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Abstract: Within the  context  of  the  Fermi-bounce  curvaton mechanism,  we analyze  the  one-loop radiative  correc-
tions  to  the  four-fermion  interaction,  generated  by  the  non-dynamical  torsion  field  in  the  Einstein-Cartan-Holst-
Sciama-Kibble theory. We show that contributions that arise from the one-loop radiative corrections modify the en-
ergy-momentum tensor, mimicking an effective Ekpyrotic fluid contribution. Therefore, we call this effect quantum
Ekpyrotic mechanism. This leads to the dynamical washing out of anisotropic contributions to the energy-momentum
tensor, without introducing any new extra Ekpyrotic fluid. We discuss the stability of the bouncing mechanism and
derive  the  renormalization  group flow of  the  dimensional  coupling  constant ξ,  checking whether  any change of  its
sign takes place towards the bounce. This enforces the theoretical motivations in favor of the torsion curvaton bounce
cosmology as an alternative candidate to the inflation paradigm.
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1    Introduction

The  cosmological  bounce  scenario,  as  originated  by
standard model matter fields, is a viable alternative to in-
flation that has not yet been ruled out experimentally. The
concept of the bounce is that the cosmological dynamics
emerges from a pre-Big Bang universe, which solves the
cosmological singularity. Almost scale-invariant perturb-
ations are  generated  during  the  (matter)  contracting  cos-
mological  phase  —  see  e.g.  Ref.  [1]  —  thus  satisfying
CMB observations [2]. A scale-invariant power spectrum
can  be  also  recovered  for  curvature  perturbations  in  a
matter-filled emergent universe, as in [3]. A possible ori-
gin of the bounce can be recovered within the context of
the  Einstein-Cartan-Holst-Sciama-Kibble  theory
(ECHSK) [4-7], accounting for gravity with a topologic-
al Holst term and non-minimally coupled fermions. In the
first-order formalism, one must allow for a torsionful part
of  the  spin-connection,  as  gravity  is  coupled  to  fermion
fields.  In  this  framework,  the  torsion  field  does  entail
propagating degrees of freedom and can be integrated-out
as  an  auxiliary  field.  By  virtue  of  the  torsion-fermion
coupling, new effective four-fermion interactions arise. A
sort  of  effective  Nambu-Jona-Lasinio  (NJL)  model  can
emerge,  but  from a  very  different  dynamical  origin  than
the  one  addressed  in  the  QCD  case.  Depending  on  the

sign  of  the  fermion-torsion  coupling,  this  can  provide  a
new  attractive  or  repulsive  contribution  to  the  energy
conditions.  In  the  repulsive  phase,  with  a  certain  choice
of the torsion-fermion coupling, such a term can contrib-
ute  to  the energy-momentum tensor,  triggering a  bounce
at a related critical energy density scale. Possible bounce
cosmology scenarios were investigated in Refs. [8-11]. A
detailed analysis of the phenomenological consequences,
at late cosmological times, of theories with fermions that
violate the Null Energy Condition (NEC) was provided in
[12].

O(1)

ρEk = ρ0a−n n > 6

A typical issue for bounce scenarios in cosmology is
the generation of  large  anisotropic terms in  the en-
ergy-momentum  tensor,  which  is  incompatible  with  the
cosmological isotropy of the CMB. An approach to solve
this problem requires the introduction of a new exotic flu-
id,  the  Ekpyrotic  fluid,  provided  with  an  energy-density
steeply  scaling  with  the  Universe  scale  factor, i.e.

 with . The Ekpyrotic  fluid  does  domin-
ate during  the  Bounce  critical  scale,  suppressing  aniso-
tropic  contributions  to  the  background  dynamics.
However,  both  the  classical  Bounce  and  the  Ekpyrotic
mechanism are  based on a  classical  analysis.  During the
Bounce  stage,  quantum  corrections  are  expected  to  be
large,  and  potentially  they  may  completely  change  and
wash-out the Bounce dynamics, along with the Ekpyrotic
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classical solution to the anisotropies' problem.

i)

ii)

This highly motivates the analysis of quantum correc-
tions  to  the  Ekpyrotic  mechanism  in  some  specific
Bounce cosmology models. In this study, we analyze the
one-loop  quantum  corrections  to  the  four-fermion  term
generated  by  torsion,  in  a  Friedmann-Lemaître-
Robertson-Walker  (FLRW)  background.  We  show  that
quantum corrections induce extra corrections to the clas-
sical  bare  energy-momentum,  which  was  previously  not
considered. We find that these new radiative terms theor-
etically have two healthy consequences:  they favor the
classical Bounce, generating contributions that violate the
NEC;  they generate new terms mimicking the effect of
the  Ekpyrotic  fluid.  This  result  implies  that  the  four-fer-
mion curvaton mechanism can induce the Bounce without
introducing any new exotic matter  field.  This hypothesis
is theoretically appealing, as it avoids adding any particle
to the  theoretical  framework  that  cannot  be  accommod-
ated in the Standard Model of particle physics, or in any
Grand Unified extensions of it.

2    Theory

ψ
ψ = (ψ∗)T γ0

γI I = 0, · · · ,3 γ5

gµν = eI
µeJ
νηIJ eI

µ

eµI
ωIJ
µ ωIJ

µ

We follow the theoretical framework and the conven-
tions introduced in Refs. [4-21]. This makes us consider a
generalization of the Einstein-Hilbert action with a topo-
logical  term,  the  Holst  action  for  gravity  in  the  Palatini
formalism, which allows to couple gravity to chiral fermi-
ons. The theory can be coupled to a Dirac field , and to
the  related  field .  The  Dirac  action  involves
the Dirac matrices,  with  and . The action
for  pure gravity can be cast  in  terms of  the gravitational
field ,  where  is  the  tetrad/frame  field
(with inverse  and determinant e), and the Lorentz con-
nection . The curvature of , namely

F IJ
µν = 2∂[µω

IJ
ν] +

[
ωµ,ων

]IJ
,

is the triadic projection of the Riemann tensor.

