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Abstract: We investigate current-current correlation functions, or the so-called response functions of a two-flavor
Nambu-Jona-Lasino model at finite temperature and density. The linear response is investigated introducing the con-
jugated gauge fields as external sources within the functional path integral approach. The response functions can be
obtained by expanding the generational functional in powers of the external sources. We derive the response func-
tions parallel to two well-established approximations for equilibrium thermodynamics, namely mean-field theory and
a beyond-mean-field theory, taking into account mesonic contributions. Response functions based on the mean-field
theory recover the so-called quasiparticle random phase approximation. We calculate the dynamical structure factors
for the density responses in various channels within the random phase approximation, showing that the dynamical
structure factors in the baryon axial vector and isospin axial vector channels can be used to reveal the quark mass gap
and the Mott dissociation of mesons, respectively. Noting that the mesonic contributions are not taken into account in
the random phase approximation, we also derive the response functions parallel to the beyond-mean-field theory. We
show that the mesonic fluctuations naturally give rise to three kinds of famous diagrammatic contributions: the
Aslamazov-Lakin contribution, the self-energy or density-of-state contribution, and the Maki-Thompson contribution.
Unlike the equilibrium case, in evaluating the fluctuation contributions, we need to carefully treat the linear terms in
external sources and the induced perturbations. In the chiral symmetry breaking phase, we find an additional chiral
order parameter induced contribution, which ensures that the temporal component of the response functions in the
static and long-wavelength limit recovers the correct charge susceptibility defined using the equilibrium thermody-
namic quantities. These contributions from mesonic fluctuations are expected to have significant effects on the trans-
port properties of hot and dense matter around the chiral phase transition or crossover, where the mesonic degrees of
freedom are still important.
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1 Introduction

Good knowledge of strongly interacting matter, i.e.,
quantum chromodynamics (QCD) at nonzero temperat-
ure and density, is important for the understanding of
many physical phenomena in nature. For instance, the
nature of the QCD phase transition at temperatures
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around 200 MeV and at vanishingly small baryon density
[1,2] is needed to understand the evolution of the early
universe. On the other hand, the nature of high-density
QCD matter at very low temperature [2-9] is crucial to
explain the phenomenology of neutron stars. It has been
shown that QCD has a very rich phase structure at high
baryondensityduetotheappearanceofcolorsuperconductivity
[2-9].
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At ultra high temperature and/or baryon density, the
perturbative method can be applied to predict the phases
and equation of state of hot and dense QCD matter
[10—24]. However, near the QCD phase transition, the
system is strongly interacting, and hence the usual per-
turbative method fails. One powerful non-perturbative
method, the lattice simulation of QCD at nonzero temper-
ature and vanishing baryon density, reached great suc-
cess in the past decades [25-28]. However, at nonzero ba-
ryon density, a so-called sign problem arises [29,30]: the
fermion determinant is generally a complex number and
hence cannot be regarded as probability. Therefore, no
satisfying lattice results at nonzero baryon density have
been achieved so far. Another useful nonperturbative
method is the functional renormalization group [31,32],
which has made great progress in understanding the QCD
phase transitions [33-35].

While QCD itself is hard to handle, it is generally be-
lieved that a number of features of QCD phase trans-
itions can be captured by some low-energy effective
models of QCD. One of these effective models, the
Nambu—Jona-Lasinio (NJL) model [36], with quarks as
elementary degrees of freedom, can efficiently describe
the low-energy phenomenology of the QCD vacuum
[37—40]. It is generally believed that the NJL model still
works well at low and moderate temperature and density
[39,40]. One disadvantage of this model, i.e., the lack of
confinement of quarks, has been amended by the so-
called Polyakov loop extended NJL model [41-48]. As a
pure fermionic field theoretical model with contact four-
fermion interactions, some non-perturbative method from
condensed matter theory can be applied. One simple but
useful approximation is the mean-field theory, which
gives a reasonable description of the chiral phase trans-
ition. The mesons can be constructed using the random
phase approximation [39,40]. However, because of the
strong coupling nature, the mean-field theory is not ad-
equate: (1) the thermodynamic quantities lack the meson-
ic degrees of freedom in the chiral symmetry breaking
phase, or the hadronic phase at low temperature, where it
is believed that the pions dominate thermodynamical
quantities; (2) in the chiral limit, the quarks become
massless above the chiral phase transition temperature,
and hence the mean-field theory predicts a gas of nonin-
teracting massless quarks. These inadequacies indicate
that going beyond mean field, i.e., taking into account
properly the mesonic degrees of freedom, is quite neces-
sary both below and above the chiral phase transition
temperature.

Such a system is very similar to the BCS-BEC cros-
sover in strongly interacting Fermi gases [49-57]. There,
it has been shown that the role of the pair degrees of free-
dom is of significant importance to describe quantitat-
ively the equation of state and other properties of the

BCS-BEC crossover [58—73]. The Gaussian approxima-
tion for the pair fluctuations, which truncates the pair
fluctuations at the two-body level, has achieved great suc-
cess in quantitatively describing the equation of state in
the BCS-BEC crossover, both in two and three spatial di-
mensions [67—73]. For the NJL model, the parallel Gaus-
sian approximation, which includes the mesonic degrees
of freedom, has been developed by Huefner, Klevansky,
Zhuang, and Voss [74]. At low temperature, such a bey-
ond-mean-field theory predicts that the thermodynamical
quantities are dominated by the lightest mesonic excita-
tions, i.e., pions [75]. Otherwise, it has been shown that
the mesonic fluctuations or the fluctuations of the chiral
order parameter are also important above and near the
chiral phase transition temperature [76,77]. In dense
quark matter, the corresponding diquark fluctuation is ex-
pected to provide significant contribution to the transport
properties above and near the transition temperature of
color superconductivity [78-80].

In this work, we derive the current-current correla-
tion functions, or the so-called response functions, of a
two-flavor Nambu-Jona-Lasino model at finite temperat-
ure and density. We study the linear response using the
functional path integral approach and introducing the
conjugated gauge fields as external sources. The re-
sponse functions can be obtained by expanding the gener-
ating functional in powers of the external sources [81].
We derive the response functions parallel to two well-es-
tablished approximations for the equilibrium thermody-
namics: the mean-field theory [39,40] and a beyond-
mean-field theory, taking into account the mesonic con-
tributions [74,75]. The latter beyond-mean-field theory
can be referred to as the meson-fluctuation theory. The
response functions based on the mean-field theory recov-
er the so-called quasiparticle random phase approxima-
tion. The dynamical structure factors for various density
responses are evaluated. It has been shown that in the
long-wavelength limit, the dynamical structure factor is
nonzero only for the baryon axial vector and isospin axi-
al vector channels. For the isospin axial vector channel,
the dynamical density response couples to the pion, and
hence the corresponding dynamical structure factor can
be used to reveal the Mott dissociation of mesons at fi-
nite temperature [40,82,83]. Below the Mott transition
temperature, the dynamical structure factor reveals a pole
plus continuum structure. Above the Mott transition tem-
perature, the dynamical structure factor displays only a
continuum.

We find that the random phase approximation be-
comes inadequate above the chiral phase transition tem-
perature: in the chiral limit, it describes the linear re-
sponse of a hot gas of noninteracting massless quarks.
We thus further develop a linear response theory parallel
to the meson-fluctuation theory, which properly includes
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the mesonic degrees of freedom. We show that the
mesonic fluctuations naturally give rise to three kinds of
famous diagrammatic contributions: the Aslamazov-
Lakin contribution [84], the self-energy or density-of-
state contribution, and the Maki-Thompson contribution
[85]. Unlike the equilibrium case, in evaluating the fluc-
tuation contributions, we need to carefully treat the linear
terms in the external sources and the induced order para-
meter perturbations. In the chiral symmetry breaking
phase, we find an additional chiral order parameter in-
duced contribution, which ensures that the temporal com-
ponent of the response functions in the static and long-
wavelength limit recovers the correct charge susceptibil-
ity defined by using the equilibrium thermodynamic
quantities. These contributions from the mesonic fluctu-
ations are expected to have significant influence on the
transport properties of hot and dense matter around the
chiral phase transition or crossover, where mesonic de-
grees of freedom are still important.

We organize this paper as follows. In Sec. 2, we re-
view the two-flavor NJL model and its vacuum phe-
nomenology. In Sec. 3, we review the thermodynamics of
the NJL model in the mean-field theory and the meson-
fluctuation theory using the path integral approach. In
Sec. 4, we introduce the general linear response theory
for the current-current correlations in the path integral ap-
proach. In Sec. 5, we evaluate the response functions in
the mean-field theory, which recovers the quasiparticle
random phase approximation from the diagrammatic
point of view. In Sec. 6, we evaluate the dynamical struc-
ture factors for the density responses in various channels.
In Sec. 7, we consider the role of meson fluctuations and
develop a linear response theory for the NJL model bey-
ond the random phase approximation. We summarize the
study in Sec. 8. The natural units ¢ =% = kg = 1 are used
throughout.

