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rapidly rotating neutron stars
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Abstract: In this paper, we have investigated the structural properties of rotating neutron stars using the numerical

RNS code and equations of state which have been calculated within the lowest order constrained variational (LOCV)

approach. In order to calculate the equation of state of nuclear matter, we have used UV14 +TNI and AV18 potentials.

We have computed the maximum mass of the neutron star and the corresponding equatorial radius at different angular

velocities. We have also computed the structural properties of Keplerian rotating neutron stars for the maximum

mass configuration, MK , RK , fK and jmax.
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1 Introduction

All existing studies indicate that observed neutron
stars, such as millisecond pulsars (MSPs), are rotating.
Recently, many MSPs have been discovered. One of the
most rapidly rotating neutron stars is pulsar PSR J1748-
2446ad, which has rotational frequency 716 Hz [1]. The
rotational frequency f , which can be directly measured,
affects the global attributes of neutron stars, specifically,
maximum mass, radius, spin parameter and total mo-
ment of inertia [2–6]. The maximum mass increases with
rotation due to the rotational energy and there are even
super-massive sequences [7]. So far, there have been a
large number of mass and radii measurements. The ac-
curate measurement of mass for about 35 neutron stars
lies in the wide range of M ∼ 1.17−2.0 M¯ and the
radii of more than a dozen neutron stars lies in the range
R∼9.9−11.2 km [8]. Two well-measured massive neutron
stars are MSPs in binary systems, PSR J1614-2230 with
mass M =1.928± 0.017 M¯ [9], and PSR J0348+0432,
with mass M=2.01± 0.04M¯ [10]. These massive neu-
tron stars require the equation of state (EOS) of the
system to be rather stiff. Present radius determinations
are model dependent and subject to large uncertainties.
However, some current and planned projects, such as
NICER2) are trying to determine the radii more precisely.
Theoretically, the EOSs have been applied to determine
neutron star properties which should be in agreement
with the precise observations.

Another important characteristic quantity for com-

pact stars is the dimensionless spin parameter j ≡
cJ/GM 2, where J is angular momentum and M is grav-
itational mass. The astrophysical estimations and impli-
cations of j for different astronomical objects have been
considered by several authors, e.g. Refs. [11–16]. Török
et al. have investigated the mass vs. spin parameter re-
lationshipM(j)=M0[1+k(j+j

2)] for the Z-source Circinus
X-1 [15] and atoll source 4U1636−53 [16]. Kato et al.

have shown that a description of the observed correla-
tions of Circinus X-1 requires adopting M=1.5−2.0 M¯

as the mass of the central star in Circinus X-1 and j∼0.8
for the dimensionless spin parameter [12]. Recently, this
parameter has been studied in detail for uniformly ro-
tating compact stars by Lo and Lin [17]. They have
discussed that the spin parameter plays an important
role in understanding the observed quasi-periodic oscil-
lations (QPOs) in disk-accreting compact-star systems.
They have shown that the maximum value of the spin pa-
rameter, jmax (spin parameter of a neutron star rotating
at the Keplerian frequency), depends on the composition
of compact stars. Their results indicate that the value
of jmax has an upper bound about jmax∼ 0.7 for tradi-
tional neutron stars; and it is independent of the EOS
and also insensitive to the mass of the star for M>1M¯

[17]. Their results also indicate that there is no univer-
sal upper bound for the spin parameter of quark stars
simulated by the MIT bag model and it can be larger
than unity (jmax>1). A different point of view has been
followed by Qi et al. [18]; they have found that the crust
structure of compact stars is essential to determine the
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maximum value of the spin parameter. They have con-
cluded that when the whole crust EOS is not considered,
jmax of compact stars can be larger than 0.7 but also less
than 1 for traditional and hyperonic neutron stars and
also for hybrid stars, whereas the role of the crust in the
total mass of the compact star is negligible. In this pa-
per, we show that only the outer crust structure could
play the same roles, see Section 3. Qi et al. also have
constructed a universal formula for spin parameter ver-
sus frequency, j=0.48(f/fk)

3−0.42(f/fk)
2+0.63(f/fk),

for different kinds of compact stars.
In this study, we have investigated the structural

properties of rapidly rotating neutron stars with and
without outer crust structures. Here we have used
EOS for the liquid core of the neutron star which have
been calculated within the lowest order constrained vari-
ational (LOCV) method with UV14 +TNI [19] and
AV18 [20] potentials. Previously, we used these EOS
to determine the core-crust transition parameters and
global attributes of core and crust for neutron stars [21].