θ

The  total  action  involves  the  Einstein-Cartan-Holst
(ECH)  action  —  namely  the  Palatini-formulated  action
for gravity plus fermions that also includes the topologic-
al term à la Holst, which resembles the -term for gauge
fields — with a non-minimal component of the covariant
Dirac  action.  Note  that,  in  absence  of  the  gravitational
Holst  topological  term,  the  whole  theory  provided  with
torsion and minimally-coupled fermions  is  referred to  in
the literature  as  the  Einstein-Cartan-Sciama-Kibble  the-
ory (see e.g. Refs. [4-6]). In the Palatini first order form-
alism, the ECH action casts (see e.g. [11]),

S Holst =
1
2κ

∫
M

d4x |e|eµI eνJ PIJ
KLF KL

µν (ω) . (1)

κ = 8πGN
ϵIJKL

In Eq.  (1),  is  the square of  the reduced Planck
length,  denotes  the  Levi-Civita  symbol,  while  the

PIJ
KL =δ

[I
Kδ

J]
L − ϵ IJ

KL/(2γ)
γ

γ2 , −1

S Dirac =
1
2

∫
d4x|e|LDirac

tensor in the internal indices  in-
volves  the  Barbero –Immirzi  parameter  and is  invert-
ible  for .  The Dirac action for  massless  fermions
reads , with

LDirac =
ı

2
ψ
(
1− ı

α
γ5

)
γIeµI∇µψ+h.c. . (2)

α

α=γ

S ECH=S GR+S Dirac

α→±∞
α γ

In Eq. (2),  denotes a real parameter called non-minim-
al  coupling.  For ,  we  may  recover  the  Einstein-
Cartan  action,  namely .  An  additional
term is  also  present,  which  reduces  to  the  Nieh-Yan  in-
variant (see e.g. Ref. [20]) when the second Cartan struc-
ture  equation  is  satisfied.  Within  the  framework  of  the
Holst action  in  Eq.  (1),  the  minimal  coupling  can  be  re-
covered  in  the  limit . Phenomenologically  al-
lowed  values  of  the  parameters  and  are  recovered
from the four fermion axial-current Lagrangian (7), from
measurements  of  lepton-quark  contact  interactions  [14,
22].

CIJ
µ (∇µ−∇̃µ)VI =C J

µ I VJ , ∇̃µ

eI
µ VJ

CIJ
µ

The  presence  of  fermions  induces  a  torsional  part  of
the connection to enter the non-minimal ECH action. Tor-
sion is  non-dynamical  in  this  theory,  and  can  be  integ-
rated  out  once  the  second  Cartan  structure  equation  is
solved.  This  requires  to  introduce  the  contortion  tensor

,  which  is  defined  by  with 
denoting the covariant derivative compatible with the tet-
rad  and  a  vector  in  the internal  space.  The Cartan
equation  expresses  the  contortion  tensor  in  terms  of
the fermions' currents and the tetrad, namely

eµI CµJK =
κ

4
γ

γ2+1

(
βϵIJKL JL −2θηI[J JK]

)
,

JL = ψγLγ5ψ. (3)

β = γ+1/α θ = 1−γ/α

The  coefficients  appearing  in  Eq.  (3)  are  related  to  the
free  parameters  of  the  non-minimal  ECH  theory,

 and . Deploying the solution in (3),
the non-minimal ECH action recasts in terms only of the
metric compatible variables, further including a novel in-
teraction term that captures the new physics:

S ECH = S GR+S Dirac+S Int . (4)

RIJ
µν = F IJ

µν[ω̃(e)]
In Eq. (4), the Einstein-Hilbert action involves the mixed-
indices Riemann tensor , namely

S GR =
1
2κ

∫
M
d4x|e|eµI eνJRIJ

µν , (5)

S Diracthe  Dirac  action  on  curved  space-time  recasts  in
terms of the metric compatible variables

S Dirac =
ı

2

∫
M
d4x|e| ψγIeµI ∇̃µψ+h.c. , (6)

while the interacting term reads

S Int=−ξκ
∫

M
d4x|e| JL JM ηLM , (7)
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ξwith the coefficient  being a function of the fundament-
al parameters of the theory, namely

ξ :=
3
16

γ2

γ2+1

(
1+

2
αγ
− 1
α2

)
. (8)

ξ

γ

In  few words,  the  net  effect  of  having  coupled  fermions
to gravity in  the first  order  formalism means to have re-
covered,  in  the  metric-compatible  formalism,  an  extra
four fermion term. That means that the structure of Gen-
eral Relativity remains untouched, but that the matter part
of  the  Einstein  equations  acquires  at  tree-level  a  self-in-
teraction term, the coupling constant of which, ,  can be
either positive  or  negative.  Furthermore,  we  shall  com-
ment that the choice of real values of , which allows to
retain  only  real-valued  effective  potentials,  ensures  that
the reality condition is automatically implemented on the
gravitational field.

For completeness, we show in this section the energy-
momentum tensor components, i.e.

T fer
µν =

1
4
ψγIeI

(µı∇̃ν)ψ+h.c.−gµνLfer . (9)

3    Matter bounce and ekpyrosis

Only  a  complete  treatment  of  the  vast  literature  that
hinges  on  the  matter  bounce  scenario  would  require  per
se  a  sizable  review.  For  the  purpose  of  our  analysis,  we
will devote this section to provide an introductory review
of  the  argument,  focusing  on  the  cases  of  scalar  matter
fields, and then of fermion fields. Then, we will summar-
ize a few crucial elements of the ekpyrotic models, in pre-
paration for  our  analysis  and  the  discussion  of  the  nov-
elty of our framework.

