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Abstract: This work presents the subtraction procedure and the Regge cut in the logarithmic Regge pole approach.
The subtraction mechanism leads to the same asymptotic behavior as previously obtained in the non-subtraction case.
The Regge cut, in contrast, introduces a clear role to the non-leading contributions for the asymptotic behavior of the
total cross-section. From these results, some simple parameterization is introduced to fit the experimental data for the
proton-proton  and  antiproton-proton  total  cross-section  above  some  minimum  value  up  to  the  cosmic-ray.  The  fit
parameters obtained are used to present predictions for the -parameter as well as to the elastic slope  at high
energies.
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1    Introduction

l > 0

The introduction of the complex angular momentum l
in the potential scattering gives rise to poles representing
bound  states  or  resonances  for  [1-3].  As  is  well-
known,  the  application  of  Regge's  original  ideas  to  the
high energy scattering of elementary particles results in a
very  successful  theory.  For  example,  the  broad  class  of
reactions that can be explained in a unified view led Don-
nachie and Landshoff to conjecture that the Regge theory
would be part of the truth of particle physics [4]. In other
words:  if  such  formalism  is  wrong,  then  it  is  probably
wrong due to some minor misunderstanding.

α(t)

j+2 j+4

The main entity in the Regge theory is the  traject-
ory, which is a phenomenological input within the form-
alism.  The  location  of  a  pole  corresponds  to  a  bound
state,  and the scattering amplitude behavior is  controlled
by this leading Regge pole. Then, a resonance with spin j
turns  necessary  to  include  the  excitation , ,···,
keeping fixed the other quantum numbers. These particles
lie  on  the  Regge  trajectory,  obtained  from  the  so-called
Chew-Frautschi  plot  [5, 6]. The  Regge  trajectory  is  as-
sumed  to  be  linear  for  light  mesons  and  baryons  [7],
whose  parameters  can  be  extracted  from  the  scattering
data as well as from the particle spectra. However, an im-
portant question without an answer is if these trajectories
are  linear  everywhere  or  only  at  the  asymptotic  regime.

α(t)
Moreover, the analyticity and unitarity properties require
that  be a non-linear complex-valued function [8, 9].

α(t)

The Pomeranchuk theorem asserts that the total cross-
section of the particle-particle and particle-antiparticle at
high energies should tend to the same limit [10]. This the-
orem creates the need for the exchange of a state, with the
quantum numbers  of  the  vacuum,  that  does  not  distin-
guish particles  from  antiparticles  in  the  asymptotic  en-
ergy regime. This is the role played by the leading Regge
pole,  the  so-called  pomeron,  in  the  particle  scattering  at
high  energies,  and  the  reason  supporting  its  existence  is
entirely phenomenological. The problem here is that 
for the  pomeron  can  only  be  obtained  from  the  experi-
mental  data,  as  it  has  no  particle  spectrum.  However,  if
one extrapolates the pomeron trajectory from negative to
positive values,  then one can predict  glueball  states with
the  integer  spin.  The  first  mention  to  the  pomeron  as  a
pair of gluons in a color singlet is attributed to Low and
Nussinov [11, 12]. Nonetheless, there is no experimental
evidence for the pomeron in present-day energies.

The odderon, the counterpart of the pomeron, can dis-
tinguish particles from antiparticles in the convenient en-
ergy range. The original idea of the odderon is attributed
to  Bouquet et  al. [13]  and  Joynson et  al. [14],  and  the
proposition  of  the  odderon  as  the  exchange  of  three
reggeized  gluons  is  attributed  to  Bartels  [15],  followed
closely by Refs. [16, 17], being a formal QCD prediction.
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In contrast, considering the t-dependence of the differen-
tial cross-section, the general belief is that the odderon is
responsible  for  the  pronounced  dip  in  the  proton-proton
scattering.  In  contrast,  it  fills  the  dip  in  the  case  of  the
proton-antiproton  differential  cross-section.  Differently
from the pomeron, the odderon has possible experiment-
al evidence [18], which is subject to discussions in the lit-
erature [19-21].

For  a  long  time,  the  Regge  theory  was  known  to  be
valid in  the  perturbation  theory.  Indeed,  the  Regge  tra-
jectory  can  also  be  obtained  from  the  Bethe-Salpeter
equation [22]. The BFKL equation likewise results in the
pomeron  [23, 24].  This  leading  Regge  pole  emerging  in
the perturbative QCD approach is called a hard pomeron,
and  it  is  used  to  describe  the  behavior  at  a  small x (the
Bjorken  scale)  in  deep  inelastic  scattering,  as  well  as  in
diffractive processes. The non-perturbative leading Regge
pole, in contra-position, is called a soft pomeron. Efforts
towards a unified view of both pomeron pictures are be-
ing conducted [25].

sα(0)−1 s→∞
ln2 s

α(0) > 1

However,  not  everything  is  a  flower  in  Regge's
garden.  The  Froissart-Martin  (FM)  bound,  for  example,
disagrees with the rise of the total cross-section given by
the  leading  Regge  pole  [26, 27]. The  Regge  theory  pre-
dicts  the  total  cross-section  asymptotically  behaving  as

,  as .  The  FM  bound  predicts,  however,  a
rising bounded by . The only way to ensure the valid-
ity  of  the  Regge  formalism in  front  of  the  FM bound  is
with  a  trajectory  of  less  than  1.  Nonetheless,  the  fitting
procedures  for  the  total  cross-section  always  yield

 [4, 28]. The FM bound is a crucial formal result
of  the  high-energy physics  and  cannot  be  disregarded in
any theoretical approach. The analyticity principle is also
not  satisfied  unless  the  trajectory  of  all  particles  lies  on
the Regge trajectory.

Recently, obeying the FM bound, a novel approach to
the  leading  Regge  pole  was  obtained  by  introducing  a
logarithmic representation for the leading Regge pole [29].
In  the  present  work,  the  logarithmic  Regge  approach  is
extended, introducing  the  subtraction  and  the  cut  prob-
lem in the logarithmic Regge framework.

s−1

The  subtraction  procedure,  in  the  present  formalism,
cannot  be  used  in  its pure  version, as  the  fast  decrease
caused  by  the  subtraction  renders the  approach  use-
less. However, a subtle approximation allows the use of a
less  restrictive  version  of  the  subtraction  mechanism.
This approach will  lead to  a  modified subtraction mech-
anism,  in  which  subtraction  and  non-subtraction  cases
generate the same functional form to the asymptotic scat-
tering amplitude. The cut,  in contrast,  seems to be a res-
ult of  the  sub-leading  contributions.  Then,  this  mechan-
ism may be particularly  important  to  describe  the  mixed
energy region, where the total cross-section, for example,
is controlled by the pomeron and odderon exchange.

25.0

ρ(s)

Using  naive  parameterizations  for  the  proton-proton
and proton-antