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Abstract: The lowest-lying glueballs are investigated in lattice QCD using Nf = 2 clover Wilson fermions on

anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion

masses of mπ∼938 MeV and 650 MeV. The quark mass dependence of the glueball masses has not been investigated

in the present study. Only the gluonic operators built from Wilson loops are utilized in calculating the corresponding

correlation functions. In the tensor channel, we obtain the ground state mass to be 2.363(39) GeV and 2.384(67)

GeV at mπ ∼ 938 MeV and 650 MeV, respectively. In the pseudoscalar channel, when using the gluonic operator

whose continuum limit has the form of ǫijkTrBiDjBk, we obtain the ground state mass to be 2.573(55) GeV and

2.585(65) GeV at the two pion masses. These results are compatible with the corresponding results in the quenched

approximation. In contrast, if we use the topological charge density as field operators for the pseudoscalar, the masses

of the lowest state are much lighter (around 1 GeV) and compatible with the expected masses of the flavor singlet qq̄

meson. This indicates that the operator ǫijkTrBiDjBk and the topological charge density couple rather differently

to the glueball states and qq̄ mesons. The observation of the light flavor singlet pseudoscalar meson can be viewed

as the manifestation of effects of dynamical quarks. In the scalar channel, the ground state masses extracted from

the correlation functions of gluonic operators are determined to be around 1.4-1.5 GeV, which is close to the ground

state masses from the correlation functions of the quark bilinear operators. In all cases, the mixing between glueballs

and conventional mesons remains to be further clarified in the future.
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1 Introduction

Due to the self-interactions among gluons, quantum
chromodynamics (QCD) admits the existence of a new
type of hadron made up of gluons, usually called the
glueball. Glueballs are of great physical interest, since
they are distinct from the conventional qq̄ mesons de-
scribed in the constituent quark model. Glueballs have
been intensively studied by lattice QCD and other theo-
retical methods [1–7]; for more details of this subject, see
the reviews in Refs. [8–11]. Early lattice QCD studies in
the quenched approximation show that the lowest pure
gauge glueballs are the scalar, the tensor, and the pseu-
doscalar glueballs, with masses of 1.5-1.7 GeV, 2.2-2.4
GeV, and 2.6 GeV, respectively [12–14].

Experimentally, there are several candidates for
the scalar glueball, such as f0(1370),f0(1500),f0(1710).
However, none of them has been unambiguously identi-
fied as a glueball state. On the other hand, J/ψ radiative
decays are usually regarded as an ideal hunting ground
for glueballs. A few lattice studies have been devoted
to the calculation of the radiative production rate of the
pure scalar and tensor glueballs in the quenched approx-
imation [15, 16]. The predicted production rate of the
scalar glueball is consistent with that of f0(1710), and
supports f0(1710) to be either a good candidate for the
scalar glueball or dominated by a glueball component.
The predicted production rate of the tensor glueball is
roughly 1%. It is interesting to note that the BESIII
Collaboration finds that the tensor meson f2(2340) has
large branching fractions in the processes J/ψ→γηη [17]
and J/ψ→γφφ [18].

Even though quenched lattice QCD studies have pro-
vided some information on the existence of glueballs, full
lattice QCD studies in the glueball sector are highly de-
sirable. For the masses of the scalar and tensor glueballs,
some preliminary unquenched lattice studies have given
compatible results [19–22]. However, for the mass of the
pseudoscalar glueball, a consensus has not been reached.
For example, in Ref. [21] the authors observed a pseu-
doscalar glueball state with a mass close to the result in
the quenched approximation, but this was not confirmed
by Ref. [22]. On the other hand, owing to the UA(1)
anomaly, in the pseudoscalar channel, gluons can couple
strongly to the flavor singlet pseudoscalar meson (η′ in
the Nf=2+1 case) in the presence of dynamical quarks.
Therefore, it is necessary to identify the contribution of
the η′ meson before one draws any conclusions on the
pseudoscalar glueball.

In this work, we attempt to investigate the glueball
spectrum using the Nf =2 clover Wilson fermion gauge
field configurations that we generated on anisotropic lat-
tices. In order to check the quark mass dependence,
we have generated two gauge configuration ensembles

with two different bare quark mass parameters which
correspond to the physical pion masses mπ ∼ 650 and
938 MeV, respectively. The advantage of using an
anisotropic lattice is two-fold: on the one hand, large
statistics can be obtained with a relatively low cost in
terms of computational resources. On the other hand,
the finer lattice spacing in the temporal direction can
provide a better resolution for the signals of the desired
physical states. First, we will focus on the lowest-lying
glueball states, such as the scalar, the tensor and the
pseudoscalar states. Secondly, we will then focus more on
the pseudoscalar channel. A recent Nf=2+1 lattice study
showed that η′ could be probed by the topological charge
density operator [23]. In contrast, a similar study in
the quenched approximation found a pseudoscalar with a
mass compatible with that in the pure gauge theory [24].
Motivated by this, we use conventional Wilson loop op-
erators to study the lowest pseudoscalar glueball state
and check for the lowest flavor singlet meson state with
topological charge density operator on the same gauge
ensembles.

This paper is organized as follows. Section 2 contains
a brief description for the generation of gauge field con-
figurations. Section 3 presents the calculation details and
the results of the glueball spectrum. The study of the
pseudoscalar channel using the topological charge den-
sity operator will be discussed in Section 4, where we
will also analyze the difference of the topological charge
density operator from the conventional gluonic operators
for the pseudoscalar glueball in previous quenched stud-
ies. Finally, we will give a summary and an outlook in
Section 5.

2 Lattice setup

The gauge action we used is the tadpole improved
gluonic action on anisotropic lattices [12]:

Sg= − β
∑

i>j

[

5

9

TrPij

γgu4
s

− 1

36

TrRij

γgu6
s

− 1

36

TrRji

γgu6
s

]

− β
∑

i

[

4

9

γgTrP0i

u2
s

− 1

36

γgTrRi0

u4
s

]

(1)

where Pij is the usual plaquette variable and Rij is the
2×1 Wilson loop on the lattice. The parameter us,
which we take to be the fourth root of the average spatial
plaquette value, incorporates the usual tadpole improve-
ment and γg designates the bare gauge aspect ratio of the
anisotropic lattice, denoted as ξ0 in our former quenched
studies [25]. Although γg suffers only small renormal-
ization with the tadpole improvement [26], we have to
tune it by determining the renormalized anisotropy ra-
tio ξg. As for the tadpole improvement parameter ut for
temporal gauge links, we take the approximation ut≈1
following the conventional treatment of the anisotropic
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lattice setup.
We use the Wilson-loop ratios approach, with which

the finite volume artifacts mostly cancel [27, 28]. We
measure the ratios

Rss(x,y) =
Wss(x,y)

Wss(x+1,y)
→e−asVs(yas), (2)

Rst(x,t) =
Wst(x,t)

Wst(x+1,t)
→e−asVs(tat) (3)

and expect the spatial and temporal behaviors to be the
same at the correct ξg.