2 Nambu-Jona-Lasino model

For a general Ny-flavor Nambu-Jona-Lasinio model,
the Lagrangian density is given by [39]
Lo =iy 0y — i)W + Ls + Lxmrs
N1

L5 =G, Y. [@Aew) + W@iysdat)’],
a=0

Lyt =-K|[dety (1 +ys)y +dety (1-ys)y], (1)
where A, (@ =0,1,---,N2—1) is the Ny-flavor Gell-Mann
matrix with A9 = /2/Ny, and . = diag(m,,mq,my,---) is
the current quark mass matrix. In the special case
m,=mg=my=---=0 and K =0, Lyj. is invariant under
the group transformation S Uc(N.)® S Uy(Nf) @S Us(Nf)®
Up(1)®@Ux(1). Lxmr 1is the so-called Kobayashi-
Maskawa-t'Hooft term with K <0, designed to break the

Ua(1) symmetry. For the three-flavor case (Ny = 3), Lxmr
contains six-fermion interactions and can efficiently de-
scribe the mass splitting between ;7 and 7. In this work,
we consider the two-flavor case, where Lxmt contains
only four-fermion interactions, like the mesonic interac-
tion term Lg. The Lagrangian density of the general two-
flavor NJL model is given by

Ly =Py 8 —mo)yr + G [(Iy) + W@iysy)?]
+G' [y + Wiysw)?]. )
where G=G,-K,G'=G,+K, and we assume m, =
my = my. Since the masses of scalar-isovector and pseudo-
scalcar-isoscalar mesons in the two-flavor case are much
larger than the sigma meson and pions, we consider the

maximal axial symmetry breaking case |K|= G,, which
leads to the minimal NJL model

Lo = Py S —mo)y +G|@y)? + Giyst)*]. (3)
In this work, we study this minimum NJL model for the
sake of simplicity.

In the functional path integral formalism, the parti-
tion function of the NJL model can be written as

N = f[dW][dlZ]exp{ifd4x£NJL}~ “4)

Introducing two auxiliary fields o and &, which satisfy
equations of motion o = —2Gyny, n = —2G¢iystys, and ap-
plying the Hubbard-Stratonovich transformation, we ob-
tain

Znat = f [ayiadlideliarexp {iSiw. gl (5)

where the action reads
2 2
Sl @0, 7] = — f a*xZ 42" + f d*x f d*x' 3 (x)
X G (x, X (x),
G (x.x') =[iy* 8, —mo - (o +iysT-m)|6(x = ). (6)

Subsequently, we integrate out the quark field and obtain

ZNiL = f [do][dr]exp{iSer[o, ]},

Seff[a,ﬂ]z—% f d*x(c? +7*) - i TrinG™ ' (x,x').  (7)

The partition function cannot be evaluated precisely.
We assume that the sigma field acquires a non-vanishing
expectation value {o(x)) = v and set {(x)) = 0, which char-
acterizes the dynamical chiral symmetry breaking (DC-
SB). Then, the auxiliary fields can be expanded around
their expectation values. After performing the field shifts,
o(x) = v+0(x) and w(x) — 0+ 7(x), we expand the effect-
ive action Seg[o, 7] in powers of the fluctuations o(x) and
n(x). We have

Serrlo, 7] :Si%)»+S(63[0',7t]+322f¥[0"7t]+..._ (8)
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The mean-field part S(O) Sei[v,0] can be evaluated as

S(e(zf)_v_z_ . d3_kE 9)
Ve 4G ) onpth

where Ej = Vk?2+M? with the effective quark mass
M =mgy+v. Since the NJL model is not renormalizable,
we employ a hard cutoff A to regularize the integral over
the quark momentum k (Jk|<A). The condensate v
should be determined by minimizing Sgg, ie.,
682%) /0v = 0, which gives rise to the gap equation

M —my = 4GN, Nfo(z ST (10)

In the chiral limit mo = 0, we find that if G > 7%/(N.NyA?)
[39,40], the sigma field acquires a nonvanishing expecta-
tion value v # 0, and hence the DCSB occurs.

The gap Eq. (10) ensures that the linear term Silff)[a, |
vanishes. The mesons in the NJL model are regarded as
collective excitations, which are characterized by the
Gaussian fluctuation term ng) [0, x]. Using the derivative
expansion

(e8]

- Lvgsy: (11)
n

n=1

Trin(1-G%) =

with G = (y*K,, — M)~! being the mean-field quark propag-
atorand X =o + iys‘r -, we obtain

o d*Q .
SOom) = B0 |07 (@ (@) (-0)

+D;1<Q>n<Q)-n<—Q>],
—1 _
Dir(Q) =5 ~HoalQ)- (12)

Here the polarization functions I1,. .(Q) are given by

. d*K 1
M (Q) =4iN:N¢ f o IR

—2iN Ny (Q* - &5.,)I(0%),

10 = f d*K 1
~J @K +0/22 - M2II(K - Q/2) - M2’
(13)
with &, =2M and ¢, = 0.
The masses of the mesons are determined by the pole
of their propagators, i.e., D} (0% = m2 ;) = 0. We obtain
2 mo 1 2
=0 e 14
77 M 4iGN NI(m? ) Cor 14
The function 7(Q?) changes very slowly with Q2. There-

fore, we can approximate I(m?,,ﬂ)zl(O). The meson
masses are given by

m

2 n 1
m7( i ar—————
M 4iGN.N1(0)
Near the poles, the meson propagators can be efficiently
approximated as

m2 ~ m>+4M?>. (15)

8aaaq
D — 16
o (Q) = 0, (16)
where the meson-quark couplings are given by
o1l
2 _ o, - . i
oqq.mqq = 6_Q2 O ~ —2ZNCNfI(O) (17)

To determine the model parameters, i.e., the current
quark mass my, the coupling constant G, and the cutoff A,
we need to derive the pion decay constant f; in the NJL
model. This can be obtained by calculating the matrix
element of the vacuum to one-pion axial-vector current
transition. We have

B d4K i
iQufx0" = —Tr f a0 [i)’y?’s%ig(lf +0/2)

X igragVsTHG(K — Q/2>]

=2NN8rgqMQ,1(0*)6". (18)
Using Eq. (17), we obtain
12~ —2iN.N;M*1(0). (19)

Applying the result M = —2G{gny)o +mo, we recover the
Gell-Mann-Oakes-Renner relation

mzfz = =molo. (20)

The model parameters can be fixed by matching the pion
mass m,, the pion decay constant f;, and the chiral con-
densate (y)o. For the physical case, we choose mg =5
MeV, G=4.93GeV2, and A =653 MeV, which yields
my=134MeV, f,=93MeV, and (iu)y=—(250 MeV)>.
In the chiral limit, my =0, we use G =5.01 GeV~2, and
A =650 MeV.

3 Phase diagram and thermodynamics of the
NJL model

The partition function of the NJL model at finite tem-
perature T can be given by the imaginary time formalism,

ZNJL=f[dl//][dl/_/]exp{fdx[lNJL+l/_//f1701ﬁ]}- €2y

Here and in the following, x = (r,r) with 7 being the ima-
ginary time. We use the notation [dx= foﬁ dr [d*r with
B=1/T. The chemical potential matrix g is diagonal in
flavor space, f = diag(u,,uq). A useful parameterization
of the chemical potentials is given by

1 1

u —_— + — s
M —3/13 2/11

—_1 ! (22)
Hd 3/13 2#1,

corresponding to introducing two conserved charges, the
baryon number and the third component of the isospin. In
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this work, we consider the case y; = 0 for the sake of sim-
plicity. We therefore set u, = ug = p. Our theory can be
easily generalized to nonzero isospin chemical potential,
ur#0. A large isospin chemical potential leads to the
Bose-Einstein condensation of charged pions and the
BEC-BCS crossover [86-96].

Introducing two auxiliary fields o and 7, which satis-
fy equations of motion o = —2Gy,n = —2G¢iysty, and
applying the Hubbard-Strotonovich transformation, we
obtain

Zn = [1dylidgdolldnlexp{ - Sy, .oml},  (23)
where the action is given by
o?(x) + 72 (x)

Sy, , o, m] =fdx G

- f dx f X P(0)G (x, X W(x),  (24)
with the inverse of the fermion Green's function
G (02) =Y (<0 +p0) + iy -V —mo
~[o()+iysT-a(0]J5(x—x). (25
We integrate out the quark field and obtain

ZNiL = f [do][dr]exp{~Seglo, 7},

2 2
Seit[o, 7] :fdx%(;ﬂ(x) ~TrinG™'(x,x).  (26)

At low temperature, we expect that the DCSB persists
and we set (o(x)) = v and (m(x)) = 0. Applying again the
field shifts o(x) > v+o0(x) and n(x) = 0+x(x), we ex-
pand the effective action S.g[o, 7] in powers of the fluc-
tuations o(x) and z(x) and obtain

Selo, ) = SO + SV, m) + SD[oval +---. (27)

In this work, we neglect mesonic fluctuations of order
higher than the Gaussian. The linear term Sgﬁ) [0, 7] can be

shown to vanish. The partition function in this Gaussian
approximation is given by

ZNL & exp{—Si%z} f [do][dn] exp{—Sﬁf)[O',n]}. (28)

Evidently, the advantage of this Gaussian approximation
is that we can complete the path integral over the fluctu-
ation fields o(x) and m(x). The thermodynamic potential
Q=-InZnL/(BV) is given by

Q~ Qmr +QpL, (29)
where the mean-field contribution reads

{0

O = ﬁ—vsgﬁ?, (30)

and the meson-fluctuation contribution is given by

1
Qpr = =g In [ f [da][d;r]exp{—sfg[cr,n]}]. €2

3.1 Thermodynamics in mean-field approximation and

phase diagram

At finite temperature, the mean-field part Sé%z =
S.[v,0] is given by

2
U 1,
S =BVye =D, D Indet|G ik b)]. (32)
n k
where
G~ (tkn. ) = (ikn + 100y’ =y k=M (33)
is the inverse of the mean-field quark Green's function in
momentum space, with k, = 2n+ 1)aT (n € Z) being the
fermion Matsubara frequency and M =mg+uv as the ef-
fective quark mass. The mean-field thermodynamic po-
tential can be evaluated as

v? &k 1
Qump =-—= — 2NNy | ——=Ex+=In|1+ePEH
MF =7~ ¢ ff(27r)3{ k B n[ e ]

+ é In[1+ e_ﬁ(E*+“)]} : (34)

where Ep = VK2 + M?2. As in the zero temperature case,
we also regularize the integral over the quark momentum
k via a hard cutoff A (Jk] < A). The chiral condensate v is
determined by minimizing Sgg, ie., BSSI)T) /0v =0, leading
to the gap equation

&k 1- f(Ex—p) - f(Ex +p)
27()3 Ek '
(35)

Here, f(E) = 1/(1 +€F) is the Fermi-Dirac distribution. If
the phase transition is of first order, the gap equation has
multiple solutions. In this case, we compare their grand
potentials and find the physical solution of v.