It  is  rather  important  also  to  emphasize  that  matter
bounce cosmologies may achieve a nearly scale-invariant
power spectrum, and they are characterized by a slightly
red  tilt  of  the  scalar  perturbations  and  a  small  tensor-to-
scalar ratio. Furthermore, a positive running of the scalar
index may provide in this scenario few distinctive predic-
tions,  an  enlightening  element  to  be  kept  in  mind,  as  it
distinguishes  from  the  scenario  our  analysis  hinges  on,
and  the  predictions  that  arise  in  one-field  inflation  and
ekpyrotic  models  [23].  Thus,  this  paradigm provides  the
concrete chance to falsify a  matter  bounce scenario with
forthcoming observations.

3.1    Bouncing models

A bounce scenario can be achieved either by modify-
ing in  an effective way the Einstein  equations,  or  by as-
suming a  matter  field  content  that  violates  the  null  en-
ergy conditions  (NEC).  We  can  revive  the  main  direc-
tions along which the bounce scenario is attained, fitting
them into the following classes:

● String Cosmology:

N = (4,0)

Z(R)

a  resolution  of  the  Big  Bang  singularity  is  notably
provided by string theory, through the picture of a gas of
strings that  evolve in a  space-time with compactified di-
mensions  on  a  circle  of  radius R —  specifically,  one
should  deal  with  weakly  coupled  superstrings
compactified  to 4D.  The  thermal  properties  of  the  gas
should then explain the emergence of a bounce. The one-
loop  partition  function  is  finite  and  fulfills  thermal
duality (dubbed T-duality)

Z(R) = Z
(

R2
c

R

)
, (10)

Rc
R=Rc

Tmax
R>>Rc

R<<Rc

Tmax

with  being of the order of the string length [24]. At the
critical point , thermal string states start to become
massless and to  condensate.  For  time-dependent  temper-
atures,  the  time-slices  on  which  the  condensates  appear
form space-like branes, or S-branes. As a byproduct of T
duality,  and  of  the  formation  of  the  string  condensate,  a
maximal temperature  is reached at the critical point.
Thus,  the  string  gas  cools  both  for ,  a  regime
where the energy of the strings is mostly concentrated in
their momentum, and , a regime where the energy
of the strings is concentrated in windings around compac-
tified  dimensions.  Therefore,  one  can  imagine  a  process
for which the string gas starts at a cold temperature, in the
winding  regime,  and  then  gradually  increases,  until  it
reaches ,  at  which  a  phase  transition  takes  place  to
the  momentum  regime.  Hence,  the  temperature  starts  to
decrease  again.  The  thermodynamical  properties  of  the
string gas  then  imply  the  dynamical  features  of  the  cos-
mological evolution. The conservation of the thermal en-
tropy of matter fields in a co-moving volume (in four-di-
mensional homogeneous space-time), which reads

S = a3 ρ+ p
T
∼ (aT )3 , (11)

aT

Tmax

T =Tmax

with a scale  factor  and p pressure  density,  then  implies
that  is  constant.  A  bouncing  cosmology  follows,  in
which T increases  until  it  reaches  the  maximal  value

,  and  then  decreases  again.  At  the  same  time,  the
scale factor a decreases until  it  reaches a minimal value,
for ,  at  which a bounce of the universe happens.
Perturbation  of  the  action  at  second  order  around  the
FLRW solution  enables  to  compute  the  evolution  of  the
cosmological perturbations from the pre-bounce contract-
ing phase. This was achieved for instance in [25], due to
the  presence  of  the S-brane  at  the  bounce  instantiating  a
transition toward the expanding post-bounce phase.

● Loop Quantum Cosmology (LQC):

ρc ≃ ρPl

a theory inspired and motivated by the non-perturbat-
ive quantization methods of Loop Quantum Gravity [26]
is  Loop  Quantum  Cosmology  (LQC)  [27].  Within  this
framework,  a  bounce  picture  [28]  emerges  at  a  critical
Planckian  energy  density ,  which  determines  the
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energy scale of the bounce, namely

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (12)

H denoting the Hubble parameter. In this picture, the con-
tinuity  equation  is  not  deformed  by  the  curvature  scale.
For  perturbations  that  can  be  described  as  long-
wavelength Fourier modes, the separate universe approx-
imation  [29] applies,  and  the  effective  Friedmann  equa-
tions  in  each  patch  provides  the  usual  form of  the  long-
wavelength Mukhanov-Sasaki equation.

f (R)●  and extended gravity:

f (R)
modified  gravity  theories  that  belong  to  the  class  of
 extension of the Einstein-Hilbert  action, defined by

the action

S =
1
2κ

∫
d4x
√−g f (R) , (13)

f (R)

f (R)

have  been  invoked  either  to  explain  dark  matter  and/or
dark energy,  or  to  provide  a  consistent  ultraviolet  com-
pleted  theory  of  quantum  gravity,  with  higher  order
curvature  terms in  the  action that  become relevant  when
approaching  the  Planck  scale  [30].  Furthermore, 
gravity allows to mimic several bouncing scenarios. Spe-
cifically, a  change  of  variables  allows  to  unveil  the  dy-
namics of  theories: for

gµν→ g̃µν = f ′gµν = ϕgµν, (14)
and

ϕ→ ϕ̃ , with dϕ̃ =

√
3
2κ

dϕ
ϕ
, (15)

the theory recasts

S =
∫

d4x
√−g

[
R̃
2κ
− 1

2
(∂ϕ̃)2−U(ϕ̃)

]
, (16)

U(ϕ̃) = (R f ′− f )/(2κ f ′2)

f (R)

with . This enables an analysis of
the  cosmological  perturbations  over  the  pre-bounce
phase, as affected by  theories.

