
(namely YX=nX/s) remains constant for an expanding
universe in thermal equilibrium. The heavy fermions are
weakly coupled to the thermal bath, so that they freeze
out of the thermal equilibrium at T̄ =mψ. This implies
that the decay rate is too slow to follow the rapidly de-
creasing equilibrium distribution fN∼exp(−βmψ). As a
consequence, the system will evolve toward an excess of
the number density nN>n

eq
N .

The Boltzmann equations are classical dynamical
equations. However, they are endowed with S-matrix
elements, in turn containing quantum mechanical inter-
ferences of different amplitudes. The S-matrices are con-
tained in collisions terms in the Boltzmann equations.

The scattering matrix elements are evaluated at zero
temperature. However, the quantum mechanical inter-
ferences must be affected by interactions with the ther-
mal bath. For 2→2 scatterings, one finds

|M(lφ→ l̄φ̄)|2=|M′(lφ→ l̄φ̄)|2+|Mres(lφ→ l̄φ̄)|2 , (59)

where the resonance contribution reads

M(lφ→ l̄φ̄)∼M(lφ→ψ)M(ψ→ l̄φ̄)∗=|M(lφ→ψ)|2 .
(60)

The particles involved in the process may be treated as
massless: their distribution functions will coincide with

the equilibrium distribution. On the other hand, reso-
nances may be treated as on-shell particles, falling out
of thermal equilibrium. Because of CPT invariance, for
thermal equilibrium distributions we must have

d(nl−nl̄)
dt

+3H(nl−nl̄)=∆γeq=0. (61)

The resonance contributions (the decay and inverse
decay)

∆γeqres=−2εγeq(ψ→lφ),

have a compensating term from 2→2 contribution pro-
cesses

∆γ2→2 = 2

∫
dΦ1234f

eq
l (p1)f

eq
φ (p2)

×(|M′(lφ→ l̄φ̄)|2−|M′(l̄φ̄→lφ)|2), (62)

Such a lφ↔ l̄φ̄ compensation is a consequence of CPT
symmetry/unitarity. From unitarity, one can find

∑

X

(|M(lφ→X)|2−|M(X→lφ)|2)=0,

where X denotes all possible generic channels. In the
case of weak coupling y, the channel is restricted to 2-
particle states to the leading order of perturbation ex-
pansion. Therefore, at the leading order y2, one obtains

∆eq
2→2 = 2

∫
dΦ1234f

eq
l (p1)f

eq
φ (p2)

×
(
−|M(lφ→ψ)|2|M(ψ→ l̄φ̄)|2

+|M(l̄φ̄→ψ)|2|M(ψ→lφ)|2
)

π

mψΓ
δ(s−m2

ψ)

= 2εγeq(ψ→lφ)=−∆γeqres . (63)

The incorporation of off-shell effects requires a formalism
that goes beyond the Boltzmann equations (Kadanoff-
Baym equations [66]). However, the corrections to Boltz-
mann’s model are expected to be negligible.

The numerical integration of the Boltzmann equa-
tions for reasonable parameters is displayed in Fig. 2.
In particular, the number density of the ψ-particle de-
creases in cosmological time, generating a small lepton
number asymmetry.

6.3 Baryon number asymmetry from sphalerons

Let us assign a chemical potential µ to each SM par-
ticle: quarks, Higgs, and leptons. In the SM – with Nf

generations and one Higgs doublet – we must assign1)

1) In addition to the Higgs doublet, the two left-handed doublets qi and li and the three right-handed singlets ui, di and ei of each
generation will each be treated with independent chemical potential.
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Fig. 2. (color online) The evolution of the number
densities as functions of z=mψ/T are displayed
(log10n,log10z) scale. In dashed black lines, we
show the evolution of the number density of mas-
sive fermions ψ starting from a thermal initial
density nψ(z << 1) ' 3/4. In thick black lines,
we plot the evolution of the number density of
massive fermions ψ starting from a thermal ini-
tial density nψ(z<<1)'0. In the red dashed and
thick red lines the B−L number density |nB−L|
is pictured from initial thermal and zero nψ re-
spectively. The characteristic parameters cho-
sen in this plot are mψ ' 1010GeV, ε ' 10−6,
mχ≡mν1'10−3eV, ξ6106−108.

5Nf+1 chemical potentials. The asymmetry in the parti-
cle and antiparticle number densities, for βµi<<1, reads

ni−n̄i=
gT 3

6
βµi+O[(βµi)3] (for fermions), (64)

and

ni−n̄i=
gT 3

6
2βµi+O[(βµi)3] (for bosons),

having considered the thermal bath as a non-interacting
gas of massless particles.

However, the plasma of the early Universe is very
different from a weakly coupled relativistic gas. This is
because of unscreened non-Abelian gauge interactions,
which have very important nonperturbative effects to
take into account.