Figure 1 shows the effective quark mass M as a func-
tion of T for various values of the chemical potential u in
the chiral limit (my = 0). Figure 2 shows the well-known
phase diagram of the NJL model in the 7T-u plane. At

M —my = 4GN.N;M f (

350F
300 i\'—-\-gt.\\ ]%Eﬁ/] v o ]
] N Na., KE eV mmmmn ]
S 250 \ \:\ u=200MeV — — —
2 200 YNy K=300MeV
~ ] 50 o \ \\\‘
\
= 100 (IR
50 o
3 Hi
o .
0 50 100 150 200 250 300
T MeV)
Fig. 1. (color online) Effective quark mass M as a function
of T for various values of chemical potential 4 in chiral lim-
it (mp = 0).
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250
200} <Yy>=0 1
; 150 ~~~~‘~~~ ]
(] \\~
[ [— N, 4
e 100 <Py>#0 .
50¢ 1
0 s s s s s s
0 50 100 150 200 250 300 350
p (MeV)
Fig. 2. Phase diagram of NJL model in 7-u plane for chiral

limit (mg = 0). Chiral symmetry broken and restored phases
are denoted by (Jy)#0 and (J)
dashed and solid lines represent second-order and first-or-

=0, respectively. The

der phase transitions, respectively.

small chemical potential, the chiral phase transition is of
second order. It becomes of first order at large u. Hence, a
tricritical point appears. For physical current quark mass,
the second-order phase transition turns into a crossover,
and the tricritical point becomes a critical endpoint.

3.2 Thermodynamics including mesonic contributions

Here, we include the mesonic degrees of freedom. To
this end, we consider the excitations corresponding to the
fluctuation fields o(x) and =m(x). It is convenient to work
in the momentum space by defining the Fourier trans-
formation

¢m(-x) — ZQ} ¢m(Q)e—iqlT+iq.r, m= 0’ 1’ 2’ 3’ (36)

where ¢y = o and ¢; = 7; (i = 1,2,3). Here Q = (iq;, q) with
=2IxT (l€Z) as the boson Matsubara frequency. The

. d’q .
notation Z = Z f ﬁ is used throughout. In the mo-
b3
]

mentum space, the inverse of the quark Green's function
G ! reads

G ' (K.K'") =G (K)ok x —ZrL(K.K'), 37)
where K = (ik,, k) and

3
S (K,K') = ) Tudn(K =K. (38)
m=0

Here we have defined I'o=1 and T;=iyst; (i=1,2,3).
Applying the derivative expansion, we obtain

8(2)[ L] = Z Z¢m( Q) (Q)]mn¢n(Q)’ (39)
m,n=0 Q
where
(D™ (O mn(Q) (40)

G

is the inverse of the meson Green's function. The polariz-
ation function IT,,,(Q) is defined as

1
M(Q) = 7 ) TIGKIT,G(K+ QL1 (41)
K
. &Sk .
The notation > x = Z f m will be used throughout.

=0, the off-diagonal com-
Omnlln(Q). It is also evid-

Since we consider the case y;
ponents vanishes, i.e., IT,,(Q) =
ent that IT,,(—Q) =11,,(Q).

The meson polarization functions I1,,(Q) can be eval-
uated as

&k [(1-FED-FE,,)
Io(iqi, q) =N0fo(2n-)3 [[ iql—gk -

1 JED - fE,, ](1+k~(k+q)—M2)

igi+Ex+Egiq ExEpiq

+[f(E,:)—f(E,§+q) JED - f(Ek+q]

_Ek+q

iqi+Ex—Eryg  iqi—Eg+Ejyy
k-(k+q)— M?
X(l_ (k+q) )}
ErEiq

(42)

for m =0, and

Bk [(1-FED-FEL,,)

(27T)3[ iq— Eg

I SED - FEL, (]+k-(k+q)+M2)
iqi+Ex+Epyiq ExEksiq

. [f(E,:) AT JED - fEg,,)

1L, (iq1, q) =NcNf Ex
—Ekiq

i+ Ex—Ekrqg  iqi—Ex+Egiqg
k-(k+q)+M?
X(l_ (k+q) )]
ExEpiq

(43)

for m=1,2,3. Here, we defined E,f = Ey +u for conveni-
ence. In the chiral limit, we can show that from the gap
equation, 1/(2G)+11,(0,0)=0 (m=1,2,3) in the chiral
symmetry broken phase M # 0, which manifests the fact
that the pions are Goldstone bosons in this phase. In the
chiral symmetry restored phase, M =0, we obtain
IIo(0) = I1,(Q) = I1L,(Q) = I15(Q), which indicates that the
sigma meson and the pions become degenerate.

In the Gaussian approximation, the path integral over
¢ can be completed. The mesonic contribution to the
thermodynamic potential can be evaluated as

Qr =25Lv Z Indet[D™'(Q)|

=_Z Zf(z e

m= 0

2G+Hm(zqz,q)} e, (44)

We can convert the summation over the boson Matsub-
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ara frequency to an contour integration and obtain [74]

Zf Qry’ fo |5 —ln(l_e—ﬁw)]

2 B

m=0
d 1+2GI1, 0t

&y [ 120 (@ 0%, q) | (45)
dw 1 +2GIL,,(w—i0%, q)

This result could be related to the Bethe-Uhlenbeck ex-
pression, i.e., the second virial contribution in terms of
the two-body scattering phase shift [74]. We note that
1+ 2GTIl,,(w +i0", q) is proportional to the 7-matrix for the
quark-antiquark scattering in the m-channel, with total en-
ergy w and momentum ¢. The scattering matrix element
can be written in the Jost representation as

1+2GI,(w—i0%,q)
1+2GI,,(w+i0%,q)
The S-matrix element may has poles corresponding to
mesonic bound states. Above the threshold for elastic

scattering, it can be represented by a scattering phase
shift as

Sp(w,q) =

(46)

Sm (0.), ‘I) = 621¢,,,(a),q)' (47)

Combining a possible pole term and the scattering contri-
bution, we have [74]

.= ZJ @n) f

X|6(w—en(q) o

o|? Bm( e—ﬁw)]

1 0¢m(w, q)
dw ’

where the mesonic pole energy can be given by
em(q) = \/q* +m3,, with the in-medium meson mass m,,.
At low temperature, the above expression explicitly re-
covers the fact that thermodynamic quantities are domin-
ated by the lightest mesonic excitations, i.e., the pions
[75]. In the chiral limit, the pressure of the system at low
temperature can be well given by the pressure of a gas of
noninteracting massless pions, p = 72T*/30.

(4%)

4 Linear response theory in path integral

We now start to study the linear response of the hot
and dense matter in the NJL model, based on the descrip-
tion of the equilibrium thermodynamics in the last sec-
tion. In this section, we introduce a generic theoretical
framework to compute the following imaginary-time-
ordered current-current correlation function

(c =7, r=1) = —(Te [P @l (@ e, (49)

where J#(r,r) can be any current operator. The notation
(--+)c denotes the connected piece of the correlation func-
tion. For a pure fermionic field theory with a Lagrangian
density

—E[lﬁ’ ‘Z] = lp(l’yﬂa,u _mo)lﬁ""ﬁint[w’ &]7 (50)
the current operator is given by
JH = yTHy, (51)

where I'* = y#X with X depicting any Hermitian matrix in
the spin, flavor, and color spaces. For instance, the elec-
tromagnetic current is defined by X = diag(2e/3,-¢/3) in
the flavor space with e being the elementary electric
charge and X = ys in the spin space gives the axial vector
current.