● Effective Field theory:
As a violation of NEC, effective field theory scenari-

os have been also envisaged to achieve bouncing cosmo-
logies. A particular instantiation can be provided by ghost
condensates scalar  fields,  which  are  employed  to  gener-
ate  the  bounce  [31-34].  Introducing  both  a  Horndeski-
type operator and a dynamical ghost condensate operator,
non-singular bounce  cosmological  models  can  be  ob-
tained, with a Lagrangian expressed in the Kinetic Grav-
ity Braiding (KGB) form by

L=K(ϕ,X)+G(X), (17)

K(ϕ,X)= [1−g(ϕ)]X+
βX2

M4
Pl

−V(ϕ) , (18)

G(X)=
γX
M3

Pl

, (19)

X = gµν(∂µϕ)(∂νϕ)/2
ϕ β γ

g(ϕ) gµν∇µ∇ν
∇µ

g(ϕ)>>1
β > 0 βX2

where  is  the regular  kinetic  term for
the  scalar  field , ,  and  are  real-valued  parameters,

 is a function of the scalar field, and  d'Alem-
bertian  operator,  with  as  the  gravitational  covariant
derivative.  As  soon  as  for  (even  for  a  short  time)

, ghost condensation phase starts, giving rise to a
non-singular bounce. For , the  term stabilizes at
high energy scales the kinetic energy.

● Fermi Bounce:
Both  the  non-minimal  ECH  and  the  ECHSK  actions

entail of  four-fermion  term  that  can  trigger  the  instanti-
ation  of  a  matter  bounce.  This  term,  corresponding  to  a
fermionic  superconductive  scenario,  directly  originates
from torsion.  Nonetheless,  effective  higher  order  operat-
ors  can  be  phenomenologically  introduced,  as  in  [35],
even  if  fermions  are  coupled  to  gravity  cast  in  a  metric
compatible form. For a fermion of mass m, one can con-
sider a potential of the form

V(ψ̄ψ) = V0+mψ̄ψ−λ(ψ̄ψ)2 , (20)

V0 λ
λ

ψ̄ψ ∝ 1/a3

∝ a−4 ∝ 1/a3

with  contribution to the cosmological constant and  a
dimensionfull coupling constant. For positive values of ,
the fermion  system  can  induce  a  bounce  scenario.  Cos-
mic evolution can be studied resorting to a time-reversed
description of the expanding universe. One can start con-
sidering  the  epoch  over  which  matter  energy  density
dominates over the fermion energy density, but the latter
is  still  positive.  Because  for  an  expanding  universe

,  over  reversed  time  direction  the  value  of  the
fermion bilinear increases,  and the fermion energy dens-
ity  becomes  negative,  while  the  other  form  of  energy
density,  due  to  radiation  ( )  and  dust  ( ), red-
shift away and approach zero. A bounce then takes place
when the negative fermion energy density equals in abso-
lute value the sum of the other matter energy density con-
tributions.

● Quintom bounce:

p=wρ
w=−1

w<−1
w>−1

The Quintom  scenario  intertwines  among  the  quint-
essence  and  the  phantom  paradigms,  combined  into  a
unique scenario for  dark energy.  Within this  framework,
the  system  is  characterized  by  a  dynamically  evolving
equation  of  state ,  which  crosses  over  the  cosmic
evolution  the  critical  value ,  corresponding  to  the
cosmological constant.  The  phases  along  which  the  sys-
tem  evolves  are  characterized  by  a  phantom-energy-like
behavior when , and by a quintessence-like behavi-
or for .

As shown in [36], quintom models entailing dark en-
ergy that deal with ideal gases and scalar fields, requires
the presence of at least two degrees of freedom, as sum-
marized in the Lagrangian

L =
1
2
∂µϕ∂

µϕ−∂µφ∂µφ−V(ϕ,φ) , (21)
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where potential  can be specialized to have the Coleman-
Weinberg form

V(ϕ,φ) =
1
4
λϕ4

(
ln
|ϕ|
v
− 1

4

)
+

1
16
λv4 , (22)

as in [37]. In contrast,  a  quintom model  involving a fer-
mion field was studied in [12]. The decay of the quintom
energy  may  then  trigger  avoidance  of  the  Big  Bang  and
Big Rip singularity. Specifically, Quintom models for in-
flation can be constructed, as in [37], in which the bounce
replaces the Big Bang singularity [38].

Below, we address a specific model of bouncing cos-
mology, to encompass the elements that are necessary to
a direct  comparison  with  the  results  we  are  about  to  de-
rive.

3.2    Ekpyrotic models

Ekpyrotic cosmologies  appeared  within  the  frame-
work of string theory, such as to allow a bounce intercon-
necting the  Big  Crunch  and  Big  Bang  singularities.  Sin-
gularities correspond here to brane collisions in higher-di-
mensions [39-41]. This is thus a viable realization of the
matter cosmological bounce scenario.

V(ϕ)

The basic ingredients of the most straightforward ver-
sion of the ekpyrotic scenario coincide with those ones of
inflation, i.e., a scalar field rolling down a potential .
However,  as  opposed  to  inflation,  here  the  potential  is
steep and negative. This is a crucial feature that induces a
slower  contraction  than  inflation.  Indeed,  instead  of  an
exponentially  growing  scale  factor  and  a  corresponding
almost constant  Hubble radius,  which set  a  quasi  de Sit-
ter  geometry,  in  this  scenario  the  scale  factor  is  almost
constant, and  the  Hubble  radius  rapidly  shrinks,  a  situ-
ation  that  corresponds  to  an  approximately  flat  space-
time.