Therefore we find ξg by minimizing

L(ξg)=
∑

x,y

(Rss(x,y)−Rst(x,ξgy))
2

(∆Rs)2+(∆Rt)2
(4)

where ∆Rs and ∆Rt are the statistical errors of Rss and
Rst. We interpolate Rst(x,ξgy) and its error with a cubic
spline interpolation at non-integer ξgy. Since small x,y
may introduce short-range lattice effects and large ones
contribute only fluctuations, we scan and test different
ranges and finally choose x,y∈{2,3,4,5}.

We adopt the anisotropic clover fermion action in the
fermion sector [29]:

Sf =
∑

x

ψ̄(x)

[

m0+γtŴt+
∑

s

1

γf
γsŴs

− 1

4u2
s

(

γg
γf

+
1

ξ

)

∑

s

σtsF̂ts

+
1

u3
s

1

γf

∑

s<s′

σss′ F̂ss′

]

ψ(x) (5)

where F̂µν =
1
4
Im(Pµν(x)) and the dimensionless Wilson

operator reads

Ŵµ = ∇µ−
1

2
γµ∆µ,

∇µf(x) =
1

2

[

Uµ(x)f(x+µ)−U †
µ(x−µ)f(x−µ)

]

,

∆µf(x) = Uµ(x)f(x+µ)+U
†
µ(x−µ)f(x−µ)−2f(x).

The bare fermion aspect ratio γf is also tuned to make
sure that the measured aspect ratio ξf ≈ ξg ≈ ξ = 5. ξf
is measured from the dispersion relation of the pseu-
doscalar and vector mesons,

E(p)2a2t=m
2a2t+

|~p|2a2s
ξ2f

. (6)

where ~p=2π~k/Ls is the momentum on the lattice with
periodic spatial boundary conditions.

We generate two gauge ensembles on the 123×128
anisotropic lattice at β=2.5 with the bare quark mass pa-
rametersm0=0.05 andm0=0.06. The lattice spacings as
are set by calculating the static potential parameterized
as V (r)=V0+α/r+σr. Using the Sommer scale parameter
r−1
0 =410(20) MeV defined through r2 dV (r)

dr
|r=r0 =1.65,

we can determine the ratio

r0
as

=

√

1.65+α

σa2s
(7)

where α and σa2s are derived from the fit of calculated po-
tential V (r)=V (r̂as) with r̂ being the spatial distance in
lattice units. Finally, as is inverted to the value in phys-
ical units by the Sommer’s scale parameter r−1

0 =410(20)
MeV. The ensemble parameters are listed in Table 1,
where we also give the physical values of a−1

t for the two
ensembles.

Table 1. Parameters of configurations used. The spatial lattice spacing as is set by the calculation of the static
potentials and the Sommer’s scale parameter r−1

0 =410(20) MeV. We also give the value of a−1
t in physical units.

β m0 L3
×T ξ as/fm a−1

t /GeV Nconf

2.5 0.05 123×128 5 0.114(1) 8.654(76) 4800

2.5 0.06 123×128 5 0.118(1) 8.360(76) 10400

Table 2. Masses of the ground state pseudoscalar, vector and scalar mesons (these are actually isovector mesons
since we ignore the disconnected contributions). The measured values are also inverted to the values in physical
units through a−1

t in Table 1

mPSat mPS/MeV mV at mV /MeV mSat mS/MeV

0.0751(5) 650(4) 0.1147(19) 993(16) 0.1574(61) 1362(53)

0.1119(4) 938(3) 0.1388(12) 1164(10) 0.1757(34) 1473(28)

The pion masses on the two ensembles are measured
to be 938 MeV and 650 MeV respectively. In the fol-
lowing, we use these mπ’s to label the gauge ensembles
for convenience. Apart from the pion masses, we also

calculate the masses of the vector meson and scalar me-
son for calibration, which are listed in Table 2. We use
the conventional I =1 vector and scalar quark bilinear
operators as sink operators and the corresponding Gaus-
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sian smeared wall source operators to calculate the cor-
relation functions. There is no ambiguity for the vector
meson masses mV ’s since they are all below the two-pion
threshold. For the scalar, we actually deal with a0, whose
two-body strong decay mode is mainly η′π (there is only
one I=0 pseudoscalar meson for Nf =2, which is taken
as the counterpart of the (approximately) flavor-singlet
η′ in the Nf=3 case). At mπ∼938 MeV, the calculated
mass in a0 channel is 1473(28) MeV, which must be the
mass of a0 since it lies below the two-pion threshold and
certainly below the η′π threshold. Atmπ∼650 MeV,mη′

is estimated to be mη′ ∼890 MeV (see below in Section
4), thus the mass value of 1362(53) MeV is also below
the η′π threshold and can be taken as the mass of the a0
scalar at this pion mass. In order to calculate the I=0
scalar meson mass, the disconnected diagrams (quark an-
nihilation diagrams) should be considered. We have not
done this yet, but as a rough estimate, we take the a0
mass as an approximation to the mass of the isoscalar
scalar meson.

3 Numerical details

In this work, the spectrum of the lowest-lying glue-
balls in three specific channels, namely scalar, tensor and
pseudoscalar, will be explored. The interpolating oper-
ators for these states are pure gluonic operators which
have been extensively adopted in previous quenched lat-
tice studies. In other words, in each specific channel,
no operators involving quark fields are included. This
of course is only an approximation, assuming that the
gluon-dominated states that we are after can be well-
described by gluonic operators. Needless to say, mixing
with the quark operators should be considered later on,
especially for cases where the mixing is severe. For com-
pleteness, we briefly recapitulate the major ingredients
of glueball spectrum computation in the following. One
can refer to Ref. [14] for further details.