2 Neutron star matter equation of state

We have employed the EOS for neutron star matter
by describing the neutron star’s outer crust, inner crust
and the liquid core. For the inner crust, we use the EOS
which is calculated by Douchin and Haensel [22], and for
the outer crust, the Baym-Pethick-Sutherland EOS [23]
is used. In the case of the neutron star core, we assume
a charged neutral infinite system which is a mixture of
leptons and interacting nucleons. The energy density of
this system can be obtained as follows,

ε=εN+εl, (1)

where εN (εl) is the energy density of nucleons (leptons).
The energy density of leptons, which are considered as a
noninteracting Fermi gas, is given by,

εlep =
∑

l=e, µ

∑

k6kF
l

(m2
l c

4+~
2c2k2)1/2 . (2)

In this equation, kFl =(3π2ρl)
1/3 is the Fermi momentum

of leptons. The nucleon contribution of energy density is
given by,

εN=ρ(Enucl+mNc
2), (3)

where Enucl is the total energy per particle of asymmetric
nuclear matter and ρ is the total number density,

ρ=ρp+ρn.

Here, ρn and ρp are number density of neutrons and pro-
tons respectively.

The β-equilibrium conditions and charge neutrality
of neutron star matter impose the following coupled con-
straints on our calculations,

µe=µµ = µn−µp (4)

ρp=ρe+ρµ. (5)

We find the abundance of the particles by solving these
coupled equations and calculate the total energy and the
EOS of the neutron star matter.

In the following, we determine the energy per particle
of asymmetric nuclear matter, Enucl, in more detail by
using the LOCV method. In our formalism, the energy
per particle is written in terms of correlation function,
f , and its derivatives; and approximately given up to the
two-body term as the following form [24],

Enucl([f ]) =
1

A

〈ψ|H|ψ〉

〈ψ|ψ〉
=

1

A

∑

τ=n,p

∑

k6kF
τ

~
2k2

2mτ

+
1

2A

∑

ij

〈ij |ν(12)|ij〉a, (6)

where ψ=Fφ is a trial many-body wave function. Here φ
is the Slater determinant of wave function of A indepen-
dent nucleons and F=S

∏

i>jf(ij) (S is a symmetrizing
operator) is a Jastrow form of A-body correlation op-
erator. In the above equation, kFτ = (3π2ρτ )

1/3 is the
Fermi momentum of nucleons and ν(12) is the effective
potential, which is given by,

ν(12)=−
~

2

2m
[f(12),[∇2

12,f(12)]]+f(12)V (12)f(12). (7)

Here, f(12) and V (12) are the two-body correlation and
potential, respectively. In our calculations, we used the
UV14 +TNI and AV18 two-body potentials.

In this formalism, the correlation function is consid-
ered as different forms [25], and calculated by numer-
ically solving of set of coupled and uncoupled Euler-
Lagrange differential equations [26]. These differential
equations are a result of functional minimization of the
two-body cluster energy with respect to the correlation
functions variation. For more details see Refs. [26–29].

A summary of our results for bulk properties of sym-
metric nuclear matter for the UV14 +TNI and AV18 po-
tentials are given in Table 1. In this table, we have given
the saturation density ρs, and the corresponding values
of energy per particle E0, incompressibility K0, and nu-
clear symmetry energy S0. The calculated saturation
properties of symmetric nuclear matter are in excellent
agreement with the experimental data [30] for the UV14

+TNI potential.

Table 1. Saturation density and corresponding val-
ues of energy per particle, incompressibility and
symmetry energy of symmetric nuclear matter.
Here ρs is given in fm−3 and energy parameters
are in MeV.

potential ρs E0 K0 S0

UV14 + TNI 0.17 -16.86 261 31.27

AV18 0.31 -18.47 301 36.24
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The pressure of neutron star matter can be calculated
by the following relation,

P = ρ
∂ε

∂ρ
−ε. (8)

In Fig. 1, we have plotted the pressure of neutron star
matter at the core of the star for the mentioned poten-
tials versus total energy density. In this figure we also
show the EOS for outer and inner crust. It is seen that
the UV14 +TNI potential leads to a stiffer EOS.

Fig. 1. The EOS of neutron star matter for the
UV14 + TNI and AV18 potentials. The EOS of
the outer and inner crust are also shown.