The  ekpyrotic  potential  is  generically  composed  by
three parts:

1. a  steep  and  negative  part,  down  which  the  poten-
tial  rolls  with sizable  kinetic  energy,  providing a  scaling
solution  with  attractor.  Over  this  phase,  the  large-scale
density fluctuations are generated once the modes of  the
perturbed  field  exit  the  horizon.  The  so-called  fast-roll
conditions hold, namely

ϵ ≡ 1
MPl

(
V

V,ϕ

)2

<< 1 , η ≡ 1−
V,ϕϕV

V2
,ϕ

<< 1 . (23)

Usually,  an  approximated  potential  that  satisfies  these
conditions is

V(ϕ) ≃ −V0 exp

−√
2
k
ϕ

MPl

 , (24)

k << 1in  which k is  a  real  parameter  that  satisfies .  The
scaling behavior then ceases as soon as (23) are no-longer
valid;

2. to avoid that a large negative vacuum energy is left,
at the end of the ekpyrotic phase one usually assumes that
the  potential  has  a  minimum,  thus  rising  it  back  up  to
positive values;

3.  a  further  part  is  left  unconstrained  by  the  specific
features of the ekpyrotic scenario.

On a Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime, specified in comoving coordinates by

ds2 = −dt2+a2dx ·dx , (25)
a = a(t)with  scale  factor,  the  first  Friedmann  equation

and the evolution of the scalar field read, respectively,

3H2 M2
Pl=

1
2
ϕ̇2+V(ϕ) , (26)

ϕ̈+3Hϕ̇=−V,ϕ . (27)
Specifying  the  potential  as  in  (24),  a  scaling  solution  is
found:

a(t) ∼ (−t)k , H =
k
t

; (28)

ϕ(t) =
√

2k MPl ln

−
√

V0

M2
Pl k(1−3k)

t

 . (29)

k << 1At , the scalar field entails large values of both the
kinetic  and  the  potential  energy  term.  Nonetheless,  the
resulting total energy density is small, since the two con-
tributions almost  cancel.  Furthermore,  the  scaling  solu-
tion  is  an  attractor  and  retains  the  equation  of  state  of  a
very stiff fluid, with

w = p/ρ = 2/(3k)−1 >> 1 . (30)

ρϕ ∼ a−2/k k << 1

∼a−2 ∼a−3

∼a−4 ∼a−6

This  is  a  very  remarkable  property,  as  it  entails  that
, which for  implies a more relevant blue-

shift than any other  contribution to  the  Friedmann equa-
tion,  either  curvature  ( ),  or  matter  ( ), or  radi-
ation  ( ),  or  anisotropy  ( ).  Thus,  this  term  will
be predominant  with  respect  to  anisotropies,  while  ap-
proaching the bounce.

4    One-loop corrections

Because non-dynamical  torsion  provides  an  interac-
tion  term,  we  may  reconstruct  at  one-loop  the  quantum
effective action of the matter part of the theory. For sim-
plicity, to calculate the these terms, we assume the back-
ground  to  be  FLRW,  which  in  conformal  coordinates
reads

ds2 = a2(−dη2+dx ·dx) , (31)
a = a(η) ηwith  scale factor and  conformal time.

The four-fermion vertex is

V4 = −ı ξκγµγ5⊗γµγ5. (32)

The  massless  Feynman  propagator  —  for  a  detailed

Chinese Physics C    Vol. 44, No. 10 (2020) 105101

105101-5



x̃ ıS F(x, x̃)

analysis  involving  massive  fermions,  we  refer  to
Refs.  [22, 42]  — in position space between the points x
and  is denoted as , and reads

ıS F(x, x̃) = (aã)−
D−1

2
Γ(D/2−1)

4πD/2 ıγa∂a
1

∆xD−2
++ (x, x̃)

, (33)

ã = a(η̃)having denoted , and
∆xD−2
++ (x, x̃) = (∥x− x̃∥2− |η− η̃|2)D−2 , (34)

x = {η, x} x̃ = {η̃, x̃}
in  which  the  two  spacetime  points  are  labelled  with

 and . Eq. (33) is anstraightforward res-
ult  to  be  calculated,  which  is  easier  than  the  estimate  of
the massless scalar propagator, because of the conformal
nature of massless fermions in any dimension — see e.g.
[43, 44]. Assuming  fermion  matter  content  to  be  mass-
less  around  the  bounce  is  a  viable  approximation,  given
that  the critical  energy density at  bounce is  considerably
above the condensate phase of the Higgs. In this prelim-
inary study, we disregard to include Yukawa couplings of
fermionic species to the Higgs, leaving a refined analysis
to a forthcoming analysis [45].

ξ

α

γ

ξ > 0

ξ < 0

ξ

ξ

The sign of the coupling constant , expressed in Eq. (8)
in terms of the bare parameters of the ECHSK theory, 
and , individuates two phases at the cosmological level.
For ,  the  theory  is  in  a  Fermi  liquid  phase,  with  a
tree-level repulsive interaction that has been studied as a
source of dark energy [21], or to drive inflation [46]. In-
stead,  the  super-conductive  phase  corresponds  to  the
branch of values , for which a bouncing scenario has
been  taken  into  account  [10, 11, 13, 15, 16, 35]. There-
fore, we will proceed taking into account negative values
of  in what follows. In Sec. 5,  we come back to the is-
sue  of  the  quantum  stability  of  the  bounce,  and  analyze
the running of the  parameter around the bounce.

