Chinese Physics C Vol. 43, No. 9 (2019) 094105

Classical model for diffusion and thermalization of heavy quarks in a hot
medium: memory and out-of-equilibrium effects
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Abstract: We consider a simple model for the diffusion of heavy quarks in a hot bath, modeling the latter by an en-
semble of oscillators distributed according to either a thermal distribution or to an out-of-equilibrium distribution
with a saturation scale. In this model it is easy to introduce memory effects by changing the distribution of oscillators:
we model them by introducing a Gaussian distribution, dN/dw, which can be deformed continuously from a §—func-
tion, giving a Markov dissipation, to a broad kernel with memory. Deriving the equation of motion of the heavy
quark in the bath, we remark how dissipation comes out naturally as an effect of the back-reaction of the oscillators
on the bath. Moreover, the exact solution of this equation allows to define the thermalization time as the time neces-
sary to remove any memory of the initial conditions. We find that the broadening of the dissipative kernel, while
keeping the coupling fixed, lowers the thermalization time. We also derive the fluctuation-dissipation theorem for the
bath, and use it to estimate the kinematic regime in which momentum diffusion of the heavy quark dominates over
drift. We find that diffusion is more important as long as K(/& is small, where Ky and & denote the initial energy of

the heavy quark and the average energy of the bath, respectively.
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1 Introduction

The description of high energy collisions as the inter-
action of sheets of color-glass-condensate (CGC) [1-8] is
one of the most intriguing approaches to the study of re-
lativistic proton-proton (pp), proton-nucleus (pA) and
nucleus-nucleus (AA) collisions at the Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC)
energies. One of the predictions of the CGC effective the-
ory is the formation of strong gluon fields in the forward
light cone named glasma [9—20], which consists of the
out-of-equilibrium longitudinal color-electric and color-
magnetic fields. These are characterized by large gluon
occupation number, Aj ~1/g, with g representing the
strong coupling, so that they can be described by a clas-
sical field theory, namely the classical Yang-Mills
(CYM) theory. Heavy quarks are excellent probes of the
system created in high energy nuclear collisions, both of
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the pre-equilibrium phase and of the thermalized quark-
gluon plasma (QGP), see [21-49] and references therein.
Their formation time is very small compared to the light
quarks, Torm < 0.1 fm/c for both charm and beauty quarks.
Since heavy quarks are produced immediately after the
collision, they can propagate in the evolving glasma
fields and probe its evolution. Propagation of heavy
quarks in glasma has been studied previously with the
Fokker-Planck equation [47], as well as the Wong equa-
tions coupled to the evolving glasma background field
[48, 49]. The common result of these references was the
finding of the diffusion of heavy quarks in the dense
gluon medium, very similar to that in a thermal medium.
On the other hand, a substantial drift was not observed in
[48, 49] in the kinematic regime examined, which paved
the way for a possible solution of the Raa/v, puzzle of
heavy quarks in Pb-Pb collisions [43].

The aim of the present work is to use a simple classic-
al model to describe the motion of heavy quarks in a
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dense and hot bath, that has been used extensively in con-
nection to the dissipation in quantum Brownian motion,
see for example [50-53] as well as references therein.
The advantage of this model, despite its simplicity, is that
it has the potential to describe several aspects that might
be important for understanding the drift and diffusion of
the quarks, among them the propagation in a bath out-of-
equilibrium like glasma, as well as the memory effects in
the dissipation kernel. In the particular context of high
energy nuclear collisions, memory has started to attract
some interest [44, 45, 54-56] , as it might affect the di-
lepton yields [57] as well as radiative energy loss [58]. In
this model, the bath is described as a system of harmonic
oscillators. The initial conditions for the oscillators are
randomly assigned. The expectation values for the
squared momenta and positions are in agreement with the
equipartition theorem in the case of a bath in thermal
equilibrium, or to the energy per particle in the case that
the bath is out-of-equilibrium. To model an out-of-equi-
librium bath, we use a distribution inspired by the CGC
models, which is flat below a certain energy scale, the
saturation scale Q,, and then rapidly drops to zero
[59—61]. The coupling of the bath to the heavy quark is
pretty simple, Hiy o« Q Y xx, where Q is the generalized
coordinate of the heavy quark and x; denotes the position
of the k™ oscillator. This simple coupling is sufficient to
emphasize the fact that in order to achieve energy loss
during Brownian motion, the back-reaction of the oscil-
lators on the bath needs to be taken into account. In fact,
a heavy quark produces a disturbance that is superim-
posed on the harmonic motion of the oscillators, and this
disturbance couples to the heavy quark itself causing dis-
sipation.

One of the ingredients of this model is the distribu-
tion of oscillators, dV/dw, where w denotes the proper
frequency of the oscillator. This quantity affects the shape
of the dissipative kernel. In particular, if dN/dw o« w? then
the kernel is of the Markov type, y(r—t) < y6(t—1") , and
there is no memory. On the other hand, by deforming the
above distribution it is possible to obtain a kernel with
memory, making it possible to study the effect of the lat-
ter on physical processes like thermalization. This model
allows to obtain almost all analytical results, albeit in the
weak coupling regime, allowing to understand how the
distribution of the bath and the memory kernel affect a
physical process.

