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Computing parallel/coincident phase D-brane superpotentials
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Abstract: In this paper we study the parallel phase and the coincident phase of D-brane systems with the com-

pactification of one closed modulus. D-brane systems with two phases are described by different 4-folds in terms

of Type-II/F-theory duality, and the phase transitions are related by the blow-up from a 4-fold with singularities

to a 4-fold without. In terms of gauge theory, the phase transition corresponds to the enhancement of gauge group

U(1)×U(1)→U(2) connecting the Coulomb branch and the Higgs branch. For the sextic and octic with two D-branes,

using mirror symmetry and Type-II/F theory duality, A-model superpotentials are obtained from the B-model side

for the two phases, and the U(1) Ooguri-Vafa invariants for the parallel phase and U(2) Ooguri-Vafa invariants for

the coincident phase are extracted from the A-model superpotential. The difference between the invariants of the

two phases is evidence of the phase transition between the Coulomb branch and the Higgs branch.
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1 Introduction

Closed-string mirror symmetry equipped with N=2
supersymmetry identifies the Kähler moduli space of the
topological A-model and the complex structure moduli
space of the topological B-model. The appearance of a
D-brane breaks the supersymmetry to N=1, leading to
open-string mirror symmetry. Then Type-II compact-
ification theory is described by an effective N = 1 su-
pergravity action with non-trivial superpotential on the
moduli spaceM. Similar to the prepotential in the N=2
supersymmetric situation, the superpotential that deter-
mines the F-term of low-energy effective theory and the
string vacuum structure is available from a B-model com-
putation. For a space-filling D5-brane wrapped on the
curve γ embedded in a divisor D of the Calabi-Yau 3-fold
M3, the effective D-brane superpotential is the relative
period captured by:

WN=1(z,ẑ)=Πγ(z,ẑ)=

∫

γ

Ω(3,0)(z,ẑ), γ∈H3(M3,D)

(1)
where the z and ẑ indicate closed and open moduli re-
spectively. Thus the four-dimensional effective superpo-
tential has a unified expression as a general linear com-
bination of the integral of the basis of relative period
[1, 2]:

WN=1(z,ẑ)=
∑

NαΠα(z,ẑ)=Wopen(z,ẑ)+Wclosed(z),

(2)
where the {α} is a set of bases of H3(M3,D). The coef-
ficients Nα are determined by the topological charges of
branes and background flux, and Πα(z,ẑ) are the relative
period integrals in both open and closed sectors.

However, the superpotentials in Type-II string theory
have a dual description in F-theory as the flux superpo-
tentials equalizing the open and closed parameters as the
complex structure moduli of the 4-fold for F-theory com-
pactification [3]. This Type-II/F-theory duality suggests
a way to obtain the superpotentials of Type-II string the-
ory compactified on a Calabi-Yau 3-fold from the com-
putation on a Calabi-Yau 4-fold compactification of F-
theory [4]. The superpotential of the 4-form flux G4 in
F-theory compactified on the Calabi-Yau 4-fold M4 is
a section of the line bundle over the complex structure
moduli space MCS(M4). It is called the Gukov-Vafa-
Witten superpotential [5] which has general form [6]

WGVW(M4)=

∫

M4

G4∧Ω
(4,0)

=
∑

Σ

NΣ(G4)ΠΣ(z,ẑ)+O(gs)+O(e−1/gs),

(3)

where gs is the string coupling strength and the leading
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term on the right hand side is the D-brane superpoten-
tial WN=1 (2). The weak coupling limit gs → 0 brings
us back to the D-brane superpotential WN=1 from the
GVW superpotential WGVW of F-theory as follows:

lim
gs→0

WGVW(M4)=
∑

NΣ(G4)ΠΣ(z,ẑ)=WN=1(M3,D),

(4)
where most of the degrees of freedom decouple from the
superpotential sector.

So far, most of the computations of superpotentials
for the D-brane system with the compact target space
are contributed by branes which are described by only
one open-string deformation [4, 7–13]. We take the ad-
vantage of Type-II/F-theory duality, which packages all
the open and closed moduli together as the complex
structure moduli of the dual 4-fold M4 to study the su-
perpotential of the D-brane system more conveniently.
In fact, using the Type-II/F-theory duality method, we
have computed the superpotential and geometric invari-
ants for many single D-brane models studied by sub-
systems integrated in the papers [4, 13], such as the
mirror quintic, P (1,1,1,6,9) and P (1,1,2,2,2), and ob-
tained completely the same results as in the above two
papers. In the sextic and octic models, we introduce two
D-branes into the system and calculate the superpoten-
tials in the parallel phase (Coulomb branch) and coin-
cident phase (Higgs branch) near the large radius limit
point for the first time. The Ooguri-Vafa invariants are
also extracted.

This paper is organized as follows. In Section 2, we
construct the parallel phase and the coincident phase
of the D-brane system which corresponds to the 4-folds
for F-theory compactification, in terms of toric geome-
try. In Section 3, a brief review of the generalized GKZ
system and its local solutions is given. These solutions
are closely related to the mirror map and the potential
functions of the D-brane system. In Section 4, we apply
the formulism to the parallel phase and the coincident
phase of two D-brane systems. The superpotentials for
the D-brane geometries are obtained near the large com-
plex structure point in terms of open-closed deforming
space. The Ooguri-Vafa invariants in the parallel and
coincident phases are extracted. The last section is a
brief summary and further discussion.