Lowest n-point contributions

Π
µν
2

We  start  considering  the  2-point  and  the  3-point  1-
loop  contributions  to  the  effective  action,  derived  from
the evaluation of the diagrams in Fig. 1a and Fig. 1b. For
the former one, derived from the Wick contraction of two
pairs  of  axial  currents,  one  has  to  calculate  the  tensorial
contribution , which is defined

Π
µν
2 = −Trx′ [γµγ5S F(x, x̃)γνγ5S F(x̃, x)] , (35)

S F(x, x̃)
Trx′

x′

S F(x, x̃) = γa S a(x, x̃)

where we have the tensorial structure is the one specified
in (32), the fermion propagator  is the one defined
in  (33),  denotes  the  trace  over  the  internal  spinorial
indices,  and  integration  over  spacetime  points .  The
massless propagator in (33) can be expanded according to

,  which  allows  to  factorize  the
tensorial structure from the integral, i.e.

Πmr
2 =−4(ηamηbr −ηrmηab+ηbmηar)

× (−ıξκ)2
∫ √−gd4xS a(x, x̃)S b(x̃, x) . (36)

This amounts to calculate two types of contribution:

Π̄ab
2 = −(ξκ)2

∫ √−gd4x S a(x, x̃)S b(x̃, x) , (37)

Π̄2 = −(ξκ)2
∫ √−gd4x S a(x, x̃)S a(x̃, x) . (38)

For the former, in generic D dimensions, we find

Π̄ab
2 =− (ξκ)2 a−(D−1)

∫
dD x̃

[Γ(D/2−1)]2

16πD

×
(
ı∂a 1
∆xD−2
++ (x, x̃)

) (
ı∂̃b 1
∆xD−2
++ (x̃, x)

)
=− (ξκ)2 a−(D−1)

∫
dD x̃

[Γ(D/2−1)]2

16πD

× 1
∆xD−2
++ (x̃, x)

∂a∂̃b 1
∆xD−2
++ (x, x̃)

.

D = 4For , the above formulas yield the expressions

Π̄ab
2 =− (ξκ)2 a−3

∫
d4 x̃

1
16π4

1
∆x2
++(x̃, x)

×∂a∂̃b 1
∆x2
++(x, x̃)

=
(ξκ)2

2π4a3

∫
d4 ζ

ζa ζb

ζ8

=− (ξκµ2)2

4π4a3

∫
d4Ωna nb=− (ξκµ2)2

16π2a3 η
ab, (39)

µ ∫
d4Ωna nb =

π2

2
ηab

ξ

µ2 ⩽ 1/(ξκ)

 representing the sliding scale, and having used the fact

that .  In  the  renormalization  group

(RG) flow of the coupling constant , we shall retain this
dependence, according to the hierarchy .

For the quantity in (38), the expression recasts as

 

Fig.  1.     a)  One-loop  correction  to  the  four-fermions  self-in-
teraction term; b) one loop correction to the six-points self-
interaction  term;  c)  one  loop  correction  to  the  eight-points
self-interaction term; d) one loop correction to the 2n-points
self-interaction term.
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Π̄2 =− (ξκ)2 a−(D−1)
∫

dD x̃
[Γ(D/2−1)]2

16πD

×
(
ı∂a

1
∆xD−2
++ (x, x̃)

) (
ı∂̃a 1
∆xD−2
++ (x̃, x)

)
=− (ξκ)2 a−(D−1)

∫
dD x̃

[Γ(D/2−1)]2

16πD

× 1
∆xD−2
++ (x̃, x)

∂a∂̃
a 1
∆xD−2
++ (x, x̃)

.

D = 4For , making use of

∂2 1
∆x2
++

= 4ıπ2 δ4(x− x̃) , (40)

we finally obtain

Π̄2 =
ı(ξκ)2

4π3 a3

∫
d4 x̃

1
∆x2
++(x̃, x)

δ4(x− x̃) = 0 . (41)

It is trivial to realize that the three-point contribution
vanishes,  because  of  the  properties  of  the  gamma
matrices, i.e.

Π
µνρ
3 = −Trx̃,x′ [γµγ5S F(x, x̃)γνγ5S F(x̃, x′)γνγ5S F(x′, x)] = 0 .

The four-point function is recovered from the expression

Π
µ1µ2µ3µ4

4 =−Trx2,x3,x4
[γµ1γ5S F(x1, x2)

×γµ2γ5S F(x2, x3)γµ3γ5S F(x3, x4)γµ4γ5S F(x4, x1)] .

The one-loop corrections  arising from the  two-point  and
four-point  functions,  as  depicted  in Fig.  1a and Fig.  1c
(and accounting for the symmetry degeneration factor of
the internal  lines),  leads  to  the  form of  the  effective  po-
tential

Veff =V0+ ξκ (ψγ5γaψ)2
(
1+

ξκµ2

π2a3

)
+

(ξκ)4 ln(ξκµ)
8π2 a3 [(ψγ5γaψ)2]2+O

(
(ξκµ2)6

)
. (42)

V0The constant  represents  a  shift  of  the energy density,
required to avoid negative values, which would be incon-
sistent with the Einstein equations. This is a short way to
ensure the  theoretical  consistency  of  this  approach.  Dif-
ferently, in  a  fully  general  approach  that  takes  into  ac-
count  also  the  inclusion  of  hypercharge  fields,  positive
energy densities  would  be  provided  by  the  energy  dens-
ity of radiation. It is also worth noticing that the vacuum
polarization  diagram  in Fig.  1b cannot  contribute  to  the
energy  density,  because  of  the  tensorial  structure  of  the
vertex in Eq. (32).