The main difference between our study and the stud-
ies based on generalized Langevin equations is that in our
study the motion of the oscillators and of the heavy quark
is deterministic, while in the Langevin equations the
noise is a random number with a given correlation. In the
present model, the random nature of the bath comes into
the game as soon as we assume a distribution for the ini-
tial conditions of the oscillators. Averaging the physical

quantities over the initial conditions amounts to taking
the ensemble average for the system. The apparent merit
of the present model is that it is very easy to implement a
bath that is out-of-equilibrium, which is an important as-
pect to consider when studying the diffusion of heavy
quarks in the evolving glasma. Moreover, the dissipative
kernel appears clearly as an effect of the coupling of the
heavy quark to the disturbance it creates in the bath, and
this might be useful for implementation of a dissipative
term in field theories.

The plan of the article is as follows: in Section 2, we
describe the model in detail and derive the evolution
equation for the heavy quark momentum, P, and define
the shape of the dissipative kernel. In Section 3, we solve
exactly the evolution equation for P and estimate the
thermalization time, and study how memory affects this
quantity in the model. In Section 4, we briefly describe
the equilibrium state. Finally, in Section 5 we present our
summary and conclusions.

2 The model
2.1 The Hamiltonian

We consider the classical dynamics of a nonrelativist-
ic particle with mass M interacting with a bath of N> 1
harmonic oscillators characterized by mass m and fre-
quencies wi. We also introduce a distribution function for
the bath of oscillators, dV/dw, with a normalization

N:f d—Nda). (1)
oo dw

In the above equation we have assumed that the oscil-
lator density is an even function of w. As will be clear
soon, dN/dw (or to be precise, its Fourier transform) is
the only quantity needed to build the dissipative kernel.
Changing its analytical form allows to switch from a ker-
nel without memory to one with memory. The Hamiltoni-
an is [50]

> 2 2 2
mwi X,

j2 N(p
H=—+V —*
M (Q)+kz;(2m+ 2

where M > m, and Q corresponds to the coordinate of the
heavy quark. The interaction depends on the coupling g,
which has the dimensions of a cubic energy, that we take
to be the same for all oscillators. In order to mimic a hot
QCD medium it would be desirable to have a coupling
that depends on the energy scale of the bath, namely on
the temperature. While its implementation would be
straightforward, we leave it to a future work because the
main calculations of equilibration are unaffected by this
additional complication. The term Hy in Eq. (2) is a
renormalization potential [53] that is introduced to bal-
ance the effect of the back-reaction on the bath, leaving
V(Q) as the potential. We will specify this term later and

N
)—gQZxk+fHR, @)
k=1
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its purpose will appear less obscure as soon as the dy-
namical equation for P is derived. In actual calculations
we replace summations over oscillators with an integral:
for any f'we use

= N
Yo [ S e G)
k=1 - QW

For a bath in thermal equilibrium, the initial condi-
tions for the oscillators are distributed randomly accord-
ing to the standard Boltzmann distribution at temperature
T,

F(pors xor) = e B/ Te BT 4)
where we have used
2
14
E =3k, ()
2.2
mawg; X,
Ej= — . (6)

which imply (p2 ) =mT and mw}(x}) =T, in agreement
with the equipartition theorem. On the other hand, when
considering an out-of-equilibrium system we introduce a
Fermi-Dirac-like distribution, namely
1 1
= vyl (7
1+ eE-MIT 1 4 e E-MT

where 7 and M are two parameters with the dimension
of energy. When M/7T > 1, the out-of-equilibrium distri-
bution becomes a theta-function that has been used in lit-
erature to mimic the gluon distribution in glasma [59-61],
with M playing the role of the saturation scale Q. For
this reason, we call Eq. (7) the CGC-like distribution. The
form of Eq. (7) also keeps xox and por uncorrelated. While
it would be interesting to study the effects of correlation
between coordinate and momentum space, we neglect
them for simplicity. The bath distribution in Eq. (7) im-
plies (p2) =mTe and mwi(x3,) =Ter , where we have
defined the effective temperature of the bath,
Liz/2(—2)
Liij(-2)’
wherez = eM7 and Li, denotes the Polylogarithm func-
tion of order s. For example, in the case of a flat distribu-
tion M/T — oo we find

Teit =T @®)

2M
= ©)

Another ingredient of the present model is the distri-
bution of the frequency of the oscillators, w;. We distrib-
ute it with the density dN¥/dw , which will be specified
later, case by case, and which is normalized according to
the condition in Eq. (1). We anticipate that the memory
effect of the dissipative kernel is determined solely by the
form of dN/dw. Although this should be obvious, we re-
mark that we have made an assumption of a rigid dN/dw,

Teft =

meaning that although we consider the back-reaction of
the heavy quark on the bath of oscillators, our dynamics
is such that this back-reaction affects only the motion of
the oscillators and not their internal structure, namely
dN/dw is unaffected by the presence of the heavy quark.