2 Polyhedra construction for parallel/
coincident phase

In this paper, we focus on the Calabi-Yau manifolds,
which are defined by the hypersurface in ambient toric
variety, and briefly give some necessary introduction and
settings. More details and background can be found in
[14–16]. The notations are as follows: (∇4,∆4) is a pair
of mutually reflective 4-dimensional polyhedrons leading

to a pair of toric variety (PΣ(∇4),PΣ(∆4)) with fans Σ(∇4)
and Σ(∆4) which are defined by the cones over the faces
of ∇4 and ∆4 respectively. (W3,M3) are the hypersur-
faces in ambient toric varieties (PΣ(∇4),PΣ(∆4)) which de-
scribe the pair of mirror 3-folds. For convenience, we
also use (W3,M3) to stand for the pair of 3-folds. In the
homogeneous coordinates xj on the toric ambient space
PΣ(∆4), the hypersurface M3 is defined by p integral ver-
tices of ∇4 as the zero locus of the polynomial P :

P=

p−1
∑

i=0

ai

∏

v∈∆4

x
〈v,v∗

i 〉+1

j , (5)

where v∗
i are the integral points in ∇4 while the v’s are

vertices of the dual polyhedron ∆4. The coefficients ai

are complex parameters related to the complex structure
of M3.

The n parallel D-branes are defined by a reducible
divisor:

Q(D)=

n
∏

m=0

(φma0

∏

vj∈∆4

xj+ai

∏

vj∈∆4

x
〈v,v∗

i 〉+1

j )

=

n
∑

k=0

bk
∏

vj∈∆4

x
k〈v,v∗

i 〉+n

j , (6)

whose irreducible components lie in a single parameter

family of divisor Ds≡φa0

∏

vj∈∆4
xj+ai

∏

vj∈∆4
x
〈v,v∗

i 〉+1

j .

The parameters bk encode the open-string deformations
of the n parallel branes. In other words, the brane-
component-deformation parameter φm describes the po-
sition of the mth individual D-brane component. The
parallel D-brane geometry corresponds to the Coulomb
phase of the gauge theory, which gives rise to the
U(1)×U(1)×...×U(1) group, the product of n U(1)’s,
and each U(1) group describes electromagnetism includ-
ing the Coulomb field. Similar to the construction in
Ref. [13], the combinatoric data of the parallel D-branes
phase can be recovered in a one-dimensional higher poly-
hedron ∇̃5 defining the non-compact 4-fold W̃4. Then the
relevant vertices shaping the ∇̃5 are:

ṽ∗
j =







(v∗
j ,0) j=0,...,p−1,

(mv∗
i ,1) j=p+m,06m6n.

(7)

When parallel D-branes coincide, the U(1)×U(1)×
...×U(1) gauge group obtains an enhancement, becom-
ing a SU(n) group. This corresponds to a phase tran-
sition from the Coulomb branch to the Higgs branch of
the gauge theory. Geometrically, the non-Abelian gauge
group relates to the singularities on the Calabi-Yau man-
ifolds. In toric language the singular curve corresponds
to a one-dimensional edge of the dual polyhedron with in-
tegral lattice points on it. The resolution process is stan-
dard in terms of toric geometry [17]. It adds all the inte-
rior points on the one-dimensional edges into the points
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configuration, and each of these vertices corresponds to
an exceptional divisor in the blow-up of the Calabi-Yau
manifold. Inversely, if we remove the n−1 interior points,
we can recover the singular 4-fold which gives rise to the
enhanced gauge symmetry U(n), matching the expecta-
tion in the coincident D-brane system [18].

In addition to compactifying the non-compact four-
fold W̃4, we add one more point into the points con-
figuration beneath the hyperplane Y = {v ∈R5|v5 = 0}.
Together with the points for D-brane geometry, all the
points define the enhanced polyhedron ∇5 corresponding
to the compact Calabi-Yau 4-fold W4.

3 Generalized GKZ system, local solu-
tions and relative periods

The relative periods satisfy a set of differential equa-
tions named the Picard-Fuchs equations. The differential
operators of the Picard-Fuchs equations can be derived
from the generalized GKZ system as follows:

L(la)=

la
0

∏

k=1

(ϑ0−k)
∏

la
j
>0

laj −1
∏

k=0

(ϑj−k)

−(−1)l
a
0za

−la
0

∏

k=1

(ϑ0−k)
∏

la
j
<0

−laj −1
∏

k=0

(ϑj−k), (8)

where ϑj=aj
∂

∂aj
are logarithmic derivatives with respect

to the parameters aj , and the la are the generators of
the Mori cone [19–22] of PΣ(∇5). They are also known
as the charge vectors of the gauged linear sigma model
(GLSM)[23] for a=1,...,k=h1,1(W4).

On one hand, the charge vectors la which correspond
to the maximal triangulation of ∇5 lead to a set of local
coordinates of the pitch around the large complex struc-
ture limit point in the complex structure moduli space
of M4:

za=(−1)l
a
0

∏

j

a
laj
j . (9)

They are torus invariant algebraic coordinates on
the large complex structure phase, where the non-
perturbative instanton corrections are suppressed expo-
nentially. On the other hand, the duality between the
Mori cone and the Kähler cone gives rise to the basis Ja

of H1,1(W4) dual to the la and naturally gives the local
coordinates ka around the large radius limit point mirror
to the large complex structure point. The coordinates ka

are also known as the flat coordinates.
From the point of view of F-theory, the GKZ sys-

tem is derived from the combinatoric data of the 5-
dimensional polyhedra corresponding to the 4-folds. So
the solutions relate to the periods of the fourfolds rely-
ing on the complex structure moduli of the 4-fold. How-
ever, from the viewpoint of Type-II theory, since the en-

hanced polyhedra correspond to the D-brane geometry,
these solutions encode the relative periods giving rise to
the open-closed mirror maps and the D-brane superpo-
tentials which rely on the open and closed string moduli.

