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Primordial perturbations and non-gaussianities in Horava-Lifshitz gravity”
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Abstract: We investigate primordial perturbations and non-gaussianities in the Hofava-Lifshitz theory of gravitation.

In the UV limit, the scalar perturbation in the Hotava theory is naturally scale-invariant, ignoring the details of the ex-

pansion of the Universe. One may thus relax the exponential inflation and the slow-roll conditions for the inflaton

field. As a result, it is possible that the primordial non-gaussianities, which are “slow-roll suppressed” in the standard

scenarios, become large. We calculate the non-gaussianities from the bispectrum of the perturbation and find that the

equilateral-type non-gaussianity is of the order of unity, while the local-type non-gaussianity remains small, as in the

usual single-field slow-roll inflation model in general relativity. Our result is a new constraint on Hotava-Lifshitz

gravity.
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1 Introduction

A renormalizable theory of gravity was proposed by
Hotava [1-3]. This theory reduces to Einstein's general
relativity (GR) for large scales, and may be a candidate
for the UV completion of general relativity. This theory is
renormalizable in the sense that the effective coupling
constant is dimensionless in UV. The essential point of
this theory is the anisotropic scaling of temporal and spa-
tial coordinates with dynamical critical exponent z,
(zz1). (1)
In 3+1 spacetime dimension, the Horava theory has an
ultraviolet fixed point with z = 3. Since the Hofava theory
is analogue to the scalar-field model studied by Lifshitz,
in which the full Lorentz symmetry emerges only at the
IR fixed point, the Hofava theory is also called the
Hotava-Lifshitz theory. Because of this anisotropic scal-
ing, time plays a privileged role in the Hotava theory. In
other words, spacetime has a codimension-one foliation
structure, which leaves the foliation hypersurfaces of con-
stant time. Thus, contrary to GR, full diffeomorphism in-
variance is abandoned, and only a subset (of the form of
local Galilean invariance) is kept. More precisely, the
theory is invariant under the foliation-preserving diffeo-

t— {°t, XX,

Received 15 April 2019, Published online 5 June 2019

DOI: 10.1088/1674-1137/43/7/075103

morphism defined by

X - ®(,x0). )
In the infrared (IR), due to a deformation by lower di-
mensional operators, the theory flows to z=1, corres-
ponding to the standard relativistic scale invariance un-
der which the full deffeomorphism, and thus general re-
lativity, is recovered. Non-relativistic scaling allows for
many non-trivial scaling theories in dimensions D > 2.
The Hotrava-Lifshitz theory allows a theory of gravita-
tion that is scale-invariant in UV, while the standard GR
with full diffeomorphism emerges at the IR fixed point.

The Horava-Lifshitz gravity theory has been intens-
ively investigated [4-18] (see also [19, 20] for reviews
and more references therein). In particular, cosmology in
the Hotava theory has been studied in [7-13]. Homogen-
eous vacuum solutions in this theory were obtained in
[12], and scalar and tensor perturbations were studied in
[8, 10]. In [7, 9], the cosmological evolution in Hotfava
gravity with scalar-field was extensively studied, and the
matter bounce scenario in the Hofava theory was invest-
igated by Brandenberger [11].

As was pointed out in [7], the Hofava theory has at
least two important properties. The first is its UV renor-
malizability, while the second is more interesting for cos-
mology. The fact that the speed of light is diverging in
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UV implies that exponential inflation is not necessary for
solving the horizon problem. Moreover, the short dis-
tance structure of perturbations in the Hofava-Lifshitz
theory is different from the standard inflation in GR. In
particular, in the UV limit, the scalar field perturbation is
essentially scale-invariant and is insensitive to the expan-
sion rate of the Universe, as has been addressed in [7-10].
The key point is that the UV renormalizability indicates
that the Lagrangian for the non-relativistic scalar field
should contain up to six spatial derivatives. Thus, in the
UV limit, the dispersion relation is w? ~ k%, which is con-
trary to w® ~ k* in standard GR. This phenomenon causes
different k-dependence of the two-point correlation func-
tion, and thus the scalar perturbation in Hofava gravity is
naturally scale-invariant in the UV limit.