2.2 The dynamical equation for P

The derivation of the dynamical equation for P is
straightforward and well-known in literature. However, in
order to emphasize that dissipation comes solely from the
back-reaction of the oscillators on the bath, we review the
main steps of the derivation below. This will also help to
clarify the renormalization of the potential in Eq. (2). The
starting point is the equation of motion of the oscillator %,
that can be obtained easily from the Hamilton's equations,
that is

dzxk

— +wj = %Q. (10)

This equation can be easily solved exactly using the re-
tarded Green's function, namely

f
() =x-£ f Gh(t—1)Q()dr (11)
m Jo
where we have defined
Gr(x) = 0(x)Gr(x), (12)

with gfe(x) denoting the retarded Green's function of the
oscillator,

d2
(@ +w,%)g’,;(t— 7)=-6(t—1). (13)

Moreover, we have defined
xZ(t) = @y coS Wit + Bi Sin wit, (14)

which corresponds to the unperturbed harmonic motion
of the oscillator (namely to the solution of the homogen-
eous equation), where ay = gxor, mwiBr = gpor and xo
and po; denote the initial conditions for coordinate and
momentum of each oscillator in the bath. More generally,
x}(t) corresponds to the solution of the homogeneous
equation of the oscillator. In this work we assume a stat-
istical distribution of the initial conditions, but the dy-
namics of the heavy quark, as well as that of the oscillat-
ors, is purely deterministic. This approach is very similar
to what is done within the CGC effective theory, in which
a random distribution (usually Gaussian) of color charges
is assumed, and the initial color fields are then computed
and the evolution is studied by solving the CYM equa-
tions, which are deterministic. Within the CGC formal-
ism the ensemble average is taken numerically by aver-
aging the physical quantities over many different initializ-
ations of the color charges. In our work we follow a sim-
ilar path. We first distribute the initial conditions of the
oscillators by virtue of a statistical distribution, either at
equilibrium or out-of-equilibrium. The evolution of the
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system is then studied with the classical equations of mo-
tion, and the ensemble average is obtained by averaging
the classical solutions with the statistical distribution of
the initial conditions. We remark that Eq. (11) is exact
and contains the back-reaction induced by the interaction
of the heavy quark with the oscillator, the latter being
represented by the convolution of the Green's function
with the generalized coordinate Q. The analytical form of
the Green function will be specified later.

The equation of motion for P is just the second
Hamilton's equation that can be read from Eq. (2),
namely

dpP (9V (97'(R
i +gzxk(f) (15)

Defining the source term, &(¢), as

N
SOEFPIEA) (16)
k=1
where x/(r) denotes the harmonic motion of the mo-
mentum of the k™ oscillator, and taking into account Eq.
(11) we can write
dP g )%
R, 7

R SON
The convolution term on the left hand side of the
above equation represents the coupling of the heavy
quark to the perturbation of the harmonic motions of the
oscillators, which is induced by the heavy quark itself. It
is therefore the back-reaction term. Note that by integrat-

ing by parts we can write this convolution as

f Grlt—1)Q()dr =

j; Gr(t=1)Q(t)dt" == F(0)Q(1) + F(H)Q(0)

1 P g
+MJ;F(t—t)P(t)dt’ (18)

where F(x) is the primitive of Gg(x) , and we have taken

into account that dGg(x)/dx = —dGg(r—¢")/dr'. The full
equation for P can thus be written as
vV IHg
t ZfF(I I)P(f)dl— @—E
+ Z F0)Q() - Z F(5)Q(0) +£(0). (19)

The role of Hy appears now clearly: the term
—F(0)Q() in Eq. (19) corresponds to a harmonic shift of
V(Q) induced by the back-reaction. Taking

1
Hy = E;F@QZ (20)

amounts to canceling this shift when the summation over
the oscillators is performed, and V(Q) remains as the only
potential. Using Eq. (20), we get

P & < ov
E+W; f F(t—t)P(¢)dr ——@—F(t)Q(O)wLé-‘(t)
21

We now make the assumption that Q(0) = 0. This as-
sumption can be relaxed easily, as will be clear when we
present the exact solution of the equation of motion.
Moreover, here we want to study solely the motion of the
heavy quark in the bath, therefore we put V(Q) = 0. In
this case we get

dP WL mz f F—)P)dl = 1), (22)

This equation looks like the generalized Langevin
equation. However, we remark that the term &(¢) on the
right hand side of the above equation is not noise but a
deterministic source, therefore the motion of the heavy
quark is completely deterministic. An ensemble average
is taken of P(r) , averaging over the initial conditions of
the harmonic oscillators. We will prove later that for a
Markov process the time correlator of &(¢), defined in
terms of the ensemble average, is indeed proportional to
the §—function in analogy with the Gaussian noise used in
standard Langevin equations.

The last step is to write explicitly the function F(x).
To this end we need the Green's function of the harmonic

oscillator,
, sinf[wy(t—1)]
Gt - 1) = ~ St 0], (23)

W

the primitive of G¥% is easily calculated. Defining the dis-
sipative kernel as

2 N ’
"o 8 N coslw(t—1)]
Y(it—1) = mM; " . 24)

we can write the dynamical equation for P as
dp !
T f y(—1)P@")dr = £(r). (25)
0

The derivation of Eq. (25) shows that the effect of
coupling of the heavy quark to the oscillators appears in
two places: on the right hand side of the equation, de-
scribing the coupling to the unperturbed harmonic mo-
tion of the oscillators, which is responsible for mo-
mentum diffusion as we will see shortly, and in the dis-
sipative term on the left hand side, describing the coup-
ling of the heavy quark to the perturbation created by its
motion in the bath, which is responsible for dissipation.
Neglecting this back-reaction amounts to neglecting the
energy loss, and thermalization of the heavy quark will
not be achieved. The back-reaction term appears as the
next-to-leading order interaction. However, the drag and
diffusion coefficients are of the same order in coupling,
as we will see in the next subsection. Nevertheless, we
will also provide an estimate of the kinematic regime in
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which neglecting the dissipative term is a reasonable ap-
proximation. In the continuum limit, using the replace-
ment (3), we can write Eq. (24) as