In terms of the periods of the fourfolds, according to
Ref. [16], the local solutions to the GKZ system can be
derived from the fundamental period,

w0(z;ρ)=
∑

m1,...,ma>0

Γ(−
∑

a
(ma+ρa)l

a
0+1)

∏

16i6p
Γ(

∑

a
(ma+ρa)lai +1)

zm+ρ,

(10)
using the Frobenius method. The whole periods vector
reads:

~Π(z)=

















Π0= w0(z;ρ)|ρ=0

Π1,a= ∂ρaw0(z;ρ)|ρ=0

Π2,n=
∑

a1,a2
Ka1,a2;n∂ρa1

∂ρa2
w0(z;ρ)|ρ=0

...

















,

(11)
where n ∈ {1,...,h} and h stands for the dimension of
H4(M4). The Ka1,a2;n are the combinatoric coefficients
of the second derivative of w0. Guided by the mirror hy-
pothesis, the period vector ~Π(z) has a dual description
on the A-side with the general form:

~Π∗(k)=

















Π∗
0= 1

Π∗
1,a= ka

Π∗
2,n=

∑

a1,a2
K∗

a1,a2;n
ka1

ka2
+bn+F inst

n

...

















,

(12)
where ka=Π1,a/Π0 are the flat coordinates andK∗

a1,a2;n
=

Ka1,a2;n. The coefficients K∗
a1,a2;n

of leading terms relat-
ing to the classical sector in the periods can be easily
determined once the 4-cycle π∗

4 ∈H4(W4,Z) relating to
the 4-form flux G4 has been selected. The constants bn
are not relevant in our discussion and the F inst

n stand for
the instanton correction sector of the solutions.

In terms of the relative periods of D-brane geometry,
after taking the decoupling limit, these solutions give rise
to the relative periods corresponding to the mirror map,
bulk potential and superpotential. The relative period
vector is of the form:

lim
gs→0

~Π∗(k)=(1,t,t̂,Ft(t),W(t,t̂)...)), (13)

where t and t̂ are the flat coordinates on the moduli space
after splitting the open and closed string moduli. The
solution Ft(t)≡∂tF (t) is determined only by the closed
moduli, where F (t) is the N = 2 prepotential. Its cor-
responding part in the open sector is the superpotential
W(t,t̂). The flat coordinates can be found in the large
radius regime of the A-model (ka) and the large com-

093104-3



Chinese Physics C Vol. 42, No. 9 (2018) 093104

plex structure regime of the B-model (za). The relation
between ka and za defines the mirror map as follows,

ka(z)=
Π1,a(z)

Π0

, (14)

while t and t̂ equal the special integer linear combination
of ka.

The instanton corrections are encoded as a power se-
ries expansion of qi=exp(2πiti) and q̂i=exp(2πit̂i):

F inst(t,t̂)=
∑

~r,~s

G~r,~sq
~r q̂~s=

∑

n

∑

~r,~s

N~r,~s

n2
qn~r q̂n~s. (15)

In Eq. (15), {G~r,~s} are open Gromov-Witten invariants
labeled by a relative homology class, where ~s represent
the elements of H1(L) and ~r represent the elements of
H2(W3), and {N~r,~s} are Ooguri-Vafa invariants.

4 Models

In this section we select the same compactifying point
ṽ∗
c = (0,0,0,0,−1) in terms of combinatoric data in all
cases1).

4.1 D-branes on the sextic

The sextic is defined as a hypersurface,

P=a1x
6
1+a2x

6
2+a3x

6
3+a4x

6
4+a5x

3
5+a0x1x2x3x4x5. (16)

In the ambient toric variety PΣ(∆4), it is determined by
the vertices of the polyhedron ∆4:

v1=(2,−1,−1,−1),v2=(−1,5,−1,−1),v3=(−1,−1,5,−1),

v4=(−1,−1,−1,5),v5=(−1,−1,−1,−1).
(17)

4.1.1 Parallel D-branes phase

We consider parallel branes which are described by
the reducible divisor D=D1+D2 realized by the degree-
12 homogeneous equation

Q=b0(x1x2x3x4x5)
2+b1x1x2x3x4x

4
5+b2x

6
5 (18)

∼

2
∏

i=1

(φia0x1x2x3x4x5+a1x
3
5). (19)

According to the construction in subsection 2, the
open-closed system is encoded in the enhanced polyhe-
dron ∇̃5 whose vertices are

ṽ∗
0=(0,0,0,0,0),ṽ∗

1=(1,0,0,0,0),ṽ∗
2=(0,1,0,0,0),

ṽ∗
3=(0,0,1,0,0),ṽ∗

4=(0,0,0,1,0),ṽ∗
5=(−2,−1,−1,−1,0),

ṽ∗
6=(0,0,0,0,1),ṽ∗

7=(1,0,0,0,1),ṽ∗
8=(2,0,0,0,1).