3 Results and discussion

We now proceed to show our results for rotating
neutron stars. We make use of the numerical RNS
code (http://www.gravity.phys.uwm.edu/rns/), which
integrates the Einstein field equations for a rapidly rotat-
ing neutron star given a perfect fluid EOS [31]. In Fig. 2,
we show the gravitational mass versus (circumferential)
radius for two different microscopic EOS at fixed fre-
quency f =0 and f =716 Hz. The solid (dashed) curve
shows the result for neutron stars including (excluding)
the outer crust structure. Clearly, the inclusion of the
outer crust has no considerable effect on the maximum
mass and corresponding radius of the neutron star. How-
ever, the global structure of the neutron star is sensitive
to its angular velocity, and the maximum mass increases
by increasing the rotation velocity.

From this figure, one can compare the results of the
EOS derived using the UV14+TNI and AV18 potentials.
At a frequency of f = 716 Hz, which corresponds to
the spin period P ≈ 1.39 ms, by applying the AV18 po-
tential, we get Mmax/M¯ ' 1.653 (' 1.649) for a neu-
tron star with (without) outer crust structure. Using

the UV14 +TNI leads to larger stellar mass and radius
in comparison with the AV18 potential, and we obtain
Mmax/M¯'2.0278 ('2.0275) with the UV14 +TNI po-
tential. This is in good agreement with the results ob-
tained by observations for the millisecond pulsar PSR
J0348+0432, M=2.01±0.04M¯ [10]. However, this pul-
sar rotates with the lower frequency of ' 25 Hz. This
does not affect the good comparison, because in this fre-
quency range the maximum mass has a little variance
with the rotation (see Fig. 2 and Table 2).

Fig. 2. (color online) The gravitational mass (M)
versus circumferential radius (R) for non-rotating
and rotating neutron star with the UV14 +TNI
and AV18 potentials. The frequency (f) is given
in Hz. The solid (dashed) curve shows the result
for neutron stars including (excluding) the outer
crust structure.

Another crucial parameter that can be used to de-
scribe rotating neutron stars is the Keplerian frequency,
fk, the maximum value of frequency. We have plot-
ted Keplerian frequencies versus gravitational masses in
Fig. 3. It is seen that fk depends on the EOS models pre-
sented here. From Fig. 3, for the case of the UV14 +TNI
potential, we find that the value of the Keplerian mass
corresponding to our calculated frequency, fk'1.93 kHz
(fk ' 1.96 kHz) is about Mk ' 2.36M¯ (Mk ' 2.40M¯)
for a neutron star with (without) outer crust structure.
For the case of the AV18 potential, we find Mk'1.95M¯
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(Mk'1.98M¯) corresponding to fk'2.23 kHz (fk'2.24
kHz). It is seen that the Keplerian mass and frequency
for a neutron star with outer crust are a little lower than
those of a neutron star without outer crust.

Fig. 3. (color online) The variation of the Keple-
rian frequency (fK) with gravitational mass M
for neutron stars with (solid curve) and with-
out (dashed curve) outer crust structure.

Fig. 4. (color online) The variation of the Keple-
rian frequency (fK) with gravitational mass M
for neutron stars for precise values of Keple-
rian frequency (solid curve) and those given by
Eq. (9) (dotted curve).

We have also calculated Keplerian frequency using
the fit formula proposed by Haensel et al. [6],

fK = 1.08 kHz

(

M

M¯

)1/2(
R

10 km

)−3/2

, (9)

where 0.5M¯ 6 M 6 0.9M stat
max , M

stat
max is the maximum

mass of the non-rotating (static) configuration and R

is the corresponding radius. The results are shown in
Fig. 4. As can be seen from this figure, there is a good
agreement between the precise values and those calcu-
lated using the above equation, especially for the UV14

+TNI potential.
In the following, we discuss the relation between max-

imum mass and frequency in more detail. In Fig. 5, we
present the maximum mass in units of Keplerian mass,
Mmax(MK), as a function of stellar frequency in units of
Keplerian frequency, f(fK). This figure shows that for
both EOS employed in the present work,Mmax(MK) dis-
plays a similar behavior versus f(fK) and, nearly, does
not depend on the EOS. According to this behavior, we
find

0.835MK.Mmax61.0MK .

In other words, the maximum mass in the Keplerian con-
figuration increases about 20% compared to the maxi-
mum mass of non-rotating configurations. This result is
in agreement with those obtained by the universal re-
lation Mk ' (1.203±0.022)M stat

max proposed by Breu and
Rezzola [32].

Fig. 5. (color online) The maximum mass versus
frequency for different equations of state. The
maximum mass and frequency are given in units
of Keplerian mass and frequency, respectively.

Now, we focus on the treatment of the dimensionless
spin parameter j, for rotating neutron stars. Here, we
would like to consider the influence of the outer crust
structure on the spin parameter at Keplerian frequency,
i.e. maximum spin parameter, jmax. In order to achieve
this, we shown the maximal spin parameter, jmax, as a
function of gravitational mass in Fig. 6. As can be seen
from this figure, the maximal spin parameter of the ro-
tating neutron star displays different behaviors when we
either include or exclude the outer crust structure. It
is seen that jmax for NSs with the outer crust structure
lying in the narrow range ∼ (0.64 - 0.7) for M>0.5M¯.

065102-4



Chinese Physics C Vol. 42, No. 6 (2018) 065102

Therefore, we see that our result for the upper limit of
jmax(6 0.7) is in agreement with those reported earlier
[17, 18] for traditional neutron stars, while, for the neu-
tron star with only inner crust structure jmax is larger
than 0.7 and this value is the lower limit of jmax(>0.7).
This shows that, in spite of the role of outer crust struc-
ture in the maximal mass, its role in maximal spin pa-
rameter is important. It is worth noting that the similar
results have been concluded in the work by Qi et al., but
they have considered the whole crust structure in calcu-
lating the maximum value of the spin parameter [18].

Fig. 6. (color online) The variation of the max-
imum spin parameter (jmax) with gravitational
mass M for neutron stars with (solid curve) and
without (dashed curve) outer crust structure.

Finally, we have investigated the spin parameter, j, of
slow rotating neutron stars. In Fig. 7, we plot the spin
parameter j as a function of the rotational frequency
normalized to Keplerian frequency, f/fk, for using the
UV14+TNI at different values of baryonic mass of neu-
tron star, Mb/M¯=1,1.5,2.

It is seen that for each fixed frequency, the curves are
essentially independent of mass sequence. A unified re-
lationship could be fitted approximately by the formula
j=0.16(f/fk)

3−0.1(f/fk)
2+0.612(f/fk), as denoted by

the circles. We also show the result of the universal for-
mula j=0.48(f/fk)

3−0.42(f/fk)
2+0.63(f/fk), which has

been suggested in Ref. [18], with squares, for comparison.
A summary of our results for the structural properties

of rotating neutron stars with and without outer crust
predicted from different EOS is given in Table 2. This ta-
ble also includes the maximum mass and corresponding
equatorial radius for neutron stars at f=0, and 716 Hz,
as well as the structural properties of Keplerian rotating
neutron stars for the maximum mass configuration, MK ,
RK , fK and jmax.

Fig. 7. (color online) The dimensionless spin pa-
rameter (j) as a function of the rotational fre-
quency normalized to Keplerian frequency (f/fK)
for the UV14+TNI potential. The circles show our
fitted formula, and squares that from Ref. [18].

Table 2. Maximum mass and corresponding equatorial radius for neutron stars at f =0, 716 Hz. The structural
properties of Keplerian rotating neutron stars for maximum mass configuration, MK , RK , fK and jmax are also
given. The gravitational mass is given in solar masses (M¯), R is in km and fK in kHz. The quantities in
parenthesis show the results of our calculation for neutron stars without outer crust structure.

potential Mf=0 Rf=0 Mf=716 Rf=716 MK RK fK jmax

UV14 + TNI 1.99(1.99) 9.67(9.56) 2.027(2.027) 9.8(9.7) 2.36(2.40) 12.59(12.59) 1.93(1.96) 0.682(0.707)

AV18 1.63(1.63) 8.09(7.92) 1.653(1.649) 8.22(8.11) 1.95(1.98) 10.77(10.82) 2.23(2.24) 0.683(0.71)

4 Summary and conclusions

In this work, we have calculated the structural prop-
erties of rotating neutron stars with and without outer

crust structures. Here we have employed lowest or-
der constrained variational approach and used the UV14

+TNI and AV18 potentials to compute the EOS of nu-
clear matter. We have computed maximum mass and
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corresponding equatorial radius at fixed frequency f=0
and f =716 Hz. We have also computed the structural
properties of Keplerian rotating neutron stars for maxi-
mum mass configuration, MK , RK , fK and jmax.

A summary of our results for the structural prop-
erties of rotating neutron stars with and without outer
crust predicted from different EOS is given in Table 2.
Our results show that the maximal spin parameter, jmax,
lies in the narrow range ∼ (0.64 - 0.7) for M>0.5M¯ for

the EOS considered. In the case of slow rotating neutron
stars, we have suggested a unified relationship for the
spin parameter j=0.16(f/fk)

3−0.1(f/fk)
2+0.612(f/fk)

which is essentially independent of mass sequence. Fi-
nally, our results in the Keplerian configuration are in
very good agreement with those of other studies.

We wish to thank the University of Zanjan Research

Councils.
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