0 1 dN
iw(t-tr)
Y md (w2d ) wn, (26)

which gives the Markov limit y(r—¢)=2y5(t—1¢") for
dN/dw o« w?. In this case we get

Y1) =

dpP
& FrP=50. @7

We note from Eq. (26) that, apart a multiplicative
constant, (1/w*)dN/dw is nothing else but the Fourier
transform of the dissipative kernel. Therefore, it appears
clearly that the shape of the latter can be modified by the
former. The ensemble average is taken of the solution of
Eq. (25). Practically this means that we are solving the
deterministic equation of motion (25) for a set of initial
conditions of the oscillators, and then averaging by means
of the distributions specified in the previous subsection.

2.3 The fluctuation-dissipation theorem

We now show that as long as we use Egs. (4) and (7)
to distribute the bath of harmonic oscillators, the dissipat-
ive kernel and the correlator (£(r)é(¢')) satisfy the fluctu-
ation-dissipation theorem regardless of the particular
dN/dw chosen. To this end, taking into account that from
Eqgs. (4) and (7) it follows that (axa,) o« 6q, (BiBy) o Skgs
{aifBq) = 0, we get

1
EDET)) =§Z{<ai>+<ﬁi>}cos[wk(;_f)]

—_

EZ (a2 - (,Bk cos[wi(t+1)]. (28)
T

The above equation is general. If we now make the
further assumption that

(Ple) = Mg (29)
we get
2 ()
€wewn = 3 L cosfwnr-1l. (30)
k k

Assuming that ( p%k) is independent of the oscillators,
which happens for the distributions used in this work, we
can write

E0Er)) =

2<P0> i cos[a)k(t t )]’ 31)

I=1
where now (p3) corresponds to the common average of
the initial squared momentum of the oscillators.

A comparison of Eq. (31) and Eq. (24) shows that in

this model the fluctuation-dissipation theorem is satisfied
in the form

yit-1)= (32)

< o)

This relation is valid regardless of the particular form
of dN/dw, as long as the condition (29) is satisfied.

We remark that in order to satisfy the fluctuation-dis-
sipation theorem the assumption (29) is crucial. If this
condition is violated then the second term on the right
hand side of Eq. (28) does not necessarily cancel out, and
this might lead to the violation of the theorem. This might
happen, for example, if in the initial conditions the de-
grees of freedom of the oscillators are thermalized at dif-
ferent temperatures. This situation represents a different
out-of-equilibrium condition, and in the presence of inter-
actions among the modes of the oscillators this condition
should be removed by the dynamical evolution. We leave
this possibility for a future investigation. In this study the
distributions of the oscillators always satisfy the condi-
tion (29). Therefore, the aforementioned term cancels out
and the fluctuation-dissipation theorem is always satis-
fied.

2.4 The pure diffusive motion

We now show that in this model the heavy quark ex-
periences pure diffusion of the initial value of mo-
mentum in the case the dissipative term is neglected in a
Markov process. Indeed, in this case the equation of mo-
tion is

!
P(t) = P(0) +f dr&@). (33)
0
Squaring and taking the ensemble average leads to
(P()) = P(0), (34)
(P@?) = PO+ 22 2g & [gudN Izcoswt = s,
do ot

where we use &=T for the system in thermal equilibri-
um, and & = T for the CGC-like distribution. The time
dependence of the momentum spread comes from the in-
tegral over the frequencies of the oscillators on the right
hand side of the above equation. In the case of a Markov
process this is easy to compute since in this case
dN/dw o« w? , which implies

P(t)*\ P(0)
- =2D
< oM > M " (36)
where we have defined the diffusion coefficient of kinet-
ic energy as
2
_ng"&( 1 dN
~2mM (a)2 dw)' 37)

The above equations describe standard diffusion with
linear momentum spread with time.

We can compare the diffusion coefficient with the
drag in the Markov limit. Indeed, from Eq. (26) we get
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2
_ng 1 dN
7= omm (aﬂ dw)’ (38)
and comparing this with Eq. (37), we find
D
— =& (39
Y

which corresponds to the fluctuation-dissipation theorem
in the case of a Markov process.

2.5 The Gaussian dissipative kernel

In this study we consider a dissipative kernel with
memory. As specified above, a Markov kernel (namely, a
kernel without memory) corresponds to the limit
y(t—1t)=2y5(t—1) . According to Eq. (26), this can be
implemented by means of dN/dw « w?. In order to keep
the expressions that are easy to manipulate we consider a
simple Gaussian form

dN 2N

— = —w

dw @+
which is normalized according to Eq. (1). In this equa-
tion we introduce the parameter a, which has the dimen-
sion of energy, that regulates the shape of the kernel in
the frequency space. Using Eq. (40), we get from Eq. (26)

22
Zew/a

; (40)

2
Vi) = 2w a-1), (4D

where

W\ a a*(t—1')?
O,(t-1)= 2ﬁexp(— 1 ), (42)
and
2
=Nz 43)
a'm

This form has the advantage of easily identifying the
part of the kernel that gives the §—function in the limit
a— oo, since O,(x) — 6(x) in this limit. The form in Eq.
(41) also suggests that the proper way to take the limit
a— oo is to keep g?N/a® fixed, so that the overall con-
stant in Eq. (41) is unchanged as the dissipative kernel is
continuously deformed from the one with memory to the
Markov one, y(s) =2yd(s). In addition, we note that Eq.
(41) suggests that we can define an effective coupling,
which contains the information about the bath of oscillat-
ors and is independent of the mass of the heavy quark. As
a consequence, once we fix M we can study the effect of
a continuous deformation of the dissipative kernel by
keeping o fixed. This limiting procedure gives meaning-
ful results if we take both limits N — co and a — ..