In this paper, we extend the previous works on cos-
mological perturbation theory in Hofava gravity, includ-
ing non-gaussianities. The 6-parameter ACDM model
provides an accurate description of the Universe [21]. In
particular, the primordial perturbations are assumed to be
Gaussian. Deviation from the Gaussian distribution, i.e.,
primordial non-gaussianity, has not been observed. This
puts a strict constraint on any model of the early Uni-
verse. The non-Gaussian features of Horava gravity have
not been studied in detail, except in [22] and in [23],
which investigated the non-gaussianities of the scalar
field and of the gravitational waves in Hofava gravity, re-
spectively. Actually, one of the essential differences of
Hoftava gravity from Einstein's general relativity is that it
contains quadratic curvature terms in the theory.
Moreover, the foliation-preserving diffeomorphism does
not allow, unfortunately, to choose a spatially-flat gauge
as in GR. Thus, in general, the perturbation theory in
Hotava gravity is quite involved. On the other hand, the
number of dynamical degrees of freedom in the spatial
metric is 3 in Hotava gravity (contrary to 2 in GR), with 2
tensor degrees of freedom, as usual, and an additional
scalar dynamical degree of freedom (see also [24-26] for
the general framework of spatially covariant theories of
gravity).

In this work, we focus on the perturbation of the scal-
ar field. Thus, for simplicity, we neglect the spatial met-
ric perturbation. We introduce a scalar field, following
the strategy in [7, 9]. We pay special attention to the non-
gaussianities in this scalar field model in Hofava gravity.
The basic idea is that, as has been addressed before, the
divergence of the speed of light and the scale-invariance
of the scalar perturbation in Hofava gravity indicate that
there is no need to assume an exponential expansion of
the Universe. Moreover, the traditional slow-roll condi-
tions are not necessary. While it is well-known that in
slow-roll inflationary models non-gaussianity is sup-
pressed by slow-roll parameters [27], and thus too small
to be detected (see e.g. [28] for a review of non-gaussian-

ities in cosmological perturbations. Various models have
been investigated to generate large non-gaussianities by
introducing more complicated kinetic terms [29-32] or
more fields [33-38]). However, in Hotava gravity, there
are no slow-roll conditions, and thus the “slow-roll sup-
pressed ” non-gaussianities can become large. In this
work, we focus on the non-gaussianity from the bispec-
trum, which is defined from the three-point correlation
function of the perturbation. We find that the equilateral-
type non-gaussianity is roughly of the order of unity,
while the local-type non-gaussianity remains very small,
as in the usual single-field slow-roll inflation in GR.

The paper is organized as follows. In Section 2, we
briefly review the Hotava gravity and set out our conven-
tions. In Section 3, we couple the scalar field to Hotava
gravity, and describe the cosmological evolution of the
Hotava gravity/scalar matter system. In Section 4, we cal-
culate the scalar field perturbation, including the gravity
perturbations. We get the full second-order perturbation
action, which reduces to the standard result in the IR lim-
it. In the UV limit, the scalar perturbation is essentially
scale-invariant. In Section 5, we calculate the non-gaussi-
anities. Finally, we make a conclusion and discuss sever-
al related issues.

2 Brief review of Horava-Lifshitz gravity

In this section we briefly review the Hotava-Lifshitz
theory [1]. The dynamical variables in Hotrava-Lifshitz
gravity are the spatial scalar N, spatial vector N; and spa-
tial metric g;;. This is similar to the ADM formalism of
the metric in standard general relativity, while in Hotava
gravity, N, N; and g;; are related to the space-time metric as

ds? = =N>c*dr + gi;(d' + N'di) (dx/ + N/dr),  (3)
where c is the speed of light.

The action of Horava-Lifshitz gravity contains a "kin-
etic" part and a "potential" part,

S=Sk+Svy, “4)
with
Sk = K% f drd*x N (KiK' - 1K?) , ()
where
K;j= % (gij —ViN; _VJN") ’

is the extrinsic curvature and K = g"K;;. The potential
terms are given in the “detailed-balance” form

Sy = | did®xygN —K—2C~~Cij+l<2—u KRV Rl
V= 8 2W4 ij 2W26 iy jINg

K*u? ” K>u? 1-42
SR RRy —F [CTETR2 L AR-3A?)|,
g +8(1—3/l)( g o7 )}

(6)
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where C;; is the Cotton tensor defined by

B Eikl ; 1 ;
=2 _v, (R -=R&|. 7
ool w) o

Note that in (5) A is a dimensionless coupling of the
theory, and therefore runs.

As mentioned in the introduction, the essential point
of the Hotava theory is the anisotropic scaling of tempor-
al and spatial coordinates: ¢t — ¢*¢ and x' — £x'. The clas-
sical scaling dimensions of various quantities in the
Hotava theory are summarized in Table 1.

Table 1. Summary of the classical scaling dimensions of various quantities in the Hofava-Lifshitz theory.
[1] [x] [c] [«] [N] [Ni] Lgij] [A] [0:] [0i] [¢]
dimension -z —1 z—1 3 0 7—1 0 2 z 1 %

3 Cosmology with scalar field matter
3.1 Coupling the scalar field to Horava-Lifshitz gravity

In this work, we couple the scalar-field matter with
Hotava-Lifshitz theory following the strategy in [7, 9].
The general structure of the action of the scalar-field mat-
ter and Hotava-Lifshitz gravity contains two parts: a
quadratic kinetic term with the foliation-preserving dif-
feomorphisms and a potential term:

1 /. . 2
§¢ = fdtd3x @N[W (¢—Nl¢9i¢) + F(¢,ai¢,gij)}~ (®)
The “potential term” is
F=-V(@)+gi& +8nél + 8111 +g2ér +gnéiér + 8363,
(€]
where &; and their properties in UV/IR are summarized in
Table 2. In Table 2, A =g"/V,;V; is the spatial Laplacian,
and g;, g;; etc. can be constant, or in general it can be
functions of ¢. We assume g3 >0 in order to guarantee
the stability of the perturbation in UV.

In the UV limit (z =3 fixed point), &, && and &
dominate. Thus, in UV the scalar field action takes the form

1 . . 3
S%V :fd[d3xa3N|:2—]\,2¢2 +g111(0’¢8i¢)

+212(0'90:0) (Ap) +23(Ap) (A%)].  (10)

3.2 Equations of motion

The full equations of motion for N, N; and g;; have
been derived in [7, 9, 12]. For our purpose we focus on
the equations of motion for NV and N;, which we write here
for later convenience :

2 i ra i ra i
0:—z(Kinf—,le)—mcijcuZ—VV‘;ffkRi,VjRi
2,2 B 2,2 1-42
R RR e —E IR AR-3A2
8 8(1-31)\ 4
1 /. ; 2
_W(¢_Nai¢) +F,
4 : N
Oszj(Kij—/lKéf)—N(¢—Nai¢)8i¢. (11)

3.3 Cosmological evolution

We now consider the cosmological background evol-
ution in Hotava-Lifshitz gravity. We assume the back-
ground to be homogeneous and isotropic, and use the re-
sidual invariance under time re-parametrization to set
N=1. We focus on the flat 3-dimensional case. The
background values are

N=1, Ni=0, g;=d*®)6;j, ¢o=¢o(®).  (12)

In this background, the action in the gravity sector is sig-
nificantly simplified. In particular, R;;=C;; =0 and the
spatial covariant derivatives mostly vanish.

Table 2.  Summary of the operators in the non-relativistic scalar field action and their properties under the renormalization group flow from z =3 (UV)
to z=1(IR).
o scaling dim [O] z=3, UV fixed point z=1, IR fixed point
éﬁz z+3 marginal marginal
& 0'¢d; 5-2 relevant marginal
ff (6" ¢6i¢)2 10-2z relevant irrelevant
& (6[¢6;¢)3 15-3z marginal irrelevant
& (Ag)? 7-z relevant irrelevant
&6 (6i¢a,-¢) (Ap)? 12-2z marginal irrelevant
& (Ap)(AZ9) 9—-z marginal irrelevant
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The equation of motion for N to the 0-th order gives
12

3(3/1—1)H2cx+0'—%—V(¢0)=0, (13)
where we have denoted
2 3P A3
== S A 14
= 8(1-31)" (14

and H = a/a is the familiar Hubble parameter. The equa-
tion of motion for g;; gives
(2
234- e (H+3H?/2)+ %0 ~V(go)=0. (15

The equation of motion for the scalar field is

!

) v
¢0+3H¢0+7=O. (16)

4 Cosmological perturbation

We now consider cosmological perturbation in
Hotava gravity coupled to scalar-field matter.

As has been addressed before, the action of Hofava
gravity is complicated due to the quadratic terms in spa-
tial curvature. We recall that in GR one can choose vari-
ous gauges to simplify the calculations. However, the
case is different in Hotava gravity (see Appendix A for a
discussion of gauge transformation and gauge choice in
Hotava theory). Since the “foliation-preserving” diffeo-
morphism is only a subset of the full diffeomorphism in
GR, one may expect in general that there are less gauge
modes and more physical modes'. Thus, the perturbation
theory in Hofava-Lifshitz theory is very involved, but
also interesting.

We consider the scalar-field perturbation by neglect-
ing the spatial metric perturbation. We assume that the
background scalar field is homogeneous ¢y = ¢ (7).

As we focus on the scalar perturbation, we write (in
the background N =1 gauge)z)

N=l+ai+---,
N; Eaiﬁ] +601+---. (17)

Here, the subscript “1” denotes the first-order in ¢ = 6¢.
The constraints in Eq. (11) become

0=- % (KiK' = AK?) + o~ 2LN2 (¢_Niai¢)2 +F,
0-2%) (K -aks)- L (o-Mad)os.  as)

Solving Eq. (18) up to the first-order of 54, we get”
(=1+ )00+ Q(H(=1+3Ddo +(~1+ )V’)
- AH2(~1+32) + (=1 + D¢

ai
(92 | = a2
2Ha(1-30)Qdo+Q (6H2a(1-3 o +¢3 +2Ha(1-3) V")
X
20 (4H2a(—1 +30)+(-1+ /l)d)?))

(19)
and 6,; =0, as usual in GR. Note that when A # 1, a; also
depends on @, which is different from GR, where
ay ~ 6¢. It is useful to note that in the UV limit @, and B;
become

o~ V3(1-1Q
1 - — _ _ ____ 9
HV2a(31-1)32
V3a20
V2a(BA-1)’
where we have used the background equations of motion
in the UV limit.

(92 1 == (20)

4.1 Linear perturbation

As we are neglecting the spatial metric perturbation,
the gravity sector is greatly simplified

S8 = f ditd®xa’N e (KiK' - AK?)+o|. (21

After a rather tedious but straightforward calculation,
we get the quadratic part of the action for the scalar per-
turbation Q:

Sz[Q]zfdtd3xa3 %Q2+wQQ+mQ2+g16iQ6iQ
+82(AQ) +g3(AQ) (A*Q)]. (22)

where

H2a(1-32) [H2a(7 +3131—-4) = (A= 1)(Vo - 0')]
’y =

s

2
[Hza(l —3)2 = (A= 1)(Vo— 0')]
2H2a(3A—1) = (A= 1)(Vo— o)
2
2[H2a(1 —3)2 = (A= 1)(Vo - 0')]
X [6H3a(1 —3%+ HQ2-6)(Vo—0)

+(A= 1) VoH2a(=1+30) - 2(Vo - V']

1) As argued in the original proposal by Hofava [1], the dynamical degrees of freedom in the spatial metric g;; is 3 (with contrary to 2 in GR) when 4 # 1 and 1/3,
which contains 2 usual tensor degrees of freedom and one additional scalar degree of freedom (see also similar arguments based on cosmological context and more gen-

eral analysis in).

2) In Hotava's original formulation of the theory,N was assumed to be a function of time only, N = N(¢). Here in this work, we relax this restriction to assume N to be

function of both temporal and spatial coordinates.

3) At this point, it is useful to compare (19) with the standard results in perturbation theory in GR. It can be seen directly that in the IR fixed point where z = 1, if we

choose A = 1, (19) reduces to the previous well-known results in GR.
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1

m= = {18H6a3(1 “3D*+ 2 =20)(Vy —0) —2H?*(A- 1D)(BA-1)(V')?

4a(H?a(1-32)* = (A= 1)(Vo - )

+ V6H2a(=1+32) - 2(Vo — o) (—4H* (1 = 30)*V' + 2Ha(A - D(BA-1)(Vo - V')

—2H*P (1 =3)*V" +(Vy—0) (—12H4a2(3/l -

+(Vo—0)? (4H2a(2 +9(=1+ D) - 21— 1)2v")} )

In (22), g; = gi(¢o). In deriving Eq. (22), we have used the
background equations of motion. Moreover, no approx-
imations were made in deriving Eq. (22) and thus it is ex-
act. We can use Eq. (22) to analyze the behavior of per-
turbations both in the IR or UV limits and in the interpol-
ation era.

4.1.1 IR limit
Taking the IR limit of the full second-order perturba-
tion action Eq. (22) and choosing A = 1, we get

1. ; He .
Sy = f dfd3x03[§Q2+g16’Q6iQ—2—EQQ
(04

2
€ VEIT M\ »
+H? -~ B 24
(2&2 20 2 )Q }’ 24
where we have defined the dimensionless parameters
; 2
@ v 4
“a MTa\m) P @

1 1
If we further set @ = = and choose g; = ~5 Eq. (24) re-
duces to the familiar result in the perturbation theory in
GR. Especially, the perturbation Q is scale-invariant
when the expansion of the Universe is exponential, and
thus with an approximately constant Hubble parameter

H =~ const.
4.2 Scale-invariant spectrum in Hotava-Lifshitz era

We now focus on the behavior of the perturbation the-
ory in the UV-limit, where Q% and QA*Q terms dominate.
The perturbation action Eq. (22) becomes rather simple in
the UV limit,

SQ[Q]zfdtd3xa3<%Q2+g3AQA2Q), (26)
with
7431(31-4)
T (Ba-1)?

Note that y is now constant. It is convenient to use a new
variable u , defined as u=a+/yQ. After changing into
conformal time 5 , defined by dr = adn , and going into
Fourier space, the second-order perturbation action reads

&3k g3k®
Sz=f [ (u k— “Huk)(u —k— Hu_ k)+—uku k
(28)

@7

D’ + (A= 12(V')* +4H2*(1-3)* A= 1)V")

(23)

The equation of motion for the perturbation reads

1’

k6
u,'g+(g—3—4—“—)uk=o. (29)
v a a

Here, we assume for simplicity that gz is approxim-
ately constant. The mode function is

33’7dr]
mew(- 2 [ ) 60

The mode functlon is chosen such that it satisfies the
Wronskian normalization condition:

(M () — (g () = —i. (€3]

Moreover, the short-time behavior of the mode func-

tion Eq. (30) is analogue to that of a positive-frequency
oscillator.

The tree-level two-point correlation function of

O(k,n) is
(Q(k1,m1)Qk2,112)) =(27)*8° (k1 + k2)

() = (y/g3)

3
VY83 Zkl

. (& 3f”‘ dny’ )
xXexp|—i.,/=k , (32
p( vyl am) ©?

and thus the power spectrum of Q is given by
(Q(k1,n)Qk2,1.)) = 20)°6 (ki + ko)P(k1),  (33)

with
1
P(k) = ———. (34)
Y832k
The so-called dimensionless power spectrum of Q is
A%(k) = P( )= 1L const (35)
@ny? Ve i

The power spectrum of the scalar perturbation is nat-
urally scale-invariant in the UV limit, ignoring the de-
tails of the expansion of the Universe. This feature is con-
trary to that in GR, where a nearly constant Hubble ex-
pansion rate H is needed to guarantee the scale-invari-
ance of the spectrum. Due to this fact, there is no need to
take any “slow-roll”-type conditions for the scalar field.

We would like to make some comments here. The
crucial picture of the standard inflation is that quantum
fluctuations are generated in the subhorizon region
(k> aH) , and are then stretched to the cosmological size
and become classical (k << aH ). The horizon-exiting point
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corresponds to k = aH. Thus, the “horizon-exiting” pro-
cess exists only when aH is an increasing function of
time. If we assume a power law inflation a o, it re-
quires p > 1. This is violated by the curvature, and is only
satisfied when the equation of state w < —1/3. This is why
in the standard inflation model we need a slow-rolling
scalar field to mimic the cosmological constant and to
drive an exponentially expanding background. However,
the “horizon-exiting” process occurs generically in the
Hotava-Lifshitz era for rather general cosmological back-
grounds. From Eq. (29), it is obvious that the perturba-
tion stops oscillating when

and thus requires that a®H? is an increasing function of
time. Obviously, if we assume a power law expansion
axt’, this demands p > 1/3. In terms of the comoving
time a « |n|” , we need p < 1/2. This condition can be sat-
isfied by any matter component with the equation of
state w < 1.

We get the scale-invariant power spectrum in the UV
limit from the equation of motion Eq. (29). While one
may consider the full equation of motion, the second-or-
der action Eq. (22) can be used. In general, the equation
of motion for the perturbation has the following function-
al form:

214 41,6 ’”
+(c§k2+/11% +/lz%—a—+m2a2)uk =0, (36)
a a a

where ¢y, 4; and 1, are dimensionless parameters, m is the
effective mass parameter, and ¢ is the length scale of the
whole theory. The functional form of the dispersion rela-
tion in (36) has been intensively studied in the investiga-
tion of trans-Planckian effects [39-42], and also in statist-
ical anisotropy [43]. Although complicated, it is interest-
ing and important to investigate Eq. (36) in order to un-
derstand the behavior of the perturbation not only in the
UV limit, but also in the interpolation region between UV
and IR.

S Non-gaussianities
In this section, we investigate the non-gaussianities,
which characterize the interaction of the perturbations.

5.1 Bispectrum

We focus on the third-order perturbation action and
the three-point correlation function of the perturbation Q.
The third-order action in the gravity sector is

5§ = f dtd3xa3a[—% (0,0,810:0,81 - A&*B1?)

H
~2(1-30)— a3 -3(1 —3A)H2a?] , (37
a

and in the scalar field sector is
s? :fdtd3xa { |-200'810,0 - a1 (0 - 266'8,6:0)

+200; - 3]——Q +£100'00;0
+8,0(A0)* + g5 0(AQ)(A* Q)
o (— v 00,0

+£2(A0) +g3(AQ)(A2Q))},

(38)

where «; and B; are given in Eq. (19). We are interested
in the UV behavior of the perturbation. In the UV limit,
after a straightforward calculation, the third-order per-
turbation action reads,

3
sViol= f did’x T [b10° + 02080870

+b3Q(86 ) } (39)

\/g(/l -1D(@8+34(31-5))

where

br=——3 VaGi-niz
f (- 1)g3
VaGi-1y2’
b= — 3V3(1-1) (40)

2V2a(31-1)52"

which are dimensionless constants (recall that we assume
g3 to be approximately constant). In Eq. (39), the formal

0,0, .
operator # should be understood in momentum space.

After changing into comoving time n and into Fourier
space, we have

3 Bk
SUV=fd L 2n)’s (k
3 UD(ZF)3( m)°6"(k123)

X [% (bl + b3 (ks - /}3)2) Q' (k1,0 (ky,m)Q’ (k3,1)

b ,
-~k (kl,mQ(kz,n)Q(kg,n)] :
(41)
where we denote kjp3 =k + ko + k3 .
The three-point correlation function in the cosmolo-

gical context is evaluated in the so-called “in-in” formal-
ism
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UB
(Q(kl,U*)Q(kz,ﬂ*)Q(kLm))=—ZRC[if dn’ (Q(kl,TI*)Q(kz,TI*)Q(szl*)H(TI'»], 42)

where 7. is the time when perturbation modes exit the sound horizon, and A is the Hamiltonian which can be read from
Eq. (41) by noting that in the third-order H(3) = —L3). Thus, for three-point interactions described by Eq. (41), we have