From the conservation of the chiral  current,  which is
implied by the assumption of having massless fermions, it
follows  that  in  (42),  each  axial  current  redshifts  as  the
volume  factor.  Isotropy  in  the  background  requires  the
spatial  component  to  be  vanishing.  This  can  be  verified
for  slowly  varying  backgrounds,  by  expressing  the  axial

current in terms of the scalar and pseudoscalar bilinears,
and the vector current, i.e., by using the Pauli-Fierz iden-
tity

(ψγ5γ
aψ)(ψγ5γaψ) = (ψψ)2− (ψγ5ψ)2+ (ψγIψ)(ψγIψ) .

The vector current can then be verified to posses only non-
vanishing temporal components — see e.g., Ref. [47] —
by contracting the fermion Feynman propagator with the
Dirac matrices,  and  extracting  the  dimensional  regular-
ized part of the coincident limit. Therefore, we can recast
the  quadratic  terms  entering  the  effective  potential  by
means of the expression

(ψγ5γaψ)2 = (ψ†γ5ψ)2 =
Q2

5

a6 , with Q5 ∼ q5µ
3 . (43)

These  arguments  immediately  lead  to  the  conclusion
that an Ekpyrotic quantum effect is generated at one-loop,
considering the  2-point  contribution  to  the  effective  ac-
tion. The bounce is not spoiled by this effect. With a nat-
ural  choice  of  the  conformal  factor  normalized  at  the
bounce, the  two-point  contribution  to  the  one-loop  cor-
rection retains  a  numerical  factor  subdominant  with  re-
spect  to  the  three-level  contribution.  At  the  same  time,
around the  bounce,  the  extra  term  (to  the  energy  poten-
tial) washes out anisotropies, owing to the dependence

ρ(2)
Ek =

ρ0

a9 with ρ0 =
(Q5 ξκµ)2

256π4 . (44)

a15
The four-point  amplitude  then  contributes  to  the  effect-
ive potential  with a dumping factor that  redshifts  as ,
and thus  enhances  the  Ekpyrotic  behavior.  We  can  fur-
ther verify that generic n-point contributions do not spoil
this effect.

2n-point contributions

2nCalculations can be carried out  for  the -point con-
tributions  to  the  effective  one-loop  action  (see Fig.  1d).
One  should  indeed  consider  all  the  possible  amplitudes
arising from

Π
µ1...µ2n
n =

−Trx1,...x2n−1
[γµ1γ5S F(x, x1) . . .γµ2nγ5S F(x2n−1, x)] . (45)

For large n, these terms behave as

Π
µ1...µ2n
n = (tensorial structure)× (ξκ)2n

a3 2π2 (2µ)2n(2n−1)!
,

2n
thus entailing the asymptotic contribution to the potential
at -order

V (2n)
eff ∼

(2ξκ)2n

a3 2π2(2µ)2n

[
(ψγ5γ

aψ)2
]n
.

Summing for the potential, we find
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Veff ∼ V0+

ξκ(ψγ5γ
aψ)2+

∑
n

(−1)n (ξκ)2n

a3 2π2(2µ)2(n−2)

[
(ψγ5γ

aψ)2
]n ∼

V0+ξκ(ψγ5γ
aψ)2+

µ4

a3 2π2

[
1+

(ξκ)2

2µ2 (ψγ5γaψ)2

]2 . (46)

The  potential  can  be  finally  recast  in  order  to  explicitly
the scale factor dependence:

Veff ∼V0+ ξκ
Q2

5

a6 +
µ4

a3 2π2[1+
(ξκ)2

2µ2

Q2
5

a6 ]2

∼V0+
ξκµ6

a6 +
µ4

a3 2π2

[
1+

(ξκµ2)2

2a6 q2
5

]2 .

It  follows  that  the  bounce  cannot  be  spoiled  in  this
scenario,  but  that  extra  contributions  arise  that  enhance
the  quantum  Ekpyrotic  mechanism.  With  respect  to  the
standard ekpyrotic  framework  involving  scalar  fields,  il-
lustrated  at  the  end  of  Sec.  3.2,  it  is  remarkable  that  the
equivalent  of  the  stiff  ekpyrotic  fluid  is  provided  in  this
picture  by  the  loop  corrections  to  the  dynamics  of  the
very same field that sources the bounce. A detailed com-
parison  is  then  achieved  by  recalling  that  for,  a  scalar
field with  potential  approximated  as  in  Eq.  (24),  the  en-
ergy density scales as

ρ
(ϕ)
Ek ∼

1

a
2
m

. (47)

m = 2/9

This behavior must be now confronted with our result in
Eq.  (44),  hence  providing  as  a  specific  choice  for  the
parameter of the effective potential in Eq. (24) the value

.  We  have  dubbed  this  behaviour  as  quantum
ekpyrotic, to emphasize its origin.

5    RG flow and stability

Consistency requirements with CMB observables im-
pose  that  the  bounce  must  take  place  at  critical  energies

ρc ≃ (ξκ)−2 ≃ M4
GUT

µ ≃ MGUT

ξ
2

not below the GUT scale. This sets the values of the crit-
ical energy density to be . Correspond-
ingly, we might  wonder that  the sliding scales could ap-
proach the value  at the bounce, and eventually
induce a change of sign of the the renormalized value of

.  Our  estimate  shows  that  this  is  not  the  case,  as  the
(predominant in the one-loop calculation) -point correc-
tion, namely

ξren. = ξ

(
1+

ξκµ2

π2 +O(ξκµ2)2
)
, (48)

O(1/10)

2n
ξ

2n

ξren.

maintains  the  sign  at  lowest  approximation.  The  two-
point  contribution  yields  indeed  only  an  order 
numerical suppression factor at the bounce. This conclu-
sion can be strengthened looking at the calculation of the

-point amplitude contribution. In general, the numeric-
al factor driving RG flow of  can be summing the coup-
ling  constant  dependence  of  the  vertex-operators  that
enter  the -point  function,  and  the  coefficients  of  the
fermion  Feynman  propagators.  In  the  calculations,  we
have already shown that while deriving the effective po-
tential, it is then easy to convince ourselves that the high-
er  order  coefficients  of  will  actually  decrease,  as
soon as more interaction vertices are accounted for in the
one-loop contribution to the effective action, and that the
sum can be obtained, without encountering a Landau pole
at the bounce.