3 The exact solution and equilibration time

The dynamical equation for P, Eq. (25), is an integro-
differential equation that can be solved analytically by

means of the Laplace transform. We present this solution
first, and then discuss how it can be used to define the
thermalization time, which we estimate for a given dissip-
ative kernel.

3.1 Exact solution and equilibration time

In order to solve Eq. (25) we introduce the Laplace
transform, namely

L,(f) = F(s) = fo e Flo)dr (44)

It is then straightforward to write Eq. (25) as

sP(s)— P(0)+T(s)P(s) = B(s). (45)
Here, Z(s) and T'(s) correspond to the Laplace transforms
of the source term and of the dissipative kernel, respect-
ively. From Eq. (45), we can write the solution in the
time domain as the inverse Laplace transform of P(s), that
is

1 f’“’"" 2(s) + P(0)

PO= 20 ) 5T

. eds, (46)
2mi

where o is a real constant that is larger that the real part
of all singularities of the integrand. Equation (46) corres-
ponds to the exact solution of Eq. (25). In principle, once
the dissipative kernel and the source are given, one can
obtain the evolution of P by performing the integral
above. The ensemble average can then be taken by aver-
aging over the initial conditions of the oscillators in the
bath.

Before applying the solution (46) to some specific
dissipative kernel and source, we note that we can split
this solution into two parts:

0 +i00
Iy
21 Joeico S+I(S)
1 e E(s)

27 Joie S+I(s)

e'lds

e*'ds. (47)

In this equation, P(0) is the initial value of the heavy
quark momentum. The first term on the right hand side is
therefore the only part of the solution that contains in-
formation on the initialization. Depending on the distribu-
tion of the poles of the integrand, the magnitude of this
term can grow or be damped exponentially, as well as os-
cillate in time. If all poles have negative and nonzero real
parts then the first term decays exponentially, implying
that after some time the heavy quark loses memory of its
initial condition. Its properties at asymptotic time depend
only on the bath in which the quark propagates. This of-
fers a criterion for thermalization, or more generally for
equilibration, of the heavy quark with the medium. In-
deed, we can define the thermalization time as the time
needed for the quark to forget about its initial condition.
This time, that we denote by 7.4, can be computed by
studying the distribution of the zeros of s+T(s) in the
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complex plane Assuming the poles s = —«, +ik;, wWith «,
and «; corresponding to the real and imaginary parts of s,
respectively, and assuming that all «, are positive, we can
identify 7.q with the smallest x,. We note that using this
definition, 7., depends only on the shape of the dissipat-
ive kernel in the frequency space and not on the initial
conditions of the oscillator bath. Given a density dN/dw,
the equilibration time only depends on the density as well
as on the coupling and the masses of the heavy quark and
of the oscillators, but not on the distribution of the oscil-
lators in the bath.

3.2 Equilibration time for the Gaussian kernel

We now apply the solution (46) to the case of the
Gaussian dissipative kernel Eq. (41). After writing down
the exact solution, we use it to determine the equilibra-
tion time, as defined in the previous subsection, as a func-
tion of the shape parameter of the kernel. The Laplace
transform of the kernel is

(12 2
[(s)= e Ea(s/a), (43)

where N 1s the number of oscillators in the bath and we
have used

— i " r
E,(x)= NE jx‘ e " dr. (49)

We recall that we obtain the Markov limit when a — oo in
the above equation. The Laplace transform of Eq. (16) is
given by

=(5) - i(m] (50)
=(s) = )

Therefore, we can write the exact solution in the form

P(O) 0 +i00 1
P(t)=——
® 21 Jo—ico S+I(s)

. ‘
1 +ieo a/ks+,8kwk 1 st

b ds. (51
2ni;j:iw( 2+w? )5l (51

A quick calculation of the residues at infinity of the
integrands in Eq. (51) at ¢ = 0, which correspond to the
integrals at r = 0, shows that the solution (51) is consist-
ent with P(z = 0) = P(0): the second term on the right hand
side of the equation vanishes at ¢ = 0, while the first one
is simply equal to P(0).