(20)

The geometry for the F-theory compactification, the
compact 4-fold W4, is defined by the polyhedron∇5 with
vertices given in Section (20) and ṽ∗

c .
The generators of a Mori cone of the toric variety

determined by ∇5 are given by:

0 1 2 3 4 5 6 7 8 c

l1 = ( −4 0 1 1 1 1 −2 2 0 0 )

l2 = ( 0 0 0 0 0 0 1 −2 1 0 )

l3 = ( −1 1 0 0 0 0 0 1 −1 0 )

l4 = ( 0 −2 0 0 0 0 0 0 1 1 ).

(21)

The Kähler form is J =
∑

a
kaJa, where Ja denotes the

basis of H1,1(W4) dual to the Mori cone generated by
(21), and ka are flat coordinates on the Kähler moduli
space of the mirror four-fold W4. Then we choose the
basis elements of H4(W4) which are defined by intersec-
tions of the toric divisors Di corresponding to the ṽ∗

i ,
namely

γ1=D1∩D9, γ2=D2∩D6, γ3=D2∩D7. (22)

After changing the variables as follows to visualize the
closed and open moduli

t=k1+2(k2+k3), t̂1=k2+k3, t̂2=k3, (23)

the leading terms of the periods are

Π̃∗
2,1=3t2, Π̃∗

2,2=(t−2t̂1)
2, Π̃∗

2,3=(t−2t̂2)
2. (24)

corresponding to γ1, γ2, and γ1+γ3. Π̃∗
2,1 only depends

on the closed moduli t and is supposed to be the leading
term of the bulk potential function Ft(t), while Π̃

∗
2,2, Π̃

∗
2,3

are supposed to lead the D-brane superpotential W(t,t̂),
which depends on both open (t̂) and closed (t) parame-
ters.

We identify the bulk potential and the superpoten-
tials with the exact solutions to the GKZ system which
are led by Π̃∗

2,1,Π̃
∗
2,2 and Π̃∗

2,3 respectively. Following
Eq. (10), in terms of algebraic coordinates (9),

z1=
a2a3a4a5b

4
1

a4
0b

4
0

, z2=
b0b2
b21

, z3=
a1b1
a0b2

, (25)

the fundamental period and the logarithmic periods,

Π0(z)=w0(z;0), Π1,i(z)=∂ρiw0(z;ρ)|ρi=0,

Π2,n(z)=
∑

i,j

Ki,j;n∂ρi∂ρjw0(z;ρ)|ρ=0, (26)

solve the generalized GKZ system governed by the charge
vectors (21). The flat coordinates are given by

ki=
Π1,i(z)

Π0(z)
=

1

2πi
log zi+... . (27)

1) The compactifying point is different from the choice in the [4], which picked other integral points on the hyperplane Y = {v ∈
R5|v5 =−1}. However, the detail of the P 1 compactification dominates the subleading terms in gs and is irrelevant in the decoupling
limit.
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Then the mixed inverse mirror maps in terms of qi =
exp(2πiki) for {i=1,2,3} are

z1=q1−24q21+2q1q2−24q21q2+q1q
2
2−4q1q2q3+336q21q2q3

−4q1q
2
2q3+288q21q

2
2q3+4q1q

2
2q

2
3−2928q21q

2
2q

2
3+...

z2=q2+12q1q2+414q21q2−2q22−48q1q
2
2−1944q21q

2
2−q2q3

−12q1q2q3−414q21q2q3+5q22q3−24q1q
2
2q3

−1764q21q
2
2q3−3q22q

2
3+72q1q

2
2q

2
3+3708q21q

2
2q

2
3+...

z3=q3+q2q3+12q1q2q3+414q21q2q3+12q1q
2
2q3+q23+q22q

2
3

−240q1q
2
2q

2
3−5652q21q

2
2q

2
3+... . (28)

According to the leading terms (24), we find the rela-
tive periods which correspond to the closed-string period
and D-brane superpotentials in the A-model as follows:

Ft(t)≡Π2,1=3t2+
1

4π2
(15768q+24117750q2+...)

W1(t,t̂1)≡Π2,2=(t−t̂1)
2+

1

4π2

(

13248q+19396368q2

+
9

2
q̂41+8q̂31+18q̂21−6552qq̂21+72q̂1

+11856qq̂1−4896qq̂−1
1 −6942384q2q̂−1

1

+480qq̂−2
1 +1728504q2q̂−2

1 +...
)

W2(t,t̂2)≡Π2,3=(t−t̂2)
2+

1

4π2

(

13248q+19396368q2

+
9

2
q̂42+8q̂32+18q̂22−6552qq̂22+72q̂2

+11856qq̂2−4896qq̂−1
2 −6942384q2q̂−1

2

+480qq̂−2
2 +1728504q2q̂−2

2 +...
)

, (29)

where q=exp(2πit), q̂1=exp(2πit̂1) and q̂2=exp(2πit̂2).
Absolutely, the bulk potential Ft(t) only depends on

the closed modulus t and the D-brane superpotentials
W1(t,t̂2),W2(t,t̂1) have kept the Z2 symmetry with re-
spect to t̂1 and t̂2 after adding the instanton correction,
meeting our expectations.

The first several orders of U(1) Ooguri-Vafa invari-
ants for the parallel phase are listed in Table 1.

4.1.2 Coincident D-branes phase

According to the enhanced polyhedron ∇5, the defin-
ing polynomial of the dual 4-fold M4 on the B-model side
is

P̃=a1x
6
1x

4
6+a2x

6
2x

4
7+a3x

6
3x

4
8+a4x

6
4x

4
9+a5x

3
5x6x7x8x9x

3
10

+a6x
2
1x

2
2x

2
3x

2
4x

2
5a7x

4
5x1x2x3x4x

2
10+a8x

6
5x

4
10

+a9x
2
6x

2
7x

2
8x

2
9x

2
10+a0x1x2x3x4x5x6x7x8x9x10.

(30)

To simplify the notation, we denote the coefficients of
the monomials in the polynomial as ai’s, and the relation
between the notations in the D-brane geometry and the
4-fold is as follows:

ai=











ai 06i65,

bi−6 66i68,

c i=9.

(31)

When b21=4b0b2, the defining equation for the parallel
D-branes becomes:

Q∼(φa0x2x3x4x5+a5x
3
5)

2, (32)

which means the two individual D-branes coincide as
φ1=φ2=φ. Correspondingly, the equivalent description

a2
7=4a6a8 (33)

gives rise to the perfect square (x1x2x3x4x5±x3
5x

2
10)

2 in
P̃ . Obviously M4 becomes singular and the condition
(33) constricts the complex moduli space of the 4-fold to
a submanifold which is the coincident D-branes phase.
The dual description of the coincident on the A-model
side is the blow-down of the exceptional divisor develop-
ing the curve singularity on the W4.

Table 1. U(1) Ooguri-Vafa invariants Nn1,n2,n3
for the superpotential W1(t,t̂1) for one of the two parallel branes

on the sextic.
X
X
X
X
X
X
XX

n1

n2=n3 0 1 2 3 4

0 0 72 0 0 0

1 480 -4896 13248 11856 -6552

2 19680 -290448 1729728 -6942384 19393056

3 1633440 -32754240 285912576 -1530550656 5859206496

4 179674560 -4597315416 52996510080 -375868552680 1882007237376
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The points ṽ∗
6 ,ṽ

∗
7 ,ṽ

∗
8 lie on the one-dimensional edge

and we ignore the interior point ṽ∗
7 to recover the sin-

gularity corresponding to the coincidence of the branes.
The interior points on the edge span the Dynkin diagram
of the A1 and the dual Calabi-Yau 4-fold develops the A1

singularity when the two parallel D-branes coincide.
Then we obtain the charge vectors (34) for the co-

incident D-branes phase corresponding to the maximal
triangulation of the point configuration without ṽ∗

7 :

0 1 2 3 4 5 6 8 c

l1 = ( −4 0 1 1 1 1 −1 1 0 )

l2 = ( −2 2 0 0 0 0 1 −1 0 )

l3 = ( 0 −2 0 0 0 0 0 1 1 )

(34)

The Kähler form is J =
∑

a
kaJa, where Ja denotes the

basis of H1,1(W4) dual to the Mori cone generated by
Eq. (34), and ka are flat coordinates on the Kähler mod-
uli space of the mirror four-fold W4. Then we choose
basis elements (35) of H4(W4) which are defined by in-
tersections of the toric divisors Di corresponding to the
ṽ∗
i ,

γ1=D2∩D6, γ2=D2∩D7 (35)

After transforming the variables as follows,

t=k1+k2, t̂=k2, (36)

the leading terms of the period integrals are

Π̃∗
2,1=

3

2
t2, Π̃∗

2,2=(t−t̂)2. (37)

corresponding to γ1+γ2 and γ1. In Eq. (37), the Π̃∗
2,1

depends on the closed modulus t purely leading the bulk
potential, and the Π̃∗

2,2 rely on closed (t) and open (t̂)

modulus both leading the superpotential. There is only
one open modulus in the coincident branes phase, since
the coincidence condition reduces the degree of freedom
of the open-closed parameter space. The open deforma-
tion t̂ can be interpreted as the position parameter of the
two coincident D-branes.

Following Eq. (10), in terms of algebraic coordinates
(9),

z1=
a2a3a4a5a7

a4
0a6

, z2=
a2
1a6

a2
0a7

, (38)

the fundamental period and the logarithmic periods,

Π0(z)=w0(z;0), Π1,i(z)=∂ρiw0(z;ρ)|ρi=0,

Π2,n(z)=
∑

i,j

Ki,j;n∂ρi∂ρjw0(z;ρ)|ρ=0, (39)

solve the generalized GKZ system governed by charge
vectors (34). The flat coordinates are given by

ki=
Π1,i(z)

Π0(z)
=

1

2πi
log zi+... . (40)

Then the mixed inverse mirror maps in terms of qi =
exp(2πiki) for {i=1,2} are

z1=q1+24q21−q1q2−2112q21q2+1452q21q
2
2+...

z2=q2−24q1q2+972q21q2+q22−708q1q
2
2−38232q21q

2
2+... .

(41)

We identify the bulk potential and the superpotentials
(42) with the exact solutions to the GKZ system which
lead by Π̃∗

2,1 and Π̃∗
2,2 respectively, where q=exp(2πit),

as:

Ft(t)=
3

2
t2+

1

4π2

(

7884q+12058875q2+35701252536q3+
553612044149883

4
q4+

15574379291641267884

25
q5

+3082783159939349914686q6+...

)

,

Wc(t,t̂)=(t−t̂)2+
1

4π2

(

−160q1+6600q21−
4900480q31

9
+14q2+4832q1q2−583608q21q2+94807552q31q2+

25q22
6

+7768q1q
2
2+6267312q21q

2
2−1416535392q31q

2
2+

94q32
45

−
43632

5
q1q

3
2+

74621484

5
q21q

3
2+

166008561536

9
q31q

3
2+...

)

.

(42)

In Table 2, the first several orders of U(2) Ooguri-
Vafa invariants for the coincident phase are listed. Due
to the numeric normalization of the open- and closed-
string flat coordinates, t and t̂, the invariants in Table 2
are rational. The same situation also appears in the pa-
per of Hans Jockers and Masoud Soroush [7]. As they
mentioned, the invariants listed in their Table 1 on page
33 and Table 2 on page 41 are fractional because of the
normalization.

4.2 D-branes on the octic

The octic is defined as a hypersurface

P=a1x
8
1+a2x

8
2+a3x

8
3+a4x

8
4+a5x

2
5+a0x1x2x3x4x5. (43)

In the ambient toric variety PΣ(∆4), it is determined by
the vertices of the polyhedron ∆4,

v1=(1,−1,−1,−1),v2=(−1,7,−1,−1),v3=(−1,−1,7,−1),

v4=(−1,−1,−1,7),v5=(−1,−1,−1,−1). (44)
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Table 2. U(2) Ooguri-Vafa invariants Nn1,n2
for the off-shell superpotential Wc(t,t̂) of coincident branes on the sextic.

P
P
P
P
P
P

n1

n2 0 1 2 3 4

0 0 14
2

3

8

15

26

105

1 -160 4832 7768 −
43632

5

125088

35

2 6640 -583608 6266104 −
74621484

5
−
1353668264

35

3 -544480 94807552 -1416535392
55336185568

3
−
1681292771616

35

4 59891520 -17376236956 404955896632 −
26201731369652

5
71041365850176

4.2.1 Parallel D-branes phase

We consider the parallel branes which are described
by the reducible divisorD=D1+D2 realized by the degree-
16 homogeneous equation

Q=b0(x1x2x3x4x5)
2+b1x1x2x3x4x

3
5+b2x

4
5 (45)

∼

2
∏

i=1

(φia0x1x2x3x4x5+a5x
2
5). (46)

According to the construction in Section 2, the open-
closed system is encoded in the enhanced polyhedron ∇̃5

whose vertices are

ṽ∗
0=(0,0,0,0,0),ṽ∗

1=(1,0,0,0,0),ṽ∗
2=(0,1,0,0,0),

ṽ∗
3=(0,0,1,0,0),ṽ∗

4=(0,0,0,1,0),ṽ∗
5=(−4,−1,−1,−1,0),

ṽ∗
6=(0,0,0,0,1),ṽ∗

7=(1,0,0,0,1),ṽ∗
8=(2,0,0,0,1).

(47)

The geometry for the F-theory compactification, the
compact 4-fold W4, is defined by the polyhedron ∇5 with
vertices given in Eq. (47) and ṽ∗

c .
The generators of Mori cone of the toric variety de-

termined by ∇5 are given by:

0 1 2 3 4 5 6 7 8 c

l1 = ( −4 0 1 1 1 1 −4 4 0 0 )

l2 = ( 0 0 0 0 0 0 1 −2 1 0 )

l3 = ( −1 1 0 0 0 0 0 1 −1 0 )

l4 = ( 0 −2 0 0 0 0 0 0 1 1 ).

(48)

The Kähler form is J =
∑

a
kaJa, where Ja denotes the

basis of H1,1(W4) dual to the Mori cone generated by
Eq. (48), and ka are flat coordinates on the Kähler mod-
uli space of the mirror four-fold W4. Then we choose
the basis elements of H4(W4) which are defined by inter-
sections of the toric divisors Di corresponding to the ṽ∗

i ,
namely

γ1=D2∩D9, γ2=D7∩D8, γ3=D6∩D7. (49)

After changing the variables as follows to visualize the
closed and open moduli

t=k1+4(k2+k3), t̂1=k2+k3, t̂2=k3, (50)

the leading terms of the periods are

Π̃∗
2,1=t2, Π̃∗

2,2=2(t−4t̂1)
2, Π̃∗

2,3=2(t−4t̂2)
2, (51)

corresponding to γ1, γ2 and γ3. Π̃∗
2,1 only depends on

the closed moduli t and is supposed to be the leading
term of the bulk potential function Ft(t), while Π̃

∗
2,2, Π̃

∗
2,3

are supposed to lead the D-brane superpotential W(t,t̂),
which depends on both open (t̂) and closed (t) parame-
ters.

We identify the bulk potential and the superpo-
tentials with the exact solutions to the GKZ system
which lead by Π̃∗

2,1,Π̃
∗
2,2 and Π̃∗

2,3 respectively. Follow-
ing Eq. (10), in terms of algebraic coordinates (9),

z1=
a2a3a4a5b

4
1

a4
0b

4
0

, z2=
b0b2
b21

, z3=
a1b1
a0b2

, (52)

the fundamental period and the logarithmic periods,

Π0(z)=w0(z;0), Π1,i(z)=∂ρiw0(z;ρ)|ρi=0,

Π2,n(z)=
∑

i,j

Ki,j;n∂ρi∂ρjw0(z;ρ)|ρ=0, (53)

solve the generalized GKZ system governed by charge
vectors (48). The flat coordinates are given by

ki=
Π1,i(z)

Π0(z)
=

1

2πi
log zi+... . (54)

Then the mixed inverse mirror maps in terms of qi =
exp(2πiki) for {i=1,2,3} are:

z1=q1−24q21+4q1q2−72q21q2+6q1q
2
2−72q21q

2
2−8q1q2q3

+400q21q2q3−24q1q
2
2q3+1056q21q

2
2q3+24q1q

2
2q

2
3

−3168q21q
2
2q

2
3+...

z2=q2+6q1q2+189q21q2−2q22−24q1q
2
2−828q21q

2
2−q2q3

−6q1q2q3−189q21q2q3+5q22q3−4q1q
2
2q3−1386q21q

2
2q3

−3q22q
2
3+28q1q

2
2q

2
3+2214q21q

2
2q

2
3+...

z3=q3+q2q3+6q1q2q3+189q21q2q3+q23+q22q
2
3−52q1q

2
2q

2
3

−3042q21q
2
2q

2
3+... . (55)

According to the leading terms (51), we find the rela-
tive periods which correspond to the closed-string period
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Table 3. U(1) Ooguri-Vafa invariants Nn1,n2,n3
for the off-shell superpotential W1(t,t̂) of parallel branes on the octic.

X
X
X
X
X
X
XX

n1

n2=n3 0 1 2 3 4

0 0 128 0 0 0

1 320 -3328 16256 -42752 59008

2 13120 -237952 2030336 -10705536 38614016

3 1088960 -28164352 349712128 -2756937728 15404800000

4 119783040 -4042092800 66070617600 -694387830656 5256175037440

and D-brane superpotentials in the A-model as follows:

Ft(t)≡Π2,1=t2+
1

4π2
(29504q+...)

W1(t,t̂1)≡Π2,2=2(t−4t̂1)
2+

1

4π2

(

59008q+8q̂41+
128

9
q̂31

+32q̂21+128q̂1−42752qq̂−1
1 +16256qq̂−2

1

−3328qq̂−3
1 +320qq̂−4

1

+38618080q2q̂−4
1 +...

)

W2(t,t̂2)≡Π2,3=2(t−4t̂2)
2+

1

4π2

(

59008q+8q̂42+
128

9
q̂32

+32q̂22+128q̂2−42752qq̂−1
2 +16256qq̂−2

2

−3328qq̂−3
2 +320qq̂−4

2

+38618080q2q̂−4
2 +...

)

, (56)

where q=exp(2πit), q̂1=exp(2πit̂1) and q̂2=exp(2πit̂2).
Absolutely, the bulk potential Ft(t) only depends on
the closed modulus t and the D-brane superpotentials
W1(t,t̂2),W2(t,t̂1) have kept the Z2 symmetry with re-
spect to t̂1 and t̂2 after adding the instanton correction,
meeting our expectations.

The first several orders of U(1) Ooguri-Vafa invari-
ants for the parallel phase are listed in Table 3.

4.2.2 Coincident D-branes phase

According to the enhanced polyhedron ∇5, the defin-
ing polynomial of the the dual 4-fold M4 on the B-model
side is

P̃=a1x
8
1x

4
6+a2x

8
2x

4
7+a3x

8
3x

4
8+a4x

8
4x

4
9+a5x

2
5x6x7x8x9x

2
10

+a6x
2
1x

2
2x

2
3x

2
4x

2
5a7x

3
5x1x2x3x4x10+a8x

4
5x

2
10

+a9x
2
6x

2
7x

2
8x

2
9x

2
10+a0x1x2x3x4x5x6x7x8x9x10. (57)

To simplify the notation, we also denote the coefficients
of the monomials in this polynomial as ai’s, and the rela-
tion between the notations in the D-brane geometry and
the 4-fold is as follows:

ai=















ai 06i65,

bi−6 66i68,

c i=9.

(58)

When b21 = 4b0b2, the defining equation for the parallel
D-branes becomes:

Q∼(φa0x1x2x3x4x5+a5x
2
5)

2, (59)

which means the two individual D-branes coincide as
φ1=φ2=φ. Correspondingly, the equivalent description

a2
7=4a6a8 (60)

gives rise to the perfect square (x1x2x3x4x5±x
2
5x10)

2 in P̃ .
Obviously M4 becomes singular and the condition (60)
constricts the complex structure moduli space of the 4-
fold to a submanifold which is the coincident D-branes
phase. The dual description of the coincident on the A-
model side is the blow-down of the exceptional divisor
developing the curve singularity on the W4.

The points ṽ∗
6 ,ṽ

∗
7 ,ṽ

∗
8 lie on the one-dimensional edge

and we ignore the interior point ṽ∗
7 to recover the sin-

gularity corresponding to the coincidence of the branes.
The interior points on the edge span the Dynkin diagram
of the A1 and the dual Calabi-Yau 4-fold develops the A1

singularity when all the 2 parallel D-branes coincide.
Then we obtain the new charge vectors (61) for the

coincident D-branes phase corresponding to the maximal
triangulation of the point configuration without ṽ∗

7 .