6    Conclusions

We  have  shown  that  a quantum Ekpyrotic  scenario
emerges from the calculation of the one-loop quantum ef-
fective  action.  The  lowest-order  vertex  interaction  is
already sufficient to produce this remarkable effect. This
result has  been  achieved  assuming  chiral  symmetry  un-
broken  at  the  energy  density  scale,  at  which  the  bounce
takes place,  a  scenario  accomplished  in  several  unifica-
tion theories, and naturally envisaged in the non-condens-
ate  phase of  the Higgs.  An important  step in  testing this
result would  be  to  reproduce  this  analysis  involving  an-
isotropic metrics. The technical limitation in dealing with
quantum field  theory  on  Bianchi  backgrounds  forbids  to
pursue this goal at the present.

Appendix

The results we obtained on the stability of the bounce and the occurrence of a quantum ekpyrotic scenario hinge on some straightfor-
ward but lengthly calculations, the details of which are reported in this section.

4 1Appendix A: The -function at -loop

Π
µ1µ2µ3µ4

4To recover the four-point function  we shall calculate the trace over eight Dirac matrices. Projecting on the Clifford algebra in-
dices provides
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Π
m1 m3 m5 m7
4 =−4[ηm1m2ηm3m4ηm5m6ηm7m8 −ηm1m3ηm2m4ηm5m6ηm7m8 +ηm1m3ηm2m5ηm4m6ηm7m8 −ηm1m3ηm2m5ηm4m7ηm6m8 +ηm8m3ηm2m5ηm4m7ηm6m1

−ηm8m2ηm3m5ηm4m7ηm6m1 +ηm8m3ηm2m4ηm5m7ηm6m1 −ηm8m3ηm2m5ηm4m7ηm6m1 +ηm8m3ηm2m5ηm4m6ηm7m1

−ηm3m2ηm8m5ηm4m6ηm7m1 +ηm3m2ηm5m4ηm8m6ηm7m1 −ηm3m2ηm5m4ηm6m7ηm8m1 +ηm8m2ηm5m4ηm6m7ηm1m3

−ηm8m2ηm4m6ηm5m7ηm1m3 +ηm8m2ηm4m6ηm5m1ηm7m3 ]× (−ıξκ)4
∫ √−gd4 x2

∫ √−gd4 x3

∫ √−gd4 x4

× S m2 (x1, x2)S m4 (x2, x3)S m6 (x3, x4)S m8 (x4, x1) . (A1)

The multiple integral term reshuffles as

Im2 m4 m6 m8 :=
3∏

h=1

∫ √−gd4 xh+1

4∏
s=1

S m2s (xs, x|s+1|4 ) =
1

32π8 a3

3∏
h=1

∫
d4 xh+1

4∏
s=1

∂(s)
m2s

1
∆2
++(xs, x|s+1|4 )

, (A2)

| . . . |p ∂(s) m2s xswhere  denotes modulo p and  for the derivative with respect to the  component of the  coordinate. We further recast the in-
tegral through a series of passages:

3∏
h=1

∫
d4 xh+1

4∏
s=1

∂(s)
m2s

1
∆2
++(xs, x|s+1|4 )

=

∫
d4 x2 ∂

(1)
m2

1
(x1 − x2)2 ×

∫
d4 x3 ∂

(2)
m4

1
(x2 − x3)2

∫
d4 x4 ∂

(3)
m6

1
(x3 − x4)2 ∂

(4)
m8

1
(x4 − x1)2

=−24
∫

d4 x2
(x1 − x2)m2

(x1 − x2)4

∫
d4 x3

(x2 − x3)m4

(x2 − x3)4

∫
d4 x4

(x4 − x3)m6

(x4 − x3)4

×
(x4 − x1)m8

(x4 − x1)4 = 8π2ηm6m8

∫
d4 x3

∫
d4 x2

(x2 − x1)m2

(x2 − x1)4

(x2 − x3)m4

(x2 − x3)4

×
∫

d|y|
|y− (x3 − x1)|3

= 4π4ηm2m4ηm6m8

∫
d4z

(∫
d|y|
|y− z|3

)2

=2π6 ηm2m4ηm6m8

∫
d|z|
|z| = π

6 ηm2m4ηm6m8 ln
(

1
ξκµ2

)
,

(ξκ)−
1
2

4
where in the last hand-side we have used as ultraviolet regulator . Combining all the terms together, we find the contribution to the
effective potential at -point order.

2n 1Appendix B: The -function at -loop

2n Π
µ1 µ̇2n
n

4n

The -point  function  requires  the  knowledge  of  the
trace over  gamma matrices. In general, one can show that

Tr[γm1 . . .γm4n ] = 4[(−1)|P| ησ(m1)σ(m2) . . .ησ(m2n−1)σ(m2n)] ,

σwhere  denotes all the possible non-cyclic permutations and P de-
notes their order.

Im2 ···m4nThe integral  can be easily calculated at leading order

Im2 ···m4n :=
2n∏

h=2

∫ √−gd4 xh

2n∏
s=1

S m2s (xs, x|s+1|4 )

=
1

42nπ4n a3

2n∏
h=2

∫
d4 xh

2n∏
s=1

∂(s)
m2s

1
∆2
++(xs, x|s+1|4 )

=
1

a3 (4π2)2n µ2(n−2)(2n−1)!
. (B1)
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