UB
(Q(k1,1.) Ok, 11.) Ok, 11.)) = (21)° 6% (key + ko + k3>Re[ f dy

1
a>(mH

e VT (ekkd) [ 555 ] S(ki,kz,k3), (43)

where we have introduced the “shape factor” S(k;, ks, k3) defined as

3b,
2y3
For power law expansion a(r) « ||” (p # 0), the time-

integral in Eq. (43) can be evaluated exactly, and the
three-point correlation function reads,

(Q(k1,1.)Qk2,1.)Q(k2,m.))y =276 (ky + ko + k3)
XB(kl,kz,k3), (45)

S(k1, k2, k3) =

with
=2p yS(ki,kz,k3)
g+ +1)

1
B(ki,ko,k3) = (46)

which is the so-called bispectrum.
5.2 Non-linear parameter fnp

In practice, it is convenient to introduce non-linear
parameters to characterize the non-gaussianities. The di-
mensionless non-linear parameter fy; from the three-
point correlation function is defined as

6
B(ki, ko, k3) ngNL(kl,kz,kB) [P(k1)P(k2)

+P(ky)P(k3) + P(k3)P(k)] , (47)

where the power spectrum P(k) is given in Eq. (33). Note
that although dimensionless, fxr is in general k depend-
ent. A straightforward calculation gives

10y2(1-2p)  kik3h3
ky,ka,k3) = — S(ky,ko,k3).
SNk, ko, k3) 3 P AR R) (k1,k2,k3)
(48)
In the equilateral limit (k; ~ k; ~ k3),
1 S(A-2p)(A-1)91+3A(-55+361
fl-flclq_‘ullz ( P)( )(9 + ( + )) ~O(1), (49)
72p V6a(3A—1)32(7 +3A(~4 +32))
while in the squeezed limit (k; < k; = k3),
2
local 1 =2p)(A-1) (’ﬂ) <. (50)
8p Voa(31-1)32 \ka

Thus, in the UV limit, we find that the equilateral-type
non-gaussianity is roughly ~ O(1), while the local-type
non-gaussianity is very small. This is not surprising, since
in Hotava-Lifshitz gravity the scalar-field perturbation in
the UV limit is naturally scale-invariant. Thus, no slow-
roll condition is needed to guarantee the exponential ex-
pansion of the Universe. On the other hand, it is well

by 1~ & PN IR
+ [ hea ) + ey - s + (s - K |+
2y3

by [k% (kp + k3) +k§ (k3 + k1) +k§ (k1 +kp)
4y2g3 kikaks '

known that in standard slow-roll inflationary models in
GR non-gaussianities are suppressed by slow-roll para-
meters [27]. However, in Hofava gravity, no slow-roll
parameters are needed. Thus, one may expect the slow-
roll suppressed non-gaussianity to be of the order of
unity. However, in our simplest scalar-field model with
the action given by Eq. (8) and Eq. (9), the temporal kin-
etic term is canonical, and in general there is no enhance-
ment of the non-gaussianity by non-canonical kinetic
terms as in the K-inflation or DBI-inflation models [29-
32]. Moreover, the scalar-field action Eq. (8) is mostly
“derivative-coupled”, thus the local-type non-gaussianity
(which characterizes the local couplings of the perturba-
tions in the real space) is small, as expected.

(44)

6 Conclusion

In this work, we investigated the cosmological per-
turbation theory in Hotava-Lifshitz gravity and the non-
gaussianities from the bispectrum. The most interesting
feature of Hofava gravity is that in the UV limit the scal-
ar perturbation is essentially scale-invariant, ignoring the
details of the expansion of the Universe. Moreover, to-
gether with the fact that the speed of light in the UV limit
diverges, there is no need to assume exponential expan-
sion of the early Universe, or the usual scalar-field driv-
en slow-roll inflation. In particular, the slow-roll condi-
tions are not necessary. Thus, one may expect that in the
absence of slow-roll conditions, the non-gaussianities can
become large. We calculated the three-point correlation
function of the scalar perturbation and found that the
equilateral-type non-gaussianities are of the order of unity
due to the absence of the slow-roll-type conditions, while
the local-type non-gaussianities remain small, as in the
usual single field inflation in GR.