0 1 2 3 4 5 6 8 c

l1 = ( −4 0 1 1 1 1 −2 2 0 )

l2 = ( −2 2 0 0 0 0 1 −1 0 )

l3 = ( 0 −2 0 0 0 0 0 1 1 )

(61)

The Kähler form is J =
∑

a
kaJa, where Ja denotes the

basis of H1,1(W4) dual to the Mori cone generated by
Eq. (61), and the ka’s are flat coordinates on the Kähler
moduli space of the mirror four-fold W4. Then we choose
basis elements (62) of H4(W4) which are defined by in-
tersections of the toric divisors Di corresponding to the
ṽ∗
i ,

γ1=D2∩D6, γ2=D2∩D7, γ3=D6∩D7. (62)

After transforming the variables as follows,

t=k1+2k2, t̂=k2, (63)

the leading terms of the period integrals are

Π̃∗
2,1=t2, Π̃∗

2,2=(t−2t̂)2, (64)

corresponding to γ1+γ2 and γ3. In Eq. (64), Π̃∗
2,1 de-

pends on the closed modulus t purely leading the bulk
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Table 4. U(2) Ooguri-Vafa invariants Nn1,n2
for the off-shell superpotential Wc(t,t̂) of coincident branes on the octic.

P
P
P
P
P
P

n1

n2 0 1 2 3 4

0 0 32
4

3

16

15
52
105

1 160 -5504
124736

3

155712

5
−
3271328

105

2 6560 -568896 9520016 −
303915232

5

754225376

3

3 544480 -91509504
7637988352

3
−
430429613824

15

899073583744

5

4 59891520 -16678810208
2110558745464

3
-12541186234064

2597111110133168

21

potential, and the Π̃∗
2,2 rely on closed (t) and open (t̂)

modulus both leading the superpotential. There is only
one open modulus in the coincident branes phase, since
the coincident condition reduces the degree of freedom of
the open-closed parameter space. The open deformation
t̂ can be interpreted as the position parameter of the two
coincident D-branes.

The instanton corrections of the period integrals can
be recovered from the solution of the generalized GKZ
system corresponding to the enhanced polyhedron ∇5.
Following Eq.(10), in terms of algebraic coordinates (9),

z1=
a2a3a4a5a7

a4
0a

2
6

, z2=
a2
1a6

a2
0a7

, (65)

the fundamental period and the logarithmic periods,

Π0(z)=w0(z;0), Π1,i(z)=∂ρiw0(z;ρ)|ρi=0,

Π2,n(z)=
∑

i,j

Ki,j;n∂ρi∂ρjw0(z;ρ)|ρ=0, (66)

solve the generalized GKZ system governed by charge
vectors (61). The flat coordinates are given by

ki=
Π1,i(z)

Π0(z)
=

1

2πi
log zi+... . (67)

Then the mixed inverse mirror maps in terms of qi =
exp(2πiki) for {i=1,2} are

z1=q1−24q21+4q1q2−72q21q2+6q1q
2
2−72q21q

2
2+...

z2=q2+6q1q2+189q21q2−2q22−24q1q
2
2−828q21q

2
2+... . (68)

We identify the bulk potential and the superpotentials
(69) with the exact solutions to the GKZ system which
lead by Π̃∗

2,1 and Π̃∗
2,2 respectively, where q=exp(2πit):

Ft(t)=t2+
1

4π2

(

29504q+257677200q2

+
38440454795264

9
q3+...

)

Wc(t,t̂)=(t−t̂)2+
1

4π2

(

160q1+6600q21+32q2−5504q1q2

−568896q21q2+
28q22
3

+
124736

3
q1q

2
2

+9518640q21q
2
2+...

)

(69)

In Table 4, the first several orders of U(2) Ooguri-
Vafa invariants for the coincident phase are displayed.
Similar to the last model, the invariants are rational up
to a numeric normalization of the open- and closed-string
flat coordinates, t and t̂. Analogously, the invariants
listed in Table 1 on page 33 and Table 2 on page 41 in
Ref. [7] are fractional because of the normalization.

5 Summary

This paper focuses on the parallel phase and the
coincident phase of two D-brane systems with com-
pact Calabi-Yau manifold compactification which con-
tains one closed modulus, namely D-branes on the sextic
and the D-branes on the octic. The open-closed dual-
ity connects the D-brane geometry based on the Calabi-
Yau 3-fold for Type-II theory with a Calabi-Yau 4-fold
for F-theory, and furthermore, equalizes the open and
closed moduli as the complex structure moduli of the
dual 4-fold. Taking advantage of this, we conveniently
compute the D-brane superpotentials for parallel and co-
incident phases near the large radius limit point in the
open-closed deformation space on the F-theory side, and
extract the disk invariants from their instanton expan-
sion.

The parallel and coincident phases of the D-brane
system are also known as the Coulomb branch and
the Higgs branch respectively in terms of gauge theory.
When the n parallel D-branes approach each other and
finally coincide, the phase transition appears and the
U(1)×U(1)×...×U(1) gauge theory corresponding to the
parallel phase receives a symmetry enhancement, giving
rise to the U(n) gauge theory. The difference can be
observed from the disk invariants of the two phases, in
terms of there being no suitable normalization that can
make Nn1,n2,n3=n2

=Nn1,n2
for every (n1,n2). It means
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the two phases have different BPS state spectra.
In future work, we will further study the phase

transition for multiple D-brane systems with several
closed-string deformations and the physical properties
of the phase transition from the viewpoint of changing

of Ooguri-Vafa invariants. It is also interesting to calcu-
late the D-brane superpotential from the A∞-structure
in the derived category of coherent sheaves of Calabi-Yau
manifold and path algebras of quivers.
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