Parallel to the path integral approach to the equilibri-
um thermodynamics, we introduce a path integral formal-
ism for the linear response. In this formalism, we intro-
duce an external source term to compute the correlation
function I1*"(t,r). The external source physically repres-
ents an external perturbation applied to the system. The
external source here is actually an external gauge field
Au(t,r) which couples to the current J*(t,r). We still use
x = (z,r) for convenience. The partition function with the
external source is given by

zia1= [lwonaniel-Swaal. (2
where the action reads
Stndial = [ ax{ - L1.01-u0y"0 + A1),
(53)
It is convenient to use the generating functional WI[A]
defined as
ZIA] = exp{-WIAL}. (54)
If the the generating functional can be computed exactly,
the correlation function is given by
S*WIA]
0AL(T,1)OA(T, 1) |,

Mm@ -t,r-r)= (55)
In practice, we need to evaluate the generating functional
in some approximations. It is convenient to work in the
momentum space by making the Fourier transform

Au(x) = ZpAu(Q)eamHaT, (56)

To evaluate the correlation function, we expand the gen-
erating functional “W[A] in powers of A,(Q). The expan-
sion can be formally given by

WI[A] = WO + WOA] + WD[A] +---, (57)

where ‘W® is the nth-order expansion in A,(Q). The
zeroth-order contribution ‘W recovers the equilibrium
grand potential Q with a vanishing external source,

WO =gvQ. (58)

The first-order contribution W [A] provides nothing but
the thermodynamic relation for the charge density
=(1%. We have ny = —0Q/dux, where the chemical
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potential is defined as ux = Ao(Q = 0). Hence, we have
WDIA]
BV
The second-order contribution ‘W@[A] characterizes the
linear response. It can be formally given by
wo [A]
BV

Here I1*7(Q) is just the correlation function in the mo-
mentum space. The static and long-wavelength limit of its
00-component, T1°°(Q =0), is related to to the number
susceptibility, i.e.,

= —nxAo(Q = 0). (59)

1
=5 EQ]H”%@A”(—Q)AV(Q). (60)

T, pix)

(9;@( ’
For instance, for the vector current with X = 1, [1°°(Q = 0)
is proportional to the baryon number susceptibility. The
above discussions are precise if the generating functional
WIA] or its second-order expansion ‘W®[A] can be com-
puted exactly.

Followingly, we turn to the NJL model. The partition
function of the NJL model with the external source is giv-
en by

111% 1%(ig; = 0,q) = (61)
q—>

ZnoulA] = f [dU1[dd]exp(-SIw.B:Al),  (62)
with the action

Sl A] = f e { = L .91 -y + A 0T
(63)

Again, introducing two auxiliary fields o and =z, which
satisfy equations of motion o = -2Gyy, & =—2G¢iysty,
and applying the Hubbard-Strotonovich transformation,
we obtain

ZanlAl = f [ 1[d@1[dor] de] exp [~ ST, 7, Al
(64)
where the action now reads

S[l//,l/_/,O',ﬂ';A]Zfdx

o2 (x) + 7 (x)
4G
- f dx f dxX' ()G (x, X (), (65)
with the inverse of the fermion Green's function
G;‘l (x,x") ={y°(—a, +u)+ iy -V —my—[o(x)+ iysT-w(x)]
— DAL (0)J6(x - x').

(66)
Integrating out the quark field yields

ZaolA] = f [dorl[dre] exp (~Setlor, AT},

o (x) + 72 (x)

e ~TrinG,'(x,x'). (67)

See[o, T A] =fdx

The treatment of the the expectation values of the
meson fields o(x) and z(x), or their classical fields o (x)
and m.(x), becomes nontrivial. In the absence of the ex-
ternal source, we choose o (x) = v and n.(x) =0, which
are static and homogeneous. However, in the absence of
the external source, they are generally no longer static
and homogeneous. Again, we apply the field shifts, o-(x) —
o(x) +o(x) and m(x) — m(x) +m(x), and expand the ef-
fective action Se¢[o, 7] in powers of the fluctuations o(x)
and n(x). We obtain

Serlom; Al = SO[A]+ S, Al + SO0 AL+

(68)
Parallel to the case without external source, we neglect
the mesonic fluctuations of order higher than the Gaussi-
an. The linear term Ség[(r,n’;A] can be shown to vanish
once the classical fields o(x) and 7. (x) are determined
by minimizing ng) [A]. The partition function in the Gaus-
sian approximation is given by

Zni ~ exp{-SYIA]) f [dor][dnexp{-SQ o m; A}
(69)
Therefore, in this Gaussian approximation, the generat-
ing functional WyL[A] includes both the mean-field

(MF) and the meson-fluctuation (FL) contributions. We
have

WriL[A] = Wwr[A]l + WeL[A], (70)
where
WAl =SIA],

WrL[A] =—ln[ f [da][dn]exp{—sgg[cr,n;A]}]. (71)

In the path integral, we can treat the equilibrium thermo-
dynamics and the linear response at the same footing. The
mean-field and the meson-fluctuation contributions to the
generating functional can be expanded in powers of the
external source as

WhrlA] =W + WAL+ WAL+,
Wi [A] =W + WA+ WD [A]+ - (72)

The zeroth-order contributions recover the equilibrium
thermodynamic potentials, i.e., "Wl(\?F =BVQur and
W =BV Q.

So far, the dependence on the classical fields o (x)
and m.(x) is not explicitly shown. They are not independ-
ent quantities and should be determined as functionals of
the external source via some gap equations. We write

WniLIA] = WanplAs oo, gl + WeLIA ool (73)

Parallel to the theory of the equilibrium thermodynamics,
we require that the classical fields are determined by min-
imizing the mean-field part of the generating functional, i.e.,
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OWwnElA; 0, 7] _

03
60 ¢(x)
A. Clsy?ci
OWwErlA; 0, 7] 0. (74)
67Tcl(x)

Once this extreme condition is imposed, we can show
that the linear term Sig[o:n;A] vanishes exactly.
Moreover, it is also necessary to maintain the Goldstone's
theorem. Solving the extreme condition formally, we
have

oq(x) = Fy[A], 7(x) = Fr[A] (75)

Substituting these solutions into the generating function-
al, we finally eliminate the dependence on the classical
fields.

In the following sections, we will study the response
functions in the mean-field approximation (Seg = ngf),
WL = Wye) and in the Gaussian-fluctuation approxim-
ation (Seff ~ Si(zf) +S§ﬁ),(WNJL ~ WMF + WFL)- Here, we
have truncated the mesonic fluctuations up to the quadrat-
ic order, since higher-order contributions cannot be ana-
lytically treated. The mean-field truncation, correspond-
ing to the random phase approximation of the linear re-
sponse, is obviously self-consistent, as has been verified
in numerous studies of the many-body theory. The Gaus-
sian-fluctuation truncation takes into account the contri-
bution from the collective modes (mesons). The contribu-
tions higher than the Gaussian may correspond to the in-
teraction between mesons, which are assumed to be weak
and therefore can be neglected. However, one can show
that the Gaussian-fluctuation approximation also pre-
serves the Ward-Takahashi identity and hence the conser-
vation laws [97-99]. In the context of the electromagnet-
ic response of superconductors, such a Gaussian-fluctu-
ation approximation leads to a gauge invariant linear re-
sponse theory [97-99].

5 Linear response in mean-field theory: ran-
dom phase approximation

We first present the linear response in the mean-field
approximation, i.e., WnyL[A] @ Wyr[A]. We will see that
the response functions in this approximation recovers the
famous random phase approximation (RPA) developed in
early condensed matter theory. Since we are interested in
the response to an infinitesimal external source, we ex-
pect that the induced perturbations to the classical fields
are also infinitesimal. Therefore, we have

we(x) =0+ n(x), (76)

where the static and uniform part v is the chiral condens-
ate with vanishing external source. The generating func-
tional in the mean-field approximation is given by

oe(x) = v+no(x),

o2 (x) + 7% (x
(WMF[A§0—CZ’”c-l]:de%

~Trln|G;' (x.x)]. (77)

Here g;‘l is the inverse of the fermion Green's function in
the mean-field approximation with external source. It can
be expressed as

Gl x) =G (x,x') = Za(x, X)), (78)
where the two terms are defined as
G (x.x) = [Y(=0r + ) +iy -V - M|5(x - X),

3
Talx,x) = Zrmnm(x)+l"”Aﬂ(x) 6(x—x"). (79)

m=0

Here M =my+uv is the effective quark mass as we have
defined in the absence of the external source.

Now we turn to the momentum space via the Fourier
transform

Nm(x) = Z nm(Q)e_iql‘H-iq.h (30)
(o}

In the momentum space, the inverse of the fermion
Green's function is given by

G (K.K') =G (K)ok k —Za(K, K), (81)
where G~'(K) is given by (33) and

3
SA(K,K') = Zrmnm(K— K)+T"A K -K').  (82)
m=0
Using the derivative expansion, we can expand the gener-
ating functional in powers of the external source as well
as the induced perturbations 7,,. We have

WwrlAs ] = Wk + WA ] + WorlAsyl +-+-
(83)

where it is obvious that Wﬁ; = BVQuE. Note that the in-
duced perturbation should be finally eliminated via the
gap equation (74).
The linear term (W1(\/11)F [A;n] can be evaluated as
Wyrldsnl [ v 1

e e ; TrG(K) | 170(0)

1 5
+ oy EK] Tr|G(K)iy’T|-n(0)
1
oy ZK: Te[GKTH]A0).  (84)
It is related only to the O =0 component of the external

source and the induced perturbations. The explicit form
of G(K) can be evaluated as

G(K) =

1
Ak A_(kYyo, 85
e +( )7°+ikn+Ek (k)yo (85)
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where the the energy projectors A.(k) are given by

Yo(y - k+M)

1
AL(k)= 5[1 £ S

(86)

Using the gap equation (35), we can show that the only
nonvanishing part is related to the number density, i.e.,

Wigk[A; 7]

“g—v = —(nx)mrAo(0), 87)
where the number density is given by

(nx)mF = ﬁ—v Tr|G(K)r. (88)

It is evident that (nx)mr = —0Qmr/dux with the chemical
potential uy = Ao(0).

The linear response is characterized by the quadratic
term ‘W(z) [A;n]. By making use of the derivative expan-
sion and completlng the trace in the momentum space, we
obtain

Wirld:n] = an( 01 (Q)
"2 ZK: ;Tr [G(K)ZA(K, K )G(K)EAK',K)].
(89)
Defining Q = K’
WyplAsml 1
BV 2

— K, we obtain

ZH‘”(Q)A (-Q)A(Q)

Te Hm(Q)] Nin(= Q)1 (Q)

3
> EQ] Ch(DAL(-Qn(Q).
(90)

Here the the bare response function IT;"(Q) is defined as

1
() = — > Tr[GKIMGK + Q] (91)
BV £

and the coupling function C},(Q) is given by

1
Ch(Q) = 55 2 TrIGUROIGK+ O] (92)
K

The meson polarization functions IT,,(Q) are given in Sec. 3.
The final task is to eliminate the induced perturba-
tions. For the purpose of linear response, the induced per-
turbations 7,,(Q) can be determined by
SW\gHAsn]
nn(Q)
Using the explicit form of ‘WI(VZI)F[A;n], we obtain

93)

Ch(-Q)A.(Q)

nm(Q) =— +0(A%),
G +IL,(Q)
ChOA, (-
Mn(=Q) =~ M 0A?), (94)

where we have applied the fact that I1,,(-Q) = I1,,(Q). Us-
ing the above results to eliminate the induced perturba-
tions, we finally obtain

2
(W;{F[A] 1
BV

where the full response function in the mean-field theory
reads

ZH"VF(Q)A -0AQ), (99

choc
M(0) =T1(0) - Z—I(Q) CD )
m=0 %"'Hm(Q)

This result recovers nothing but the quasi-particle ran-
dom phase approximation widely used in condensed mat-
ter theory [81]. We note that in addition to the pure quasi-
particle contribution IT,"(Q), the linear response can
couple to the collective mesonic modes once C,,(Q) # 0.
Hence, the response function reveals meson properties
and also possibly phase transitions.

In the chiral limit (mg = 0), we can show that C,(Q) =
in the chiral symmetry restored phase (7 > 7,). In this
case, the quasi-particle random phase approximation just
describes the linear response of a hot and dense gas of
non-interacting quarks. This is obviously inadequate. We
will discuss the linear response theory beyond the quasi-
particle random phase approximation in Sec. 7.

6 Dynamical density responses in random
phase approximation

As an application of the mean-field theory or the ran-
dom phase approximation, we study the linear responses
to some density perturbations. To be specific, we con-
sider the following X operators: (1) X = 1, corresponding
to the vector current; (2) X =13, corresponding to the
isospin vector current; (3) X =ys, corresponding to the
axial vector current; (4) X = 13ys, corresponding to the
isospin axial vector current. The 0-component of the cur-
rent J# is related to the baryon density, isospin density,
axial baryon density, and axial isospin density, respect-
ively. The density response function y(ig;,q) is given by
the 00-component of the response function I1**(Q). In the
mean-field theory, it is given by

C
HSO(Q)_ZM' (97)
m=0 E"’Hm(Q)

x(iqr, q) = TiYge(Q) =
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In practice, we define the dynamic structure factor
S (w,q), which is related to the density response function
x(igi,q) via the fluctuation-dissipation theorem. It is
defined as

1 1 )
S(w,q) = E g Imy(w + i€, q). (98)

In the following, we are interested in the long-wavelength
limit ¢ = 0 and focus on the pure dynamical effect.

6.1 Vector current
For the vector current X = 1, the bare response func-
tion is given by

1
(0 = 75 2 TGN 6K+ 00 (99)
K

At g =0, we can show that T19°(ig;,g = 0) vanishes. The
coupling function is given by

1
Q)= 55 2 T[6K 6K+ QT (100)
K

At ¢ =0, we can show that C9(ig;,q =0) vanish for all
m=0,1,2,3. Therefore, for the baryon density response,
the dynamic structure factor vanishes at ¢ =0, i.e.,

S(w,q=0)=0. (101)

6.2 Isospin vector current

For the isospin vector current X =73, the bare re-
sponse function is given by

1
Q)= 75 2 Tr[6Kn m6(K + 0nns|. - (102)
K

At ¢ =0, we can show that II°(ig;,q = 0) vanishes. The
coupling function is given by

1
Q)= 5 D TG TsGK+ Q. (103)
K

At ¢ =0, we can show that C%(ig;,q =0) vanish for all
m=0,1,2,3. Therefore, for the isospin density response,
the dynamic structure factor also vanishes at ¢ =0, i.e.,

S(w,q=0)=0. (104)

6.3 Axial vector current

For the axial vector current X = ys, the bare response
function is given by

1
10 =55 D Tr[GK N ysGK +0nys].  (105)
K

Completing the trace and the Matsubara sum, we obtain

1%°(ig;, q = 0) =2N.Ny

Sk E( L )
(2m)3 Ei iq—2Er iq;+2Eyg
X[1=f(Eg—p) = f(Ex+p)].

(106)

The coupling function is given by
1
CnQ) = 57 D Tt [GKN Y GK + Q)] (107)
K

At ¢ =0, we can show that CY(ig;,q =0) vanish for all
m =0, 1,2,3. Therefore, the axial baryon density response
has a nonzero dynamical structure factor at ¢ = 0. It does
not couple to the mesonic modes and is given by
x(igi,qg =0) =11°(ig;,¢ =0). The dynamical structure
factor reads

M? V? —4M? O(lw|-2M)
R T T e T

1 1

PG 1] o |

We note that a similar result was also obtained in Ref.
[100]. It is evident that the dynamical structure factor for
the axial baryon density response is a direct reflection of
the quark mass gap. S(w,q =0) is nonzero only for |w|
larger than two times the quark mass gap. Figure 3 shows
the dynamical structure factor S (w,q = 0) for various val-
ues of the temperature. With increasing temperature, the
threshold wy, =2M becomes smaller, and finally wy — 0
in the high 7 limit.

x|[1- (108)

0.025 ' '
T=100MeV
0.020 ]
&
% 0015 T-150Mey |
2 ””””””
k= -
2 0010
d e T=1 SOMeY_
0.005} P A
P 'II
0.00 L . .
g()() 400 600 800 1000
w (MeV)
Fig. 3. (color online) Dynamical structure factor S(w,q) at

¢ =0 for axial baryon density response (X =ys) at various
values of T and at u=0. We consider the physical current
quark mass my =5 MeV.

6.4 Isospin axial vector current

For the isospin axial vector current X = 737°, the bare
response function is given by

1
10 =25 D Tt [GKN Ty GK + 01 3y (109)
K

Completing the trace and the Matsubara sum, we obtain
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&Pk M? 1 1
(2m)3 E12c iq—2Ey  iq;+2Ey
X[1=f(Ex—p) = f(Ex+p)].

1%(ig;, ¢ = 0) =2N.Ny )
(110)

The coupling function is given by
1
Q=57 D Tt [GRN T GK + Q)] (111)
K

At ¢=0, we can show that C(ig;,q =0) vanish for
m = 0,1,2. The nonzero coupling C3(ig;, g = 0) is given by
&Pk M 1 1
(1) Ex (iq; T2 iq+ 2Ek)
X[1=f(Ex—p) = f(Ex+ )]

C3(iqi, g = 0) =2iN:Ny

Thus, the axial isospin density response couples to the
neutral pion mode 7.
The full response function reads
x(iqrq = 0) =I1}(iq1, q = 0)
CY(iq1,q = 0)C3(~igi.q = 0)

] (113)
— +1I13(ig;,q =0
G +113(ig;,q = 0)
Here I5(ig;, q = 0) is given by
d*k 1 1
I15(ig;,q = 0) =2N.N - - -
(g =0) 1) @y (zqz—zEk lC]l+2Ek)

x[1=f(Ex—p)— f(Ex+w)].
(114)

To evaluate the dynamical structure factor, we make use

(112) of the following results,
|
M?* Nw? —4M? 1

00 a0y = NN Nwm Al _ _ _
ImIly"(w +i€,q = 0) =~ NcNy o w Ol 2M)[] PG 41 PGt 41|
Rell3(w +ie,q = 0) =2N N P @k ! - ! [1=f(Ex—p)— f(Ex+p)]

seHeq == ) G \w—2B:  w+2E, kTR HOL

) w Vw? -4M? 1 1
Imlls(w+i€ g = 0) == NeNy——g ——06(o| _ZM)[I S Bl Bherw |
M VNw? -4M? 1 1

0 . _ _ _ _ —

ReC(w +ie,q = 0) —NCNf—4ﬂ_ (2] ZM)sgn(w)[l Blo-w 1 plomw 1|
&k M 1 1

ImCY(w + i€, g = 0) =2N.N — 1 - f(Ex—u) - f(E . 115
mC3(w +i€,q = 0) fpf(zn)3Ek(w—2Ek+w+2Ek)[ f(Ex—p) = f(Ex +p)] (115)

[
Here # denotes the principal value. The imaginary part of
x(w+ie,q = 0) can be expressed as
ImIlz(w +i€)
2
+ [ImIT3(w + i€)]?

Imy(w +i€) =

G + Rells(w +i€)

1 2
— +Rellz(w +ie) || .

2G
(116)

Here, we have suppressed the condition ¢ =0 for con-
venience. Therefore, we expect that at low temperature,
the dynamical structure factor for the axial isospin dens-
ity response reveals a pole plus continuum structure. For
|w| > 2M, ITmII3(w + i€) is nonzero, and hence the dynam-
ical structure factor shows a continuum. For |w|<2M,
ImIT;3(w+i€) vanishes and thus the dynamical structure
factor is simply proportional to a delta function. We have

X

2M
ImCY(w +i€) — — (
w

Imy(w + i€) = 7t [ImCY(w + ie)]2 5( % +Rell3(w + ie)).
(117)

It is evident that the pole is located at the pion mass.
In the chiral limit, this pole is located exactly at w =0 for
T < T, and it disappears for T > T.. For physical current
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quark mass, there is a Mott transition temperature 7 = Ty,
determined by the equation m,(T)=2M(T). Figure 4
shows the dynamical structure factor S (w,q = 0) for tem-
peratures below and above T,,. For T < T, the pion is a
bound state and hence S (w, g = 0) shows a pole plus con-
tinuum structure. Above the Mott transition temperature,
the pole disappears and S(w,q =0) shows only a con-
tinuum. The threshold of the continuum is also located at
Wih = 2M.

7 Linear response beyond random phase ap-
proximation: meson-fluctuation

tion

contribu-

In the chiral limit (o = 0), the quarks become mass-
less (M =0) above the chiral phase transition temperat-
ure. In this case, we can show that C4,(Q) = 0 in the chiral
symmetry restored phase. Therefore, the quasi-particle
random phase approximation simply describes the linear
response of a system of non-interacting massless quarks.
However, it is generally expected that mesonic fluctu-
ations play an important role above and near the chiral
phase transition, indicating that the random phase approx-
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Fig. 4. Dynamical structure factor S(w,q) at ¢ = 0 for axial isospin density response (X = r3ys) below and above pion Mott transition

temperature 7. We consider physical current quark mass mp =5 MeV and p = 0. The pion Mott transition temperature in this case is

Tyv =193 MeV.

imation is inadequate for such a strongly interacting sys-
tem. In this part, we consider a linear response theory
beyond the random phase approximation. To this end, we
recall that the generating functional in the Gaussian ap-
proximation can be expressed as

WhriL[A] = WairlA]+ WL [A] (118)

In the previous random phase approximation, the meson-
fluctuation contribution “Wr [A] is neglected. We expect
that this part becomes rather important near and above the
chiral phase transition, where the quarks become mass-
less and the mesonic degrees of freedom are still import-
ant. This is a general feature of a strongly interacting fer-
mionic system. In strong-coupling superconductors, the
pair fluctuation has an important contribution to the trans-
port properties above and near the superconducting trans-
ition temperature [84,85].

We consider the contribution from mesonic fluctu-
ations. To derive the generating functional “Wg [A], we
first note that

G'(x,x) =G, (x,x) — ZpL(x,X), (119)
where g includes mesonic fluctuation fields,
2R X)) = oo T (05(x = X), (120)

and g;‘l(x,x’) is the mean-field quark Green's function
with the external source,

g;‘l(-xvx,)=g_1(-x7-x’)_zA(-x7-x’)v (121)
with G~'(x,x’) and Z4(x,x’) given in Eq. (79). Converting
to the momentum space, we have

G, (K.K') =G, (K, K") = Zr(K,K)

3
S (K,K') = ) DK = K'). (122)

m=0

Starting from Egs. (67) and (68) and applying the derivat-
ive expansion, we obtain

1% 3
Sploal =/37 37 3 bu(-0)[DR(0.0)]6n(@),
m,n=0Q,0’
(123)
where

. 5
[Di'(@.0)],, = 55000

1 4 4 7/
+ W%/Tr[gA(K,K —OT,Ga(K' K+ Q). (124)

Again, the path integral over the fluctuation fields ¢,, can
be calculated, and we obtain

1
WrLlA] = ETrln[Dg‘(Q, o). (125)

The trace here is also taken in the momentum space.

The next step is to expand “Wr [A] in powers of the
external source and induced perturbations. To this end,
we first expand the inverse meson propagator D;'(Q, Q")
in powers of A, and 7,,. The expansion takes the form

D.'(Q.0) =D (Q)6g.0 +ZM(Q.0)+ZP(Q. Q) +---.
(126)

Here, D(Q) is the meson propagator evaluated in Sec. 3,
and £ denotes the nth-order expansion in A, and 7,,. In
practice, we only need to evaluate the expansion up to the
second order, since the higher order contributions are ir-
relevant to the linear response. Like p—1, () and £ are
4 x 4 matrices in the space spanned by m =0, 1,2,3.

To obtain $(U and 3@, we note that in the momentum
space, the inverse of the mean-field quark Green's func-
tion with external source, G, is given by

QEI(K,K') =G ' (K)dokx —Za(K.K'), (127)
where

3
YA(K,K') = Zrmnm(K—K’) +THA(K-K').  (128)

m=0
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For convenience, here we express X, in a more compact
form
7
Sa(K,K') = ) T'0(K-K"),
i=0

(129)

where [ is a compact notation of (T',,,I'*) and @ is a com-
pact form of (,,,A,). Here i=0,1,2,3 still stands for 7,
with m=0,1,2,3, and i=4,5,6,7 stands for A, with
©w=0,1,2,3. Applying the Taylor expansion for matrix
functions, we obtain

GA=G+GXAG+GEAGEAG+ - .

This compact form of the Taylor expansion should be un-
derstood in all spaces. In the momentum space, we have
explicitly

(130)

Ga(K,K') =G(K,K') + Z G(K,K)ZA(K1,K2)G(K>,K")

K, .K,
+ D GKK)ZAK1, K)G(Kr, K3)

Ki.K,.K;.K,

XA (K3,K4)G(Kg, K')+ -+
(131)

According to the fact that G(K,K')=G(K)ékxx and
YA(K,K") = Z4(K - K’), this can be simplified to
GA(K,K") =G(K)dk k + G(K)ZA(K — K" )G(K")
+ 2 GK)ZA(K = K")GK)ZAKK" = K')
KH
XGK)+---.
(132)

The explicit form of £ and $@ can be derived by using
the above expansion for G4. T is composed of one
zeroth-order and one first-order contributions of Ga. It is
explicitly given by

7 .
Zan(Q,0) = Y IXV],(0,0)00-0),  (133)
i=0
where the coefficients are given by
i 1 .
(X0 (Q.0) =5 D T [GUHRT WG (K +QTGK+0)T |
K

1 i /
oy ;Tr [6TGK+0 -0

XCnG(K + O]
(134)
>@ includes two types of contributions. We have
3@ = 300 4 300, (135)

>4 is composed of one zeroth-order and one second-or-
der contributions of G4. It is given by

7

1 i
Z(Q.Q) =0 D > IXP(Q. Q'K K0 Q1)®,(02)

ﬁ i,j=0 K,K’
7
+—ZZ [v®1” (0,0 K.K)
i,j=0 K,K’
X D;(Q3)PD (Qa).
(136)
Here the momenta O, Q», O3, and Q4 are defined as

01=K-K'+0, O,=K-K-0, (137)
03=K-K', Qs=K-K+0-0"

The expansion coefficients are given by

[X21,,(Q. Q' K.K") =Tr[G(K)T,G(K + QT'G(K")
xFIG(K + Q)T
[yCo)Y 7 (0.0:K.K’) Tr[Q(K)F’Q(K WGK+Q - Q)

X[nG(K + Q).
(138)

>@b is composed of two second-order contributions of
Ga. It reads

Z 21X,

lj 0 K,K’
X(0, Q0 K, K )0i(Q1)D(Q2).

where the expansion coefficient is given by

20(0,0) =

(139)

[X®],(0. Q" K.K) =Tt [GUOT'G(K' - Q)
X TuG(KTIG(K + Q)T |. (140)

7.1 Derivation of various contributions

Now we express the meson-fluctuation contribution
to the generating functional as

1
WiLlAm] =5 Trln[ D™'(Q)d0.0 +27(Q.Q))
+229(0,0) +Z(Q,0) + .

Here we start to demonstrate the explicit dependence on
induced perturbations. Applying the trick of derivative
expansion, we can expand Wgp, in powers of the external
source as well as the induced perturbations. We have

(141)

WeLlAsn] = Wi + W [Asm] + WD 1A 0]+
(142)
It is evident that (WSJL) =BVQpL and hence the present lin-
ear response theory including the meson-fluctuation con-
tribution is parallel to the meson-fluctuation theory of the
equilibrium thermodynamics. The first-order expansion is
given by
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WA ZTMD D" (0.0)].

(143)
Here, the trace Tryp is now taken only in the four-dimen-
sional space spanned by m,n =0,1,2,3. The second-order
expansion can be expressed as

WA = WD + WS+ Wi, (144)
where the three kinds of contributions are given by
Wi TAs) =~ ZZMD [D@="(0.0)
x D(Q' >2<“(Q 0)|.
Wi 1As) = ZTmD [D©@z*(0,0)],
(145)

WADIAn] =3 3 Tran [ DOE(0.0)].
o

which correspond diagrammatically to the Aslamazov-
Lakin (AL), self-energy (SE) or density-of-state, and
Maki-Thompson (MT) contributions.

To obtain the response functions, we need to elimin-
ate the induced perturbations 7,,(Q). Noting that the
present theory of linear response is a natural generaliza-
tion of the meson-fluctuation theory of the equilibrium
thermodynamics, where the order parameter is determ-
ined at the mean-field level, we determine the induced
perturbations 7,,(Q) still by minimizing the mean-field
generation functional, i.e.,

% =0, (146)
which leads to
(@ =— =D 40y 4047,
56+ In(Q)
Mn(—Q) =— _Go ((—0)+0(A%). (147)
56 * (@)

Later, we will show that the use of the above relations is
also crucial to recover the correct number susceptibility
in the static and long-wavelength limit.