3.1 Variational method

The continuum SO(3) spatially rotational symme-
try is broken into a discrete symmetry described by the
octahedral point group O on the lattice, whose irre-
ducible representations R are labeled as A1,A2,E,T1,T2,
and have dimensions 1, 1, 2, 3, 3 respectively. There-
fore, the lattice interpolation fields for a glueball of JPC

quantum number should be denoted by RPC , with R
the irreducible representation of O, which may include
the components of J in the continuum limit. The parity
P=± and the charge conjugation C=± can be realized
by considering the transformation properties under the
spatial reflection and time reversal operations. Since the
octahedral groupO is a subgroup of SU(2), the subduced
representation of SU(2) with respect to O is reducible in

general (for integer spin, this occurs for J>2). Table 3
shows the reduction of the subduced representation of
SU(2) up to J = 5. For instance, the scalar and pseu-
doscalar with J = 0 states are represented by A1, and
tensor states with J=2 are reduced to the direct sum of
E and T2, i.e. (J=2)↓O=E⊕T2.

Table 3. Reduction of subduced representation of
SU(2) with respect to octahedral group O up to
J=5.

H
H
H
H

R
J

0 1 2 3 4 5

A1 1 0 0 0 1 0

A2 0 0 0 1 0 0

E 0 0 1 0 1 1

T1 0 1 0 1 1 2

T2 0 0 1 1 1 1

As described in Ref. [14], we use Wilson loops (up
to 8 gauge links) as shown in Fig. 1. Each irrep R of
group O can be realized by the specific linear combina-
tion of its 24 copies of a prototype Wilson loop under
the 24 rotation operations of O. The combination co-
efficients of each R can be found in Ref. [14]. So each
prototype may provide a different realization of R. On
the other hand, the Wilson loops mentioned above can
be built from smeared gauge links, such that different
smearing schemes can provide more realizations of the
gluonic operators. In practice, we have four different
realization of each R by choosing different prototypes.
For the smearing of gauge links, we adopt 6 smearing
schemes by combining the single-link and double-link
smearing procedures with different iteration sequences.
Finally we have a set of 24 different gluonic operators,
{φ(R)

α ,α=1,2,...,24}, for each RPC .

Fig. 1. Prototypes of Wilson loops for the con-
struction of glueball operators [13, 14].

Based on these operator sets, we use the variational
method to get the optimized operators Φ(R) which mostly
project to specific glueball states. In each symmetry
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channel R, we first calculate the 24×24 correlation matrix
C(R)(t),

C(R)
αβ (t)=

∑

τ

〈0|φ̄(R)
α (t+τ)φ̄(R)†

β (τ)|0〉, α,β=1,...,24 (8)

where φ̄(R)
α is the vacuum-subtracted operator of φ(R)

α ,

φ̄(R)
α (t)=φ(R)

α (t)−〈0|φ(R)
α (t)|0〉. (9)

In practice, we only apply the vacuum subtraction to
the operators in the A++

1 channel. Secondly, we solve
the following generalized eigenvalue problem,

C
(R)(t0)v

(R)
i =λi(t0)C

(R)(0)v(R)
i , (10)

where v
(R)
i is the i-th eigenvector, and λi≡ e−m̄i(t0)t0 is

the i-th eigenvalue where m̄i(t0) is dependent on t0 and
is close to the energy of the i-th state. For all the R
channels, we use t0=1. It is expected that the eigenvec-
tor v

(R)
i gives the linearly combinational coefficients of

operators φ̄(R)
α to build an optimal operator Φ(R)

i which
overlaps mostly to the i-th state,

Φ(R)
i (t)=

24
∑

α=1

v(R)
i,α φ̄

(R)
α (t). (11)

3.2 Data analysis

In this work, the correlation function of the optimal
operator Φ(R)

i for the i-th state is calculated as

C̃(R)
i (t)=

∑

τ

〈0|Φ(R)
i (t+τ)Φ(R)†

i (τ)|0〉, (12)

where we do the summation over the temporal direction
to increase the statistics. Accordingly, the effective mass
is defined as

m(R)
i,eff(t)=ln

(

C̃(R)
i (t)

C̃(R)
i (t+1)

)

. (13)

We divide the measurements into bins with each bin in-
cluding 100 measurements. The statistical errors are ob-
tained by a one-bin-eliminating jackknife analysis.

For the A++
1 channel, the subtraction of the vacuum

is very subtle. Even though we have O(104) gauge con-
figurations in each ensemble, when we perform the jack-
knife analysis above after subtracting the vacuum ex-
pectation values of the operator, we find there is still a
residual (negative) constant term in the correlation func-
tion, which makes the effective mass mi,eff(t) increase
when t is large. This problem can be attributed to the
large fluctuation of gauge configurations in the presence
of sea quarks. To circumvent this difficulty, we adopt a
vacuum-subtraction scheme by subtracting the correla-
tion function C̃(t) with the shifted one C̃(t+δt),

C̄
A

++
1

i (t)=C̃
A

++
1

i (t)−C̃A
++
1

i (t+δt), (14)

whose spectral expression is

C̄
A

++

1

i (t)=
∑

j

W
A

++

1

ij (1−e−mjδt)e−mjt≡
∑

j

W
′A++

1

ij e−mj t,

(15)

where W
A

++
1

ij is the spectral weight of the j-th state in

C̃
A

++

1

i (t). Obviously, the possible constant term cancels
with the spectrum unchanged. This subtraction may
decrease the signal-to-noise ratio to some extent, since
signals can be suppressed (especially for small δt) while
the statistical errors may increase. For a too large δt,
although signals may remain almost as they were, the
subtracting term C̃(t+δt) can introduce more errors to
C̄(t). In practice, we take δt=5at.

We focus on the RPC = A++
1 ,A−+

1 ,E++, and T++
2

channels in this work. For all these channels, the effec-
tive masses of C̃R

1 (t) (red points) and C̃R
2 (t) (blue points)

(C̄
A

++
1

i for the A++
1 channel) are plotted in Figs. 2, 3, 4

and 5, respectively. Even though the temporal extent
of our lattices is T = 128at, for all the four channels,
the signal-to-error ratios of the correlation functions de-
crease rapidly as t increases and tend to be less than
one beyond t>20at. Therefore, in these figures we only
show the effective masses in the time range t/at∈[0,20].
In each figure, the left-hand panel shows the result at
mπ ∼ 938 MeV, and the right-hand panel is for mπ ∼
650 MeV. Even though we have a set of 24 operators
for each channel, it is seen that the effective masses do
not show plateaus from the very early time slices. This
is very different from the case in the quenched approx-
imation. One important reason for this is that, in each
channel, the full QCD spectrum is much more compli-
cated than in the quenched approximation due to the
sea quarks. This is true in principle, since qq̄ states and
multi-hadron states with the same quantum number do
contribute to the corresponding correlation function in
the presence of sea quarks.

Given the limited number of independent operators,
our optimal operator Φ(R)

i is actually not optimized as
expected, namely, it does not only overlap to the i-th
state but also substantially to other states. As seen in
the effective mass plots, when m(R)

1,eff(t) tends to reach a

plateau as t increases, m(R)
2,eff(t) decreases gradually and

finally merges into this plateau at large t (within errors).
Even though one can carry out a single exponential fit
to the mass of the ground state in the plateau range
roughly beyond t/at≈6 or 7, the bad signal-to-noise ra-
tio in this time range results in large statistical errors.
Since we focus on the ground states in the present study,
in order to get more precise results for the masses of
the ground states, we adopt the following data-analysis
strategy, which also makes use of the measured data in
the short time range. In each channel, we carry out a cor-
related fit to C̃(R)

1 (t) and C̃(R)
2 (t) simultaneously through
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Fig. 2. (color online) Effective mass plateaus of C̄
(R)
1 (t) (red points) and C̄

(R)
2 (t) (blue points) in the R = A++

1

channel. The left- and right-hand panels show the results at mπ∼938 MeV and mπ∼650 MeV, respectively. The
shaded bands are plotted with the best-fit parameters using the model of Eq. (16) in the illustrated time range.
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Fig. 3. (color online) Effective mass plateaus of C̃
(R)
1 (t) (red points) and C̃

(R)
2 (t) (blue points) in the R = A−+

1

channel. The left- and right-hand panels show the results at mπ∼938 MeV and mπ∼650 MeV, respectively. The
shaded bands are plotted with the best-fit parameters using the model of Eq. (16) in the illustrated time range.

the following function forms,

C̃
(R)
1 (t) = W

(R)
11 e−m1t+W

(R)
12 e−m2t,

C̃(R)
2 (t) = W (R)

21 e−m1t+W (R)
22 e−m2t, (16)

where the second mass term is introduced to take into
account the contribution of the second state and higher
states (of course, one can add more mass terms, but more
parameters will ruin the data fitting due to the limited
number of data points). In the fitting procedure, the up-
per limits tmax of the fit windows of C̃(R)

1 (t) and C̃(R)
2 (t)

are chosen properly to include only the data points with
good signal-to-noise ratios (the tmax of C̃(R)

2 (t) are set to
be from 7at to 9at, while the tmax of C̃

(R)
1 (t) can be larger

than 10at). Actually, the fit results are insensitive to tmax

in these ranges since they are almost determined by the
data points in the small t range where relative errors are

much smaller. For each channel, we keep tmax fixed and
vary tmin to check the stability and the quality of the
fit. The fit results for the scalar (A++

1 ), the pseudoscalar
(A−+

1 ) and the tensor channels ( E++ and T++
2 ) at the

two pion masses are listed in Tables 4 and 5. Except
for the tmin=1 case in the T++

2 channel, all other fits are
acceptable with reasonable χ2/dof . For all four chan-
nels, the fitted parameters m1 and W11 are stable with
respect to the various tmin, while m2 decreases as tmin

increases gradually. This signals that our fitting model
in Eq. (16) is not so good that we should include more
mass terms to account for higher states, which, however,
affect the second state more than the first state. Since
we are interested only in the first states, we do not take
m2 seriously and treat it as an object accommodating
the effect of higher states.

In Figs. 2, 3, 4 and 5, we also plot shaded bands to
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Fig. 4. (color online) Effective mass plateaus of C̃
(R)
1 (t) (red points) and C̃

(R)
2 (t) (blue points) in the R = E++

channel. The left- and right-hand panel show the results at mπ∼938 MeV and mπ∼650 MeV, respectively. The
shaded bands are plotted with the best-fit parameters using the model of Eq. (16) in the illustrated time range.
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Fig. 5. (color online) Effective mass plateaus of C̃
(R)
1 (t) (red points) and C̃

(R)
2 (t) (blue points) in the R = T++

2

channel. The left- and right-hand panel show the results at mπ∼938 MeV and mπ∼650 MeV, respectively. The
shaded bands are plotted with the best-fit parameters using the model of Eq. (16) in the illustrated time range.

illustrate the goodness of the fits. For each channel, after
the correlated fit to the two correlations simultaneously,
we get the six parameters m1, m2, W

(R)
11 , W (R)

12 ,W (R)
21 ,

and W (R)
22 at different tmin, which are listed in Tables 4

and 5. The red and blue bands are obtained through the
function

m(R)
i,eff(t) = ln

C̃(R)
i (t)

C̃(R)
i (t+1)

= ln
W (R)

i1 e−m1t+W (R)
i2 e−m2t

W (R)
i1 e−m1(t+1)+W (R)

i2 e−m2(t+1)
. (17)

We calculate these values at each t in the fit windows.
The widths of the bands show the errors estimated
through standard error propagation using the covariance

error matrix of the parameters,

σ2
C≈

6
∑

i,j=1

∂C

∂ai
σij

∂C

∂aj
,

where C denotes m(R)
i,eff(t), the ai’s are the six parameters

in Eq. (16), and the σij ’s are elements of the covariance
error matrix of the parameters, which are obtained di-
rectly from the fit. The extensions of the red and blue
bands corresponds to the actual fit windows.

It is seen that the fit model describes the data of the
ground state very well throughout the fit windows. For
the second states, the fit model also fits the data more
or less, especially in the small t region. In the large t re-
gions, however, the fitted results deviate somewhat from
the data. This is understandable, since higher states,
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Table 4. Fitted results using the fit model in Eq. (16) with different tmin at mπ∼938 MeV.

JPC tmin m1at m2at W11 W12 W21 W22 χ2/dof

A++
1 1 0.170(06) 0.556(09) 0.61(02) 0.36(02) 0.11(01) 0.85(01) 1.84

2 0.168(07) 0.494(16) 0.59(03) 0.36(03) 0.06(02) 0.84(01) 0.44

3 0.170(09) 0.495(26) 0.61(04) 0.34(05) 0.06(02) 0.84(02) 0.47

4 0.169(12) 0.474(43) 0.59(06) 0.34(09) 0.05(03) 0.81(05) 0.51

5 0.169(12) 0.546(67) 0.61(07) 0.43(14) 0.07(03) 1.02(19) 0.33

A−+
1 1 0.307(09) 0.720(15) 0.66(02) 0.33(03) 0.15(2) 0.79(2) 2.51

2 0.316(13) 0.665(28) 0.67(05) 0.28(05) 0.12(3) 0.79(2) 1.21

3 0.306(19) 0.633(38) 0.62(08) 0.33(10) 0.09(04) 0.77(3) 1.39

4 0.272(31) 0.530(57) 0.43(13) 0.53(14) 0.02(5) 0.67(4) 1.17

E++ 1 0.278(05) 0.691(09) 0.66(01) 0.32(01) 0.19(1) 0.77(11) 1.48

2 0.278(07) 0.669(17) 0.66(02) 0.32(03) 0.18(2) 0.77(11) 1.92

3 0.287(13) 0.568(33) 0.66(06) 0.26(07) 0.12(4) 0.72(2) 0.52

4 0.280(20) 0.500(47) 0.60(10) 0.29(14) 0.05(6) 0.68(3) 0.43

5 0.280(26) 0.499(78) 0.61(17) 0.29(20) 0.06(8) 0.67(6) 0.54

T++
2 1 0.283(04) 0.657(06) 0.64(01) 0.33(01) 0.15(09) 0.80(1) 5.66

2 0.285(06) 0.590(10) 0.63(02) 0.33(02) 0.10(1) 0.80(1) 1.63

3 0.299(08) 0.564(18) 0.69(04) 0.22(05) 0.09(2) 0.78(1) 0.59

4 0.293(13) 0.543(32) 0.64(07) 0.28(09) 0.06(3) 0.77(2) 0.63

5 0.273(19) 0.517(55) 0.52(11) 0.45(13) 0.04(5) 0.74(7) 1.13

Table 5. Fitted results using the fit model in Eq. (16) with different tmin at mπ∼650 MeV.

JPC tmin m1at m2at W11 W12 W21 W22 χ2/dof

A++
1 1 0.176(09) 0.548(14) 0.62(03) 0.36(03) 0.09(02) 0.85(02) 1.71

2 0.163(14) 0.481(23) 0.55(05) 0.42(06) 0.04(2) 0.85(2) 0.98

3 0.173(17) 0.515(37) 0.59(07) 0.38(09) 0.06(3) 0.88(03) 0.99

4 0.184(20) 0.549(87) 0.66(09) 0.27(13) 0.09(5) 0.92(15) 1.12

5 0.150(25) 0.533(99) 0.49(11) 0.69(22) 0.06(4) 0.96(03) 0.84

A−+
1 1 0.289(10) 0.710(16) 0.60(03) 0.38(03) 0.12(2) 0.82(2) 1.71

2 0.320(15) 0.706(40) 0.70(06) 0.24(06) 0.15(4) 0.79(2) 0.71

3 0.311(23) 0.673(60) 0.66(10) 0.29(13) 0.13(5) 0.77(4) 0.81

4 0.286(41) 0.593(98) 0.52(19) 0.47(21) 0.07(8) 0.71(9) 0.93

E++ 1 0.268(07) 0.646(10) 0.62(02) 0.36(02) 0.14(2) 0.81(1) 1.42

2 0.267(10) 0.601(20) 0.61(04) 0.35(04) 0.11(2) 0.80(1) 0.81

3 0.255(13) 0.578(28) 0.55(05) 0.42(06) 0.09(3) 0.79(1) 0.71

4 0.254(20) 0.563(49) 0.54(09) 0.42(11) 0.08(4) 0.77(6) 0.85

5 0.272(36) 0.453(86) 0.62(24) 0.17(31) 0.00(11) 0.66(2) 0.46

T++
2 1 0.283(06) 0.674(09) 0.66(02) 0.31(02) 0.18(1) 0.78(1) 2.67

2 0.298(10) 0.627(21) 0.69(04) 0.25(04) 0.15(3) 0.77(2) 0.69

3 0.289(15) 0.575(30) 0.66(06) 0.28(07) 0.11(4) 0.75(2) 0.40

4 0.274(22) 0.542(46) 0.57(10) 0.39(13) 0.08(5) 0.74(4) 0.36

5 0.266(30) 0.578(95) 0.54(15) 0.50(21) 0.09(6) 0.82(17) 0.33

Table 6. Final results for the masses of the lowest state we obtain in the A++
1 ,A−+

1 ,E++ and T++
2 channels. These

are the averaged values weighted by the inverse squared errors at each tmin.

mπ/MeV m1(A
++
1 )/MeV m1(E++)/MeV m1(T

++
2 )/MeV m1(A

−+
1 )/MeV

938 1417(30) 2332(31) 2392(26) 2573(55)

650 1498(58) 2294(43) 2474(39) 2585(65)
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Fig. 6. (color online) Fitted m1 for A++
1 ,A−+

1 ,E++ and T++
2 are plotted with respect to tmin for mπ ∼ 938 MeV

(left) and mπ∼650 MeV (right). The values are expressed in physical units inverted by the lattice spacing listed
in Table 1. The colored bands illustrate the averaged values weighted by the inverse squared errors at each tmin.

which do contribute, are missed in this model. This devi-
ation actually contributes much to the χ2. It is expected
that the fitted m2 is generally (much) higher than the
mass of the second state.

As shown in Tables 4 and 5, most of the fits using
different tmin are statistically acceptable and the masses
of the first states are relatively stable. Therefore, for
the final result of m1 in each channel, we take tenta-
tively the average value ofm1’s at different tmin weighted
by their inversed squared errors. The statistical errors
are derived accordingly. This averaging is illustrated in
Fig. 6, where the data points are the fitted results of m1

at different tmin and the shaded bands are the averaged
values with averaged errors. The results are also listed
in Table 6. At the heavy pion mass mπ ∼ 938 MeV,
m1(E

++) is very close to m1(T
++
2 ), as expected by the

rotational symmetry restoration in the continuum limit,
where they correspond to the mass of the same 2++ ten-
sor state. However for the lighter mπ∼650 MeV, the two
masses deviate from each other by 200 MeV. Since the
lattice spacings at the two pion masses are very close,
the extent of the rotational symmetry breaking should
be similar. We tentatively attribute this large deviation
to the relatively small statistics at mπ∼650 MeV, which
is roughly one-half as large as that at mπ∼938 MeV (see
Table 1). From Table 2 and Table 6 one can see that the
masses of the ground state scalar meson and our scalar
glueball are very close to each other. This may indicate
there is mixing between qq̄ and the scalar glueball, which
needs further investigation.

3.3 Interpretation of the ground states

Generally speaking, the two-point function of an in-
terpolating operator O(t) with definite quantum num-

bers is usually parameterized as

C(t)=〈0|O(t)O†(0)|0〉=
∑

n

〈0|O|n〉〈n|O†|0〉e−mnt, (18)

where {|n〉,n=1,2,...} are eigenstates of a Hamiltonian
with eigenvalue mn, which make up an orthogonal, nor-
malized, and complete state set with

∑

n

|n〉〈n|=1, 〈n|n′〉=δnn′ . (19)

For QCD on a Euclidean spacetime lattice, mn take dis-
cretized values and the connection of these discretized
energy levels to the relevant S-matrix parameters should
be established through other theoretical formalisms, such
as Lüscher’s. Here we only focus on the physical meaning
of the fitted masses of the lowest states.

We take the scalar channel as an example. A hadron
system of the bare states with the scalar quantum num-
ber JPC = 0++ can be a bare scalar glueball |G0++〉, a
bare qq̄ scalar meson |f0〉, or even ππ scattering states
|ππ〉. We simplify the matter further by assuming that
the two adjacent states mix most, then we can consider
only a two-state system composed of the ground state
scalar glueball |G〉 and its adjacent state, which could
be either |ππ〉 or |f0〉. This then yields the fitting model
in Eq. (16) that we introduced previously.

We compare the results in the present study with the
previous quenched and unquenched results in Table 7.
The tensor glueball masses are obtained by averaging
the corresponding E++ and T++

2 values. Despite the
fact that glueball correlation functions in the unquenched
QCD acquire more complicated spectrum decomposition
than the quenched case, the masses of the bare glueball
states |G〉 can still be obtained by assuming the cor-
responding operators O couple weakly to other states.
Therefore, it is naturally understood that the glueball
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Table 7. Comparison of our results with previous results both from quenched lattice QCD studies [13, 14] and a
full-QCD study [22]. We average the masses of the E++ and T++

2 states to obtain an estimate of the 2++ glueball
mass.

mπ/MeV m0++/MeV m2++/MeV m0−+/MeV

Nf=2 938 1417(30) 2363(39) 2573(55)

650 1498(58) 2384(67) 2585(65)

Nf=2+1 [22] 360 1795(60) 2620(50) —

quenched [13] — 1710(50)(80) 2390(30)(120) 2560(35)(120)

quenched [14] — 1730(50)(80) 2400(25)(120) 2590(40)(130)

spectrum in our full-QCD lattice studies is similar to
that in the quenched approximation. The difference is
still visible, however, and it is most evident in the scalar
channel, where one would expect that this weak coupling
assumption is no longer valid.

4 Further study on the pseudoscalar

channel

As presented in the last section, in the A−+
1 channel,

we obtain the mass of the ground state to be mA
−+
1

∼2.6

GeV at the two pion masses, which is compatible with
the pure gauge glueball mass. Theoretically, in the pres-
ence of sea quarks, the flavor singlet qq̄ pseudoscalar
meson is expected to exist, but we do not observe this
state from the correlation function of the glueball oper-
ator Φ(PS).

In order to check the existence of the flavor singlet
pseudoscalar meson in the spectrum, we would like to
study the correlation function of topological charge den-
sity operator q(x). This is motivated by the partially
conserved axial current (PCAC),

∂µJ
µ
5 (x)=2mP (x)−Nfg

2

16π2
ǫµνρσTrF

µνF ρσ, (20)

where g is the strong coupling constant, P (x) =
ψ̄(x)γ5ψ(x) is the pseudoscalar density, and the anoma-
lous gluonic operator ǫµνρσF

µνF ρσ is the so-called topo-
logical charge density (up to a constant factor), which is
usually denoted by q(x). Thus q(x) may have substan-
tial overlap with the flavor singlet pseudoscalar meson
(denoted by η′).

The correlation function of q(x) is expressed as

Cq(x−y)=〈q(x)q(y)〉, (21)

from which one can get the topological susceptibility

χt=
1

V4

∫

d4xd4yCq(x−y). (22)

where V4 is the four-dimensional volume of the Euclidean
spacetime. It is known that χt is positive and takes
a value ∼ (180MeV)4. On the other hand, q(x) is a
pseudoscalar operator and requires Cq(x− y) < 0 for

r=|x−y|>0. So Cq(x−y) can be intuitively expressed as

Cq(x−y)=Aδ4(x−y)+C̄q(x−y), (23)

where C̄q(x−y) is negative for r>0. On the Euclidean
spacetime lattice with a finite lattice spacing, the delta
function will show up a positive kernel with a width of
a few lattice spacings, and Cq(x−y) has a negative tail
contributed from C̄q(x−y). It is expected that C̄q(x−y)
would be dominated by the contribution of the lowest
pseudoscalar meson in the large r range and can be pa-
rameterized as [30]

C̄q(r)=N
mPS

4π2r
K1(mPSr), (24)

where N is an irrelevant normalization factor, mPS is the
mass of the lowest pseudoscalar, and K(z) is the modi-
fied Bessel function of the second kind, whose asymptotic
form at large |z| is

K1(z)∼
√

π

2z
e−z(1+

3

8z
), |arg z|< 3

2
π. (25)

Therefore, one can obtainmPS by fitting the negative tail
of Cq(x−y) in the large r range using the above functional
form.

This has been actually done by several lattice studies
in both the quenched approximation [24] and full QCD
calculations [23]. In the quenched approximation, the ex-
tracted mPS=2563(34) MeV is in good agreement with
the pseudoscalar glueball mass mPS = 2560(35) MeV.
This is as it should be, since the hadronic excitations of
a pure gauge theory are only glueballs. In the full-QCD
study with Nf=2+1 and pion masses close to the physi-
cal mπ, mPS is obtained to be 1013(117) MeV, which is
consistent with the mass of the physical η′.

In this work, we adopt a similar strategy to that
in Ref. [23]. The topological charge density q(x) is de-
fined by the spatial and temporal Wilson loops (plaque-
ttes) as conventionally done. We use the Wilson gra-
dient flow method as a smearing scheme to optimize
the behavior of the topological charge density correla-
tor [23, 31]. The Wilson flow provides a reference energy
scale 1√

8t
[32]. In practice, we use the code published by

the BMW collaboration [33] to evaluate the topological
charge density. Figure 7 shows Cq(r) for mπ∼938 MeV
and mπ ∼ 650 MeV at flow times t=0.2,0.3,0.4,0.8, re-
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Fig. 7. (color online) The correlation function Cq(r) of topological charge density in terms of the four dimensional
Euclidean distance for mπ ∼938 MeV (left) and mπ∼650 MeV (right). Different curves correspond to Cq(r) at
different Wilson flow time t=0.2,0.3,0.4 and 0.8.

5.0E-6

1.0E-5

2.0E-5

4.0E-5

8.0E-5

1.6E-4

3.2E-4

 3.5  4  4.5  5  5.5  6

-C
q
(r

)

r/as

 t=0.2
 t=0.3
 t=0.4

fit(t=0.4)

(a) mπ∼938 MeV

1.0E-5

2.0E-5

4.0E-5

8.0E-5

1.6E-4

3.2E-4

 3.5  4  4.5  5  5.5  6

-C
q
(r

)

r/as

 t=0.2
 t=0.3
 t=0.4

fit(t=0.4)

(b) mπ∼650 MeV

Fig. 8. (color online) −C(r) at different flow times t=0.2,0.3,0.4 are plotted in log scale for comparison in the large
r range, for mπ∼938 MeV (left) and mπ∼650 MeV (right). In each panel, the red band illustrates the fit to C(r)
at the flow time t=0.4 in the r interval r/as∈[3.8,5.4].

spectively. On our lattices, these t values correspond to√
8t∼ 0.15,0.18,0.21 and 0.30 fm. As shown in the fig-

ures, at large flow time, Cq(r) is mostly positive, which
implies that the gauge fields are over-smeared.

In order to compare the large r behaviors of Cq(r) at
different flow times, we plot them in Fig. 8 in logarithmic
scale, where one can see that their behaviors are similar
in the large r region, but the Cq(r) at t=0.4 looks the
smoothest and has the smaller errors. Therefore, we fit
the Cq(r) at t=0.4 directly through the function form of
Eq. (25) to extract the parameter mPS. In determining
the fit range, we take the following two factors into con-
sideration. First, the spatial extension of our lattices is
Ls=12as. In order to avoid large finite volume effects,
the upper limit of the fit range should be smaller than
6as, due to the periodic spatial boundary condition. Sec-
ondly, as shown in Fig. 7, the negative tail of Cq(r) starts

beyond r∼3as, which requires the lower limit of the fit
range to be larger than 3as. In the practical fitting pro-
cedure of Cq(r) at t=0.4, we choose the fit range to be
r/as∈[3.8,5.4].

We carry out a correlated minimal-χ2 fit to Cq(r) at
t= 0.4 in the r interval described above. Table 8 lists
the fit ranges, the fitted results of mPS and the χ2/dof ’s
at the two pion masses. In order to illustrate the fit
quality, we also plot Cq(r) in Fig. 8 in red bands using
the function form in Eq. (25) with the fitted parame-
ters. The mPS’s we get are around 1 GeV and show
explicit dependence on the pion mass. However, they
are much smaller than the values around 2.6 GeV from
the correlation functions of the pseudoscalar glueball op-
erator Φ(PS). Thus the light pseudoscalar state observed
in Cq(r) can be naturally assigned to be the flavor sin-
glet qq̄ state η′. Theoretically, the mass of η′ is acquired
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through the interaction of sea quark loops according to
the Witten-Veneziano mechanism [34, 35]. In this mech-
anism, the propagator of η′ can be expressed as

1

q2−m2
η′

=
1

q2−m2
π

(

1+m2
0

1

q2−m2
π

+m2
0

1

q2−m2
π

m2
0

1

q2−m2
π

+...

)

, (26)

where the parameter m2
0 is introduced to describe the

gluonic coupling, such that

m2
η′≈m2

π
+m2

0. (27)

On the other hand, m2
0 is related to the topological sus-

ceptibility χt through

m2
0=

4Nf

f 2
π

χt, (28)

where fπ is the decay constant of π. For our case of
Nf =2, if we take the values χt = (180MeV)4, fπ ∼ 150
MeV for mπ∼650 MeV and fπ∼200 MeV for mπ∼938
MeV, m2

0 is estimated to be approximately (610MeV)2

and (460MeV)2, respectively. Thus the η′ mass can
be derived as mη′ ∼ 890 MeV for mπ ∼ 650 MeV, and
mη′∼1045 MeV for mπ∼938 MeV. These values are not
far from the mPS’s we obtained.

Because these are very preliminary calculations and
the systematic errors are not well under control, we do
not want to overclaim the values ofmPS we obtain. What
we would like to emphasize is that there does exist in the
spectrum a flavor singlet qq̄ pseudoscalar meson corre-

sponding to the η′ meson in the real world, which can be
accessed by the topological charge density operator.

Table 8. The fitting details for the η′ meson mass
from the topological charge density correlator at
mπ∼938 MeV and mπ∼650 MeV respectively.

mπ fit range(as) mη′as mη′/MeV χ2/dof

938 MeV 3.8-5.4 0.877(25) 1466(42) 0.76

650 MeV 3.8-5.4 0.514(22) 890(38) 1.43

Now that the η′ state exists in the spectrum, there
comes the question of why it is missing in the corre-
lation function of the conventional gluonic operator for
the pseudoscalar glueball (denoted as Φ(PS)). In order
to clarify this, we check the continuum form of Φ(PS) in-
volved in this work. Actually, in the construction of the
gluonic pseudoscalar operators, only the spatially solid
(instead of planar) Wilson loops (the last four prototypes
in Fig. 1) are used,

φA
−+

1
α (x,t) =

∑

R∈O

c
A

−+
1

R ReTr[R◦Wα(x,t)

−PR◦Wα(x,t)P−1], (29)

where R stands for each rotation operation in the O
group, cA1

R are the combinational coefficients correspond-
ing to the A1 irreducible representation, and Wα is any
of the four prototypes made up of specifically smeared
gauge links. According to the non-Abelian Stokes theo-
rem [36], a rectangle Wilson loop P a×b

µν (x) of size a×b,
with a,b small, can be expanded as

P a×b
µν (x) = 1+ab(Fµν(x)+

1

2
(aDµ+bDν)Fµν(x)+

1

12
(2a2D2

µ+3abDµDν+2b2D2
ν)Fµν(x)

+
1

24
(a3D3

µ+2a2bD2
µDν+2ab2DµD

2
ν+b

3D3
ν)Fµν(x))+(ab)2(

1

2
F 2

µν(x)+
1

2
Fµν(x)(aDµ+bDν)Fµν(x)

+
1

24
Fµν(x)(a

2D2
µ+b

2D2
ν)Fµν(x))+

1

6
(ab)3F 3

µν+O((ab)
4), (30)

where Fµν is the strength tensor of the gauge field. For
simplicity, the factor ig is absorbed into the quantity Fµν .
The small ab expansion of P±µ±ν(x) is similar to Eq. (30)
by replacing a and b with ±a and ±b, respectively. Since
the last four prototypes can be expressed as products of
two rectangle Wilson loops, using the above relation one
can obtain the leading term of the pseudoscalar operator,

φA
−+
1

α (x,t)∝ǫijkTrBi(x,t)DjBk(x,t)+O(a
2
s), (31)

which is obviously different from the anomalous part of
the PCAC relation, ǫµνρσF

µν(x)F ρσ(x)∝E(x)·B(x). Ac-
tually, the operator Φ(PS) is a linear combination of these
kinds of operators defined through differently smeared
gauge fields. This may imply that the two operators

couple differently to specific states. Along with the ob-
servation in the calculation of the glueball spectrum, this
proves to some extent that our operator for the pseu-
doscalar glueball couples very weakly to the qq̄ meson
state and almost exclusively to the glueball states.

We collect the existing lattice results of the masses
of flavor singlet pseudoscalar mesons in Table 9 for an
overview. In the quenched approximation (Nf =0), the
authors of Ref. [24] use q(x) as pseudoscalar operators
and derive the ground state mass mPS=2.563(34) GeV,
which is almost the same as the mass of the pure gauge
pseudoscalar glueball mPS = 2.560(140) GeV [13] and
2.590(140) GeV [14]. This is exactly what it should
be, since there are only pseudoscalar glueball propa-
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Table 9. Masses of flavor singlet pseudoscalar mesons from quenched and unquenched lattice QCD studies. P (x),
q(x) and Φ(PS) stand for the quark bilinear pseuscalar operator, the topological charge density, and the pseudoscalar
glueball operator, respectively.

P (x) q(x) Φ(PS)

Nf=0 —— 2563(34) MeV [24] 2590(140) MeV [14]

Nf=2 768(24) MeV [37] 890(38) MeV (this work) 2585(65) MeV (this work)

Nf=2+1 947(142) MeV [38] 1019(119) MeV [23] ——

Nf=2+1+1 1006(65)MeV [39] —— ——

gating along time if no valence quarks are involved.
When dynamical quarks are included in the lattice sim-
ulation, the situation is totally different. There have
been several works using P (x) to calculate the η′ mass
in the lattice simulation with dynamical quarks, and
have given the results mη′ =768(24) MeV (Nf =2) [37],
mη′ =947(142) MeV (Nf=2+1) [38] and mη′ =1006(65)
MeV (Nf = 2+1+1) [39], which almost reproduce the
experimental result mη′ =958 MeV. When the q(x) op-
erator is applied, Nf=2+1 lattice simulation gives the re-
sult mη′=1019(119) MeV at the physical pion mass [23],
which is consistent with the result through the P (x) op-
erator. We also calculate the ground state mass using
the q(x) operator on our Nf=2 gauge configurations and
obtain the result mPS=890(38) MeV at mπ=650 MeV,
which is compatible with the mη′ =768(24) MeV above
(note that our mπ is higher than that in Ref. [37]). The
similar result for mη′ from the operators P (x) and q(x)
can be understood as follows. Due to the UA(1) anomaly,
q(x) is now related to P (x) through the PCAC relation.
The relation implies that q(x) can couple substantially to
the flaover singlet η′ meson. In contrast, the glueball op-
erator Φ(PS) couples predominantly to the pseudoscalar
glueball state either in the quenched approximation or
in the presence of sea quarks.

5 Summary and conclusions

The spectrum of the lowest-lying glueballs is investi-
gated in lattice QCD with two flavors of degenerate Wil-
son clover-improved quarks. We generate ensembles of
gauge configurations on anisotropic lattices at two pion
masses, mπ ∼ 650 MeV and mπ ∼ 938 MeV. Focus has
been put on the ground states of the scalar, pseudoscalar
and tensor glueballs, which are measured using gluonic
operators constructed from different prototypes of Wil-
son loops. The variational method is applied to obtain

the optimal operators which couple dominantly to the
ground state glueballs.

In the tensor channel, we obtain the ground state
mass to be 2.363(39) GeV and 2.384(67) GeV atmπ∼938
MeV and 650 MeV, respectively. In the pseudoscalar
channel, using the gluonic operator whose continuum
limit has the form of ǫijkTrBiDjBk, the ground state
mass is found to be 2.573(55) GeV and 2.585(65) GeV
at the two pion masses. The masses of the tensor and
pseudoscalar glueballs do not show strong sea quark mass
dependence in our study. However, since our pion masses
are still heavy, no decisive conclusions can be drawn on
the quark mass dependence of glueball masses at present.
In the scalar channel, the ground state masses extracted
from the correlation functions of gluonic operators are
determined to be around 1.4-1.5 GeV, which is close to
the ground state masses from the correlation functions
of the quark bilinear operators. One possible reason is
the mixing between glueball states and conventional fla-
vor singlet mesons, which requires further investigation
in the future.

We also investigate the pseudoscalar channel using
the topological charge density as the interpolation field
operator, which is defined through Wilson loops and
smeared by the Wilson flow technique. The masses of the
lowest states derived in this way are much lighter (around
1 GeV) and compatible with the expected masses of the
flavor singlet qq̄ meson. This provides a strong hint that
the operator ǫijkTrBiDjBk and the topological charge
density (proportional to TrE ·B) couple rather differ-
ently to the glueball states and qq̄ mesons.

Admittedly, the lattice volumes we used are relatively
small, and the continuum limit remains to be taken, but
our current results are still helpful to clarify some aspects
of unquenched effects of glueballs and serve as a starting
point for further studies.
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