Leptons, quarks and Higgs bosons will interact via
perturbative operators - Yukawa and gauge couplings.
However, they will also interact via the non-perturbative
sphaleron processes. These processes lead to a set of con-
straints between the SM chemical potentials. The effec-
tive interactions induced by sphalerons (SU(2) electro-
weak instantons) must imply

∑

i

(3µqi+µui−µdi)=0. (65)

On the other hand, SU(3) QCD instanton-mediated pro-
cesses must generate effective interactions between LH
and RH quarks, which leads to the constraint

∑

i

(2µqi−µui−µdi)=0. (66)

A third condition (valid in all temperature ranges) arises
from the requirement that the total hypercharge of the
plasma must vanish. So, from Eq. (64) and the SM hy-
percharges, we obtain

∑

i

(µqi+2µui−µdi−µli−µei+
2

Nf

µφ)=0. (67)

Finally, from the Yukawa couplings, one finds, in turn

µqi−µφ−µdj=0, µqi+µφ−µuj=0, µli−µφ−µej=0. (68)

These relations are valid if and only if the system is in
thermal equilibrium1), at temperatures 100GeV < T <
1012GeV.

Let us define the baryon number density nB=gBT
2/6

and the lepton number densities nli=LigT
2/6. So, we

express baryon and lepton numbers B and Li in terms
of the chemical potentials, i.e.

B=
∑

i

(2µqi+µui+µdi), (69)

Li=2µli+µei, L=
∑

i

Li .

Solving this simple system of algebric equations, with
respect to µl, one obtains

B=−4Nf

3
µl, L=

14N 2
f+9Nf

6Nf+3
µl , (70)

They yield the important connections between the B,
B-L and L asymmetries:

B=a(B−L); L=(a−1)(B−L), (71)

where a=(8Nf+4)/(22Nf+13).

6.4 Four-fermion interaction between the two

species

We wish now to comment on the possible relevance of
the torsion-mediated four-fermion interactions, namely

OΓ=
ξ

M2
Pl

ψγµγ5ψ χγµγ5χ. (72)

If χ is weakly interacting with the SM particles, ψψ→χχ
represent entropy-leaking collisions that could affect the
leptogenesis scenario if mψ ∼ ξ−1MPl. In particular, if

1) Yukawa interactions are in equilibrium only within a more restricted temperature window depending on the strength/magnitude
of the Yukawa couplings. In the following discussions, we will ignore these technical complications. In fact, only a small effect on our
discussion of leptogenesis is expected from taking them into account.
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the fermion ψ has a lepton number assignment L=0, the
OΓ operator violates the lepton number as ∆L=2. For
example, the initial number density of nψ can be affected
by the annihilation process

σ(ψψ→χχ)∼ ξs

8πM2
Pl

,

estimated1) at s < ξ−1M2
Pl. This process becomes out-

of-equilibrium for s' T 2 6 4m2
ψ, which means that χχ

collisions cannot reproduce two heavy ψ particles.
In the scenario we deepened here, we imposed the hi-

erarchy mψ < ξ−1/2MPl, i.e. the bounce scale must be
higher than the heavy fermion mass. On the other hand,
a successful leptogenesis requires a fermion mass scale of
mψ∼109GeV or similar. This imposes an indirect bound
on the bounce scale. In particular, from numerical cal-
culations, we checked that the safety bound for a good
leptogenesis is ξ−1/2MPl > (10−15)mψ, assuming natu-
ral initial conditions nψ(z < 10−1)' 0,3/4 respectively.
From these values, the same plots displayed in Fig. 2 are
obtained.

On the other hand, the case in which mψ > (10−
15)ξ−1/2MPl cannot correspond to a successful leptoge-
nesis, without an unnatural initial superabundance of
heavy fermions. In particular, the case ofmψ ' ξ−1/2MPl

is undesirable, first of all because the unitarity and the
calculability of z<1 in Fig. 2 cannot be controlled, and
second because the annihilation process will dominate
over all other channels around z'1, provoking a too fast
number density decay of ψ.

7 Discussion

In this paper we have shown that the matter bounce
scenario, as an alternative framework to inflation, allows
us to encode hot dark matter in a fairly natural way
when fermion matter fields are taken into account. We
have further shown that the model is able to generate

leptogenesis, and thus to explain baryogenesis. Specifi-
cally, we have focused on a toy model for the curvaton
mechanism, which is an instantiation of a Fermi bounce
cosmology that singles out as a dark matter candidate
a sterile neutrino-like field, hence deriving phenomeno-
logical consequences of these assumptions. It is quite
remarkable that this scenario comes out to be falsifiable,
since it predicts a non-vanishing value of r.

A peculiarity of the model we have shown here is
that the results we have derived are not confined to an
effective analysis in which the dynamics of dark matter is
only addressed from a hydrodynamical perspective. Con-
versely, the Fermi matter bounce scenario described here
encodes a microphysical description in terms of fermionic
fields, which provides a natural way to overcome short-
comings that usually arise in cosmology because of the
use of auxiliary scalar fields, with consequent issues of
arbitrariness, as happens in inflation.

It might indeed seem surprising at first sight that
matter fields belonging to the SM and to its simplest
extension reproduce the desired background and pertur-
bation features. But it should be not surprising that
in this framework, retrieved from particle physics, it is
possible to tackle questions that concern the nature of
dark matter and the origin of baryogenesis. Indeed the
model we have deepened here turns out to be compati-
ble with hot dark matter constraints. Several issues con-
tinue to be unexplored, and we cannot deny that this
line of research will require more detailed investigations
in the future. Nonetheless we wish to mention that the
Fermi bounce scenario might entail, as distinctive phe-
nomenological predictions, able to falsify this paradigm
among the others in the literature, the appearance of
non-vanishing cross-correlation functions between polar-
ization modes, coming from the parity-violating elements
of the Clifford algebra bilinears [57]. However, more work
is also required in this direction.
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