7.1.1 Order parameter induced contribution

Unlike the mean-field theory or random phase ap-
proximation, the first-order contribution, Eq. (143), be-
comes highly nontrivial. It can be expressed as

;
Wi lAs] = BV )" Ci0(0),

i=1

(148)

where the coefﬁcients read

ZmD (DIX"T©Q.0). (149

Ci ~ 28V

Using the explicit expression of X, we can show that
possible nonvanishing coefficients are

0QpL(M, pix) Co= 0QpL(M, Hx)

oM a Aux

Since we consider only nonzero baryon chemical po-
tential, here the effective chemical potential ux = Ag(0) is
nonvanishing only for the vector current case (X =1).
Thus, C4 is nonvanishing only for the case X = 1, where
ux corresponds to the quark chemical potential u. The
fact that Cy # 0 indicates that the first-order contribution
W(l)[A n)] cannot be simply neglected, since it does con-
tribute to the linear response. To understand this, we note
that when eliminating the induced perturbation 7y(0), Eq.
(147) is not adequate. Actually, the contributions of the
order O(A?) in Eq. (147) become important. To obtain
these contributions, we should expand the mean-field
generating functional “Wy[A;n] up to the third order in 4
and n. We have

W [An] = 3 Z Z Z Tr[G(K)Za(K,K)G(K')

Co = (150)

X ZA(K’,K")Q(K")ZA(K”,K)]. (151)
By defining K’ = K+ Q and K” = K + O/, we obtain
(W(3) [A ] 1 7
M =3 O S Fn(0.0)
l/k 00 O
X D(—Q)P (0~ Q)Dr(Q'), (152)

where the function F;x(Q, Q') is defined as

1 - - -
Fin(@.0)= 75 D T [GUEROTGK + OTIG(K + T
. (153)
Using the extreme condition
dWwmrlA;n]
—_—— = 154
ono(Q) .
with Wyr = ‘W(O) +’W“) +’W(2) +’W(3) -, We obtain
70(0) = RiAo(0) + 5 Z D UHQDI(-0)D(0) +-
l =0 Q0
. (155)
where the coefficients R and U;;(Q) are given by
Co(-
R, =~ lim 1(—Q)
el o(Q)
2 Fo,,( 0,0)+Fij(Q+ Q. 0)+Fijo(Q.0)
l](Q) _3 1 .
el o(Q)
(156)

Here the the static and long-wavelength limit of an arbit-
rary function A(Q) should be understood as limg_
A(Q) = limy_,0 A(ig; = 0,q). For the purpose of linear re-
sponse, we apply Eq. (147) and obtain
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1
170(0) = R140(0) + 5 ZR‘{V(Q)Ay(—Q)AV(Q) +0(AY).
(0]
(157)

Here, the explicit form of the function R5"(Q) is not
shown. It is evident that

2
OM (ux) 1ngO(Q)=0M('uX)'

R = ,
"7 oy 0-0 Oy

(158)

Substituting the expansion (155) into Eq. (148), we elim-
inate the induced perturbations and obtain

(1)[ ]

BV

=—(nx)rLAo(0)

1 v
+3 D TG QADAQ) ++, (159)
0
where (ny)p is the fluctuation contribution to the charge
density,

OQpL (M, px) — 0QpL (M, pix) 3M(/1X)
alux oM 6/1)(

(nx)FL = — (160)

The first-order term (WSL) thus yields a nontrivial contri-

bution to the response function, which is given by
EL(Q) = CoRE™ ().

It is evident that this contribution is due to the non-van-

ishing chiral condensate. In the chiral limit, this contribu-

tion vanishes above the phase transition temperature,

where Cy = 0. Therefore, we denote it as the order para-

meter induced (OP) contribution, which can be expressed
as

(161)

V v
Wiy [A] = /37 > I QA(-QAQ).  (162)
(¢

7.1.2  Aslamazov-Lakin contribution
The Aslamazov-Lakin contribution is given by
1
(AL)r g1 — ’
Wi Al == > > Trp [DQE"(Q.0)
Q o
xD(Q"ZV(Q', 0)].

After some manipulation, it can be expressed as

(163)

WA = 2 ZZ#}L(@@( Q)0,(0),

i,j=0 Q

(164)

where the function EA.L(Q) is given by

2@ =~ Z Trap {DP)XVT(P.P+0)

2 BV
xD(P + Q)[X(”]J(P +0.P)}. (165)

Here the matrices [X"]/(P,P+ Q) and [XV)/(P+ Q, P) are
defined as

Xy,

mn

1
(P,P+Q) =~ > TrIGKITHG(K + P)
BV 4

x TG(K + P+ Q)T |
1 o
+— > Tt[GUHOTGK + Q)
BY 4

X[nG(K + P+ Q).

XV (P+Q.P) =50 3 THGKIT, (K + P+ Q)
K

xDIG(K + P)T,|
1 o
57 ; Tr|GK)TIG(K - Q)

XCuG(K + P)Ty]. (166)

We finally use Eq. (147) to eliminate the induced perturb-
ations and obtain the AL contribution

WA= £ ZH L(QA-QAQ),  (167)
where ITY '\(@) is the AL contribution to the response

function.

7.1.3  Self-energy contribution
The self-energy or density-of-state contribution is
given by

WSO Ay = %EQ] Tep [DOSC)Q,0)],  (168)
After some manipulations it can be expressed as
Wi TAs] = 2 ,Zl D EFQO(-00,(0), (169)
where the function :ij(Q) is given by
=FO) 3T D r.0)
+ ﬁlv zpj Trap [ D(P)Z(P, Q). (170)

Here the matrices Y"/(P, Q) and Z"/(P, Q) are defined as

iy 1
Yin(P,Q) === > Tr[G(K - P)L,G(K)
BV 4

X f’g(K + O)G(K)T,),
Zin(P.Q) =55 ZTr [GEOTG(K +0)

xDIGK)TuG(K + P)T,. (171)

We finally use Eq. (147) to eliminate the induced perturb-
ations and obtain the SE contribution

BY 0
Wi 1A= ) TGOAOAWQ.  (172)
o
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where IT; (Q) is the SE contribution to the response func-
tion.

7.1.4 Maki-Thompson contribution
The Maki—Thompson contribution is given by

W14 = Z Trap [ DQZ?(Q,0)].  (173)
After some mampulatlon it can be expressed as
(MT) =
(A= 5 ; D ENQ®(-0)0,0),  (174)
where the function zMT(Q) is given by
=MT(0) Z Trap | D(PYWI(P,Q)|. (175)
Here the matrix W (P, Q) is defined as
. 1 o
WiP,Q) =— > Tr[GKI'G(K + Q)
BY 4
XCuG(K + P+ QGK + P)T,|.  (176)

We finally use Eq. (147) to eliminate the induced perturb-
ations and obtain the MT contribution

4 v
Wiy [A] = % ZH’WQ)A,A—Q)AV(Q), (177)
where IV wmr(Q) is the MT contribution to the response
function.
Combining all contributions, the meson-fluctuation
contribution to the linear response is given by

WiLIA] = 22 QA(-QAQ),  (178)

where 1% 1. (Q) is a summation of all the above contribu-
tions,

I (0) =TG5, (0) + 1T, () +TTIgL(Q) + T (O).

Summarizing the mean-field and the meson-fluctuation
contributions, we have

(179)

WA

L[4 ZH’”(Q)A (~0)A(0), (180)

where the full response function within the present the-
ory is given by

1(Q) = Iy (Q) + 1T (O). (181)

7.2 Static and long-wavelength limit

Now, we verify the static and long-wavelength limit
of the above linear response theory. In this limit, it is ob-
vious that the density response function I1%(Q — 0)
should recover the charge susceptibility xx associated
with the channel X i.e.,

_ QT px)

n°Q —0)=-
(Q—-0) 2

(182)
In condensed matter theory, this is the so-called com-
pressibility sum rule [75]. Here, we emphasize that the
correct static and long-wavelength limit of an arbitrary
function A(Q) should be understood as

AQ — 0) = lim, 0 Aliq; = 0,q). (183)

In the mean-field theory, the thermodynamic potential is
given by Qur(ux, M), where the dependence on the tem-
perature is not explicitly shown. Note that the effective
quark mass M is also an implicit function of uy,
M = M(uyx), which should be determined by the mean-
field gap equation

OQnmp(px, M)

oM
The charge susceptibility can be evaluated as
*Qur(ux, M)
6;1?(
3 Qumr(px, M) 3M(ﬂx)
OuxoM Opx

The quantity M/duy can be deduced from the gap equa-
tion. We have

FPOmr(ux, M)  *Qur(ux, M) OM (uix)
ouxoM OM? Oy

=0. (184)

(Kx)ME = —

(185)

=0, (186)

which leads to

OM(ux) __ & Qe M) [P Qe oo
aﬂx aﬂxaM 6M2
Hence we obtain
P Quip(ux, M)
(KxIMF =— ———>——
Oy
Qe M) [ PO M| o
6ﬂx(9M oOM?
In contrast, from the linear response theory, we have
¢, 2(Q)CH (- Q)
Ye(Q) = Q) - ) " (189)

m=0 % +11,,(Q)