As discussed in the previous subsection, in order to
estimate the equilibration time we have to study the dis-
tribution of the poles of the integrands on the right hand
side of Eq. (47). The equation s+T'(s) =0 , with I'(s) in
Eq. (48), admits both negative real, s = —x?, and a set of
infinite conjugate complex solutions s" = —«}' +ix! with
k! > 0. Besides, there are conjugate poles s; = +iwy in the
second integral. We were able to find explicit solutions
for the equation s+I'(s) = 0 analytically only for small o?,

st

in the limit of large « , that is for a bath that is not very
far from the Markov limit. They were found by using the
Newton-Raphson method iterated up to the second order
(we checked that increasing the order of the iteration does
not change the result in the weak coupling limit). These
solutions are given by

2 4 6
| @ 2 « a
=—+——+0|—|, 52
S VRN VZ (M3) (52)
2 4 6
n a 2 « a
Kr:na+ﬁ+ﬁrw+ (W), n=1,2,... (53)

with k" = —na. Clearly the smallest zero is x' , and in the
limit of large a, «! is very large, which means that the
contribution of these poles is suppressed as soon as
1/k! <t . Hence, in this time range we can limit the solu-
tion only to x'. In this limit, by a straightforward applica-
tion of the residue theorem we get

N 1
o —ary +Brwi
P(t) =P(0)e X +¢ XfZ—z
= WDt

N . ,
+ Z [lakwk +Pwr e

+
2i0.)k iwy + F(iwk)

c.c.|, (54)

where c.c. denotes complex conjugation. The last line in
the above equation corresponds to the contribution of the
poles s==+iw, andrepresents the heavy quark mo-
mentum at a very large time, while the first two terms are
important only in the transient region.

As anticipated, part of the solution (54) depends on
the initial conditions (the first line on the right hand side
of the above equation). We identify y' with the inverse of
the equilibration time, getting

M 202

a? aNntM

The above equation shows that the in this model, the
effect of memory in the dissipative kernel is to lower the
equilibration time of the heavy quark when the effective
coupling o is kept fixed. We were unable to find a de-
tailed explanation of why this happens. A naive interpret-
ation is that adding memory to the dissipative kernel
amounts to lowering of the value of @ and, because of
Egs. (40) and (43), keeping o® fixed implies that the
density of oscillators at a given frequency w is larger, res-
ulting in a more efficient interaction with the medium and
in a faster thermalization. To this end we remark that we
have obtained Eq. (55) using a Gaussian kernel. It would
be interesting to investigate other analytical forms of the
dissipative kernel in order to verify if the lowering of the
equilibration time is a more general feature, or if it is re-
lated to the specific form of the kernel used in our work.
Furthermore, it would be interesting to study the impact
of the memory effect on heavy quark observables at the
RHIC and LHC energies, as well as on the heavy quark

+0(*/a?)). (55)

Teq =
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thermalization time, which is neglected in several recent
calculations [37-42, 46]. It should be mentioned that the
memory effect has an important influence on the final
dilepton yields [57] and radiative energy loss [58]. This
indicates that an analysis which describes the data cor-
rectly demands a proper inclusion of the memory effects
(for more information see also [44, 45, 54-56]).

We note that the explicit distribution of the bath does
not affect the equilibration time Eq. (55). Indeed, it is
only the shape of the dissipative kernel that affects
thermalization. We also note that although the increase of
the average energy per oscillator is fairly negligible, since
the energy lost by the heavy quark during thermalization
is distributed to N oscillators where N is large, thermaliz-
ation produces entropy because the information stored in
the initial conditions becomes irrelevant after the thermal-
ization time [62].

We can combine the results found in this section with
those of Section 2.4 to give a rough estimate of the kin-
ematic regime in which the motion of the heavy quark is
dominated by diffusion. Indeed, the drag would corres-
pond to a shift of the initial heavy quark momentum by
an amount

IP(t)* — P(0)*|arag ~ 2P(0)*1, (56)

where y = 1/7¢q. On the other hand, diffusion amounts to
a dispersion of the kinetic energy around its initial value,
Eq. (36). Using the fluctuation-dissipation theorem in the
form of Eq. (39), which is valid both for the bath in
thermal equilibrium and for the CGC-like bath, we can
write
IP(t)? = P(0)laiffusion = 4MY&ET. (57)
Taking the ratio of the last two equations we find
|P(Z)Z_P(0)2|drag N 1 P(0)2
|P(t)? = P(0)|dgiffusion & 2M

Loosely speaking, the above equation shows that the
drag can be neglected with respect to diffusion as long as
the initial kinetic energy of the heavy quark is small in
comparison with the average energy of the bath. For a
bath in thermal equilibrium this average energy is just the
temperature. For a CGC-like bath, we have from Eq. (9)
28 ~ M~ Q,, where Q; is the saturation scale.

A purely diffusive process has been observed in [48],
where the propagation of heavy quarks in the evolving
glasma has been studied neglecting the effect of this
propagation on the background gluon field. This is called
probe approximation, since the color current carried by
the heavy quark is supposed not to affect the gluon field.
From the model discussed in this work we can interpret
the lack of back-reaction as the lack of a drag coefficient
in the equations of motion of the heavy quarks. While we
recognize the need for a full numerical solution of the
problem of propagation of heavy quarks in the evolving

(38

glasma, we can use the present model, and in particular
the estimate (58), to state that the pure diffusive approx-
imation should work well as long as the initial kinetic en-
ergy of the heavy quark is small in comparison with the
saturation scale. For example, taking O, ~2 GeV and an
initial momentum P(0) =2 GeV, which is a fair estimate
of the initial average transverse momentum of heavy
quarks produced via perturbative QCD [48], we read
from Eq. (58) that the ratio between drag and diffusion
terms is approximately 0.67 for the ¢ quark, and ~ 0.22 for
the b quark, meaning that the pure diffusive approxima-
tion in this example works pretty well for the » quark but
is marginal for the ¢ quark. For higher momenta the back-
reaction needs to be considered in order to have a correct
description of the evolution of the heavy quark in a dense
gluon system.