We focused on the scalar-field perturbation in the
Hortava-Lifshitz theory, neglecting the spatial metric per-
turbations. However, the latter is obviously the most im-
portant and interesting part in the Hofava theory. Since in
the Hotava theory the dynamical degrees of freedom in
the spatial metric part are 3, there is one additional scalar
degree of freedom. It is important to investigate the prop-
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erty of this additional degree of freedom. Moreover, in
this work, we only investigated the behavior of the per-
turbation in the UV limit at z = 3, while it is interesting to
study the full equations of motion, especially in the inter-
polating region between UV and IR. We considered the
scalar field with canonical temporal kinetic term.
However, one could expect enhancement of non-gaussi-
anities if more general kinetic terms are considered. The
Hoftava-Lifshitz theory, although originating from a

renormalizable quantum gravity in 4 dimensions, may be
a potential competitor to the standard inflation theory and
deserves further investigation.

I would like to thank Robert Brandenberger, Miao Li,
Chun-Shan Lin, Yan Liu, Yi Pang, Ya-Wen Sun, Yi Wang,
Jian-Feng Wu, Yushu Song, Gang Yang and Yang Zhou
for valuable discussions and comments.

Appendix A: Gauge transformation, gauge choice and gauge-invariant variables

In this Appendix, we discuss the problem of gauge transforma-
tion and gauge choice in the non-relativistic Hofava-Lifshitz the-
ory. The essential point is that in the case of GR we have a larger
set of gauge transformations which we can use to choose a gauge.
However, in the Hofava-Lifshitz theory, the full diffeomorphism
with general coordinate invariance is restricted to a subset, i.e. the
so-called “foliation-preserving diffeomorphism ”, and thus gives
less gauge modes but more physical modes.

In this work, we focus on the scalar-type perturbation. The scal-
ar part of coordinate transformations is : 6n = £, 6x' = 'y, with

&=m, x=xmx) (A1)
and the scalar-type “space-time metric” perturbations
gij=a*|(1-20)6;j+Bid;E|, N=1+2¢, Ni=9:B.  (A2)

The essential difference from GR is that in the Hofava theory &° is
a function of time 5 only.

The gauge transformations is as usual:

A=t (e, ap=£L, AB:fO—(%)/, AE=-%. (A3

a a a a

Due to the fact that £° is a function of 7 only, the gauge choice
is fairly restricted. In particular, (or unfortunately), two familiar
gauge-choices -- the “longitudinal gauge ” and “spatially-flat
gauge ” -- are not allowed in the Hofava theory. We can use
x = x(,x') freely to set E =0, while in general we cannot use £° to
set B=0 and get the longitudinal gauge, or to set =0 and get the
spatially-flat gauge.

However, there is still a possible gauge choice in the Hofava
theory. First, as we have mentioned, we can choose

X= @’E
to get £ =0. This leaves the question: are we able to choose anoth-
er gauge condition to set one of ¢, ¢ and B to 0? In Hofava's origin-

al formulation of the theory, N = N(¢) is assumed to be a function of
time only. In this case we can choose the proper value of £ to set
the fluctuation of NV to zero, i.e. ¢ = 0. Thus, after gauge transforma-

o_1 :
&= 2 [naom +e).

we get ¢ =0. This does not determine time-slicing unambiguously,

tion with

but we are left with time reparametrization. If we relax the restric-
tion that N has to be a function of time only, then there is no gauge
condition we can choose. In this case, we are left with 3 non-van-
ishing variables ¢, ¢ and B.

The two Bardeen potentials

v=y-L o),
a
=g+ - (a(B-E"), (Ad)

are still gauge-invariant variables in Hotava gravity. This is also
because the foliation-preserving diffeormorphism is a subset of the
full symmetry in GR. Note that there is an infinite number of
gauge-invariant variables, for example, combining ¢ and ¥ gives
another useful gauge-invariant variable

ci>:¢+1(f)'. (AS)

For the “space-time” scalar field ¢ (now “scalar” means invari-
ant under “foliation-preserving” diffeomorphism), if we assume
that the background value is homogeneous ¢ = ¢o(7), the gauge
transformation for the scalar fluctuation is as usual

AG) = £ (A6)
The gauge-invariant variable for ¢ is as in GR:
Q=6p+¢y(B-E'). (A7)
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