In the static and long-wavelength limit Q — 0, we have
CY%(Q) — 0 for m = 1,2,3. Thus, we obtain

MY(Q — 0) =I1)°(Q — 0)
2
_ [cie-0]

1
e o(Q — 0)
Using the explicit form of the above functions, we can

show that

(190)
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2
Hgo(Q—>O):6 QMF(};X’M)’
Oy
0> Qi (ux, M)
0 _ 0" Qvp(py,
C@= 0= oM
1 P Qwmr(ux, M)
7 TH(@—0) = Yy E— (191)

Thus, the compressibility sum rule is satisfied in the
mean-field theory, i.e.,

n%.(Q - 0) = (192)

When the meson fluctuations are taken into account, we
have

—(kx)MF-

(193)

where the meson-fluctuation contribution can be evalu-
ated as

kx = (kx)MF + (Kx)FL,

_ OPQpL(ux, M) 07 Qpr (ux, M) OM(ux)
(kx)FL == 5 -
O,uX 6/1X8M (9,uX
_329FL(HX,M) OM (ux) 2_3QFL(HX,M) M (11x)
oOM? oux oM 6;1%( '
(194)

We note that the effective quark mass M(uy) is still
determined by the mean-field gap equation. On the other
hand, the meson-fluctuation contribution to the density
response function can be decomposed as

117 (Q) = IFL(Q) + 1YL () + TR (Q) +TIPL(Q).  (195)

We can show that the first three terms in (kx)gr are re-
lated to the sum of AL, SE, and MT contributions in the
0 — 0 limit,

Jim [ 113} (0) + TI(Q) + T{(Q)]

=(929FL(HX,M) *Qpy (ux, M) M (ux)
Oy OuxdM  dux
8 Qrr (ux, M) [ OM(ux) |
. 196
T Otix (196)

To prove this, we recall that in the presence of only
Ao(Q), the induced perturbations are given by

CY(-0)An(Q)

Mn(Q) =~ +0(A%),
e 11,,(Q)
0 _
Mn(=Q) = - M O(A?). (197)
el I1,,(Q)
In the limit Q — 0, only 7o survives and hence
0(_
im no(Q) im C(-0) HMCUX)_ (198)
0-0A9(Q)  0-0 1 IO Oux
e 0(Q)

The order parameter induced contribution, H »(Q), 1s re-

lated to the last term in (kx)rL. We have

%0 — 0) = CoRY(Q — 0). (199)
Using the fact that
aQFL(.UX,M) 00 & 0" M(ux)
Co=—7"7— R , (200
- e

we find that the the last term in (kx)pL iS exactly given by
the OP contribution. We can further understand this res-
ult by working out the explicit form

PMx) _ {53QMF(,HX,M) & Qe M) IM (1)

8,u§ 8u§0M 8;1X6M2 C()/,lx
Qe M) [ 9M (ux) :
M3 6,uX

P Qwmr(px, M) -
X i ——
OM?

01)

In summary, we have shown that the compressibility sum
rule is exactly satisfied in the linear response theory in-
cluding the meson fluctuations. The order parameter in-
duced contribution is rather crucial to recover the correct
static and long-wavelength limit.

7.3 Chiral symmetry restored phase

One special case we are interested in is the chiral
symmetry restored phase (7 >7,) in the chiral limit
(mo =0). In this case, we have Cy =0, and hence the or-
der parameter induced contribution vanishes. Also, we
have C4,(Q) =0, indicating that we do not need to con-
sider the induced perturbations 7,,(Q). In this case, the
formalism becomes rather simple and we can identify
various contributions diagrammatically.

In the chiral symmetry restored phase, the sigma
meson and pions become degenerate. We have

[D(D)lmn = D)o un

where the propagator of the mesonic modes above T, is
given by

(202)

3p (1= f(ED) - f(E;
D7) =5 + NN, dk[[ M0~ ey

(2n)3 iqi—Ep— Egiq
1 FED-fE,, J(l

igi+Ep+ Egyq

+k-(k+q))
EyEy.q
f(E,;)—f(E,;q) JED — f(E,,)
+
iqi+Ex—Eryqg  iq—Ex+Epyq

X (1 — w) .
ExEryiq

(203)

Here Ej =|k| for T > T.. Due to the degeneracy of the
sigma meson and pions, various contributions to the lin-
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ear response above T, become simple.

7.3.1 Aslamazov-Lakin contribution
Above T,, the Aslamazov-Lakin contribution is given

by

V v
Wb = B0 S 11 (04,-0A©) (204)
Q

where the AL response function IT,; (Q) is given by

v 2 .
I (Q) =— BV Z [DP)D(P+ Q)X*(P,Q)X"(-P,—Q)].
’ (205)

The function X*(P, Q) here is defined as
1
X(P,Q) :,B_V Z Tr[G(KTMG(K + Q)G(K — P)]
K
1
+ 5y 2 TG(K - OM'GROGK + P)]. (206)
K

Here, the quark propagator G(K) is given in Eq. (85) with

M =0. The AL contribution can be diagrammatically
demonstrated in Fig. 5.

Fig. 5. Diagrammatic representation of Aslamazov-Lakin
contribution. Note that there are two kinds of AL-type dia-
grams. The solid lines with arrows denote the quark propag-
ator, the dashed lines depict the meson propagator, and
wavy lines represent the external source.

7.3.2  Self-energy contribution
Above T,, the self-energy or density-of-state contribu-
tion is given by

v v
W =20 S 1 0A0AW©Q, (@07
0
where the SE response function I (Q) is given by
v 8 v
M50 = 57 ; [DPY* (PO (208)

Here, the function Y*"(P, Q) is explicitly given by
1
Y(PQ) = BV ZTT [GEROTG(K + QI"G(K)G(K + P)].
’ (209)

Note that TT§;(Q) can also be written as

y 2 ,
M50 = 7 ; Tr[G(K + QT G(K)Z(K)G(K)],

(210)
where X, is the quark self-energy,

4
LK) = — Z [D(P)G(K + P)].
BY 4
The SE contribution is diagrammatically illustrated in
Fig. 6.

(211)

E+Q

Fig. 6.
tribution. Notations are the same as in Fig. 5.

Diagrammatic representation of the self-energy con-

7.3.3 Maki-Thompson contribution
Above T., the Maki-Thompson contribution is given
by

o) _ BV

Wi =5 D I @4,-0AQ.  Q12)
o

where the MT response function ITy;(Q) is given by
4

(@)= 25 D [DOW (RO @13)
Here, the function “W*"(P, 2) is explicitly given by
WH(P,Q) = ﬁLV Z Tr[GOTG(K + Q)
X Q(I;( +P+QI"G(K + P)]. (214)
The MT contribution is diagrammatically illustrated in

Fig. 7.

In summary, the AL, SE, and MT contributions can
be diagrammatically identified in the chiral symmetry re-
stored phase. These contributions include the propagator
of the degenerate mesonic modes, D(Q). Near the chiral
phase transition temperature, these mesonic modes are

Fig. 7. Diagrammatic representation of the Maki-Thompson
contribution. Notations are the same as in Fig. 5.
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soft modes and are nearly massless. Therefore, we expect
that these mesonic modes have a significant effect on the
transport properties near the transition.

8 Summary

In this work, we studied the linear response of hot and
dense matter in the two-flavor Nambu-Jona-Lasino mod-
el. The linear response theory is formulated within the
path integral approach. In this elegant formalism, the cur-
rent-current correlation functions or response functions
are conveniently calculated by introducing the conjug-
ated external gauge field as an external source and ex-
panding the generating functional in powers of the ex-
ternal source. Parallel to the well-established approxima-
tions for the equilibrium thermodynamics, we studied the
linear response within the mean-field theory and beyond-
mean-field theory, taking into account mesonic contribu-
tions.

In the mean-field approximation, the response func-
tion recovers the quasiparticle random phase approxima-
tion. The dynamical structure factors for various density
responses have been studied using this approximation. In
the long-wavelength limit, the dynamical structure factors
are nonzero only for the axial baryon density and the axi-
al isospin density channels. For the axial isospin density
channel, the dynamical structure factor can be used to re-
veal the Mott dissociation of pions at finite temperature.

Below the Mott transition temperature, the dynamical
structure factor reveals a pole plus continuum structure.
Above the Mott transition temperature, it only has a con-
tinuum part.

It is generally expected that the mesonic degrees of
freedom are important both in the chiral symmetry
broken and restored phases. However, in the chiral sym-
metry restored phase, the random phase approximation
describes the linear response of a hot and dense gas of
non-interacting massless quarks. Therefore, the mesonic
degrees of freedom are not taken into account above and
near the chiral phase transition temperature. In this study,
we have developed a linear response theory based on the
meson-fluctuation theory, which properly includes the
mesonic degrees of freedom. The mesonic fluctuations
naturally give rise to three kinds of famous diagrammatic
contributions: the Aslamazov-Lakin contribution, the
self-energy or density-of-state contribution, and the
Maki-Thompson contribution. In the chiral symmetry
breaking phase, we also found an additional chiral order
parameter induced contribution, which ensures that the
temporal component of the response functions in the stat-
ic and long-wavelength limit recovers the correct charge
susceptibility defined using the equilibrium thermody-
namic quantities. These contributions from the mesonic
fluctuations are expected to have significant effects on
the transport properties of hot and dense matter around
the chiral phase transition or crossover, where mesonic
degrees of freedom are still important.
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