4 The equilibrium state

In this section we analyze the solution of the equa-
tion of motion of P at very large time. This is important
because it gives information on the equilibrium state of
the heavy quark in the bath of oscillators. Moreover, it is
useful to understand how the non-Markov dissipative ker-
nel, as well as the out-of-equilibrium oscillators bath, af-
fect the large time state of the heavy quark. From Eqgs.
(54) and (51) we note that only the poles s = +iw; give a
contribution at large times since the other poles lead to an
exponential decay of the solution. Therefore, for very
large time we can write

1 N Hieo ays + Brwi 1
P = — Std N 59
@ ZHi;f(:iw ( $2+ w? )S+F(S)e s 9

k

and taking into account only the relevant poles we get

N iCL’k +,8k eiwkt
P(t) = Z(

= 2i iw +T(iwy)

+ c.c.). (60)

We note that although the poles corresponding to
s+T(s) =0 do not contribute, the dissipative kernel still
appears explicitly in Eq. (60).

We use Eq. (60) to compute the average kinetic en-
ergy of the heavy quark. In order to do so we need to
square the right hand side of the equation, then take the
ensemble average with the distributions (4) or (7), and
then sum over the oscillators. This is a pretty straightfor-
ward procedure which is not enlightening, therefore we
skip the few mathematical steps and write down the final
result:

b 1 @)+ ()
(Ple =3 Zk: (T* — iwp)([T +iwy)

1 (@) =B
"3 Zk:ﬁ(t) (T* —iwg) (T +iwg)?’ (1)
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where we have used I' = I'(iwy), I = I'(—iwy) and
Fr(r) = e 2T 4 jwp)? + e HHT* —jwp)?. (62)

We briefly note that the second term in the right hand
side of Eq. (61) would contribute only if (a?) # (57). The
evaluation of this term turns out to be very simple in the
case of a Markov kernel in which I'(s) is a constant. We
will not comment further on this term in the present work,
although in principle it would be interesting to study the
situation where (ai) # (,Bi) , since this would correspond
to a different kind of an out-of-equilibrium bath in which
the different degrees of freedom thermalize at different
temperatures.

For the kind of baths considered in this work we have
(@)= (B = g*&/(mw?) , with E=T for the system in
thermal equilibrium, and & = T¢ for the CGC-like distri-
bution. Therefore, only the first term on the right hand
side of Eq. (61) gives a contribution:

2 +00
g°E 1 dN dw
Py = 2= —_——— 63
7 m Joo w?dw T*—iw)T +iw) 63)
We were able to evaluate the above integral only in
the limit of large a, when we take the asymptotic expan-

sion of the integrand up to the order 1/a:

P? & o?
<2M>oo_ 2[1+aMﬁ]' )

The above equation shows that for a kernel without
memory, the heavy quark equilibrates to the average kin-
etic energy of the bath. The presence of memory, which
corresponds to the term o 1/a in Eq. (64), leads to a high-
er value of the average kinetic energy of the heavy quark
if the coupling « is kept fixed. Clearly, this does not cor-
respond to a measurable increase of the average energy of
the bath. The heavy quark loses part of its initial energy,
AE, during the thermalization process, and this AE is dis-
tributed to the bath so that the average energy of each os-
cillator increases by AE/N , which is negligible in the
limit N — co . Nevertheless, the entropy increases during
thermalization because the information of the initial con-
ditions is lost, as already specified above.

The result in Eq. (64) shows that in presence of the
memory the heavy quark does not thermalize to the tem-
perature of the bath: this is expected in our model since
memory is always present during evolution, therefore the
interaction with the bath is constantly dirtied by the inter-
action of the heavy quark with its own perturbation and
this will be present also at equilibrium. We note that Eq.
(64) has been derived assuming that memory is always
present: if we make the assumption that our parameter a
changes with time we can implement a memory kernel
which is Gaussian at the initial time, then becomes a §-
function at larger times. Doing so results in a perfect
equilibration of the heavy quark with the bath.

S Summary and conclusions

We have considered a simple model for the diffusion
of heavy quarks in a hot bath, the latter being modeled by
an ensemble of harmonic oscillators distributed accord-
ing to either a thermal distribution or to an out-of-equilib-
rium CGC-like distribution with a saturation scale. The
use of the latter is motivated by the recent increased in-
terest of studying the propagation of heavy quarks in a
dense medium of out-of-equilibrium gluons that can be
produced in high energy nuclear collisions. Therefore,
this model might help to shed light on the involved dy-
namics of the early stages of these collisions avoiding the
complications of solving the non-abelian equations of
motion of the gluon background coupled to the heavy
quarks. Of course, we do not pretend that this model can
replace the study of the full problem. We are well aware
that a full implementation of the gluon + quarks dynam-
ics is essential to make quantitative predictions. Indeed.
this is what we have started in [48]. Nevertheless, the
simple model studied here can help to clarify at least the
qualitative picture, illustrating the roles in the interplay
between the heavy quarks and the bath, and hence sug-
gesting how to improve the present calculations in order
to get a more complete picture. The diffusion model is
well known in literature since it has been studied in the
context of dissipation in quantum mechanics [50-53].

In this model it is possible to study the process of
thermalization of heavy quarks, in particular how it de-
pends on the specific form of the distribution used for the
bath, as well as on the coupling and the heavy quark
mass. Moreover, it is possible to include memory effects
in the dissipative kernel, y(t—¢'), and to study how it af-
fects thermalization. The memory can be implemented
easily by choosing properly the distribution of oscillators,
dN/dw, which appears in the very definition of y(t—¢).
For the model considered here, a Markov kernel
y(t—1)=2y5(t—t) can be obtained by assuming
dN/dw o« w?. We studied the memory effects by introdu-
cing continuous deformations of the Markov kernel via a
Gaussian distribution, which helps to keep the mathemat-
ical expressions simple, and at the same time allows for a
smooth transition from a kernel without to a kernel with
memory. Therefore, the two main merits of this model are
the ability to implement memory effects and an out-of-
equilibrium dense bath of oscillators.

We remarked that in order to obtain the dissipative
term in the equation of motion of the heavy quark,
namely the drift, it is necessary to include the back-reac-
tion of the oscillators on the bath. Indeed, from the dy-
namical equation it is clear that besides the coupling of
the quark to the unperturbed oscillators, which is respons-
ible for diffusion, there is also coupling of the heavy
quark with the perturbation of the bath induced by the lat-
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ter, which is responsible for the dissipation. Moreover,
we have proved that with the assumption
(P} =m*wi(x}) , the fluctuation-dissipation theorem is
satisfied both for the bath at thermal equilibrium and for
the CGC-like bath, regardless of the shape of the distribu-
tion of oscillators.

The solution of the equation of motion for the heavy
quark momentum, P, can be obtained easily. Using this
solution, we defined the equilibration time as the time ne-
cessary for the system to lose information about its initial
condition. It was possible to compute analytically the
thermalization time by studying the distribution of the
zeros of s+T(s) in the complex plane, where I'(s) de-
notes the Laplace transform of the dissipative kernel. We
selected the zero with the smallest negative real part, —y,
and defined the inverse of the thermalization time as
1/7eq = x. We found that dN/dw is the only information
about the bath that affects the thermalization time: the
distribution of the degrees of freedom (p3,) and (x2,) does
not affect the thermalization time. We also found that
keeping the strength of the effective coupling fixed and
deforming dN/dw in order to have a kernel with memory,
the thermalization time decreases. We understood this ef-
fect as a consequence of the larger density of oscillators,
which in turn results in a more efficient way to dissipate
energy. We remark that we obtained this result using a
specific analytical form of dV/dw, namely a Gaussian. At
this moment we are unable to make a general statement
on the effect of memory on the thermalization time. It
would be interesting to study other kernels with memory
to check whether our finding is specific to the Gaussian
or is more general, even outside the context of heavy
quarks dynamics.

The work presented was partly inspired by [48] , in
which we studied the diffusion of heavy quarks in an
evolving glasma background. In [48] , we used the probe
approximation, which amounts to neglecting the back-re-
action of the colored current carried by the heavy quarks
on the gluon background, and diffusion-without-drag was
found to be the main characteristics of the propagation of
heavy quarks in this medium. We were able to under-
stand why in [48] the lack of drift was observed. Indeed,
from the equation of motion for the momentum of the

heavy quark we noted that dissipation arises from the
coupling of the heavy quark to the perturbation induced
by the quark itself on the bath of oscillators. Therefore, in
order to observe dissipation, the implementation of the
back-reaction on the gluon background seems necessary.
Nevertheless, we can use this model to estimate roughly
the kinematic regime in which the diffusion-without-drag
is a fair approximation. Indeed, from the fluctuation-dis-
sipation theorem that we derived for the CGC-like distri-
bution we found that the relative shift of the kinetic en-
ergy due to drag and diffusion is just given by ~ Ky/&,
where K, denotes the initial (non-relativistic) kinetic en-
ergy of the heavy quark, and & is the energy-per-oscillat-
or of the bath. For a system in thermal equilibrium E=T,
while for the CGC-like distribution we can take & = Q,
where Q; is the saturation scale. Therefore, our model
suggests that as long as the initial energy of the heavy
quark is smaller than the average energy of the bath, the
pure diffusive motion is not a bad approximation.

There are numerous possible studies that can be done
in the future. As mentioned above, it would be interest-
ing to explore the different shapes of the dissipative ker-
nel. It also seems interesting to investigate the medium-
induced interaction between heavy quarks that might af-
fect the thermalization time, as well as observables like
particle-particle correlations. Besides, it is of a certain in-
terest to consider more general baths in which
(pg,) # m*w(x%,), which implies that different degrees of
freedom of the bath equilibrate at different temperatures.
Therefore, an interesting point to study would be to in-
clude self-interactions in the bath in order to study its
equilibration, besides the propagation of the heavy quark
in this dynamical bath. In addition to these problems, an-
other aspect that is worth investigating is the correlation
between different degrees of freedom of the bath. As an
application of the present work, we intend to explore in a
forthcoming article the impact of memory on heavy quark
dynamics and its thermalization time at RHIC and LHC
energies, which was ignored in earlier calculations.

The authors acknowledge Gabriele Coci, Vincenzo
Greco, Lucia Oliva, John Petrucci, Salvatore Plumari
and in particular Xingbo Zhao for inspiration, useful dis-
cussions and comments on the first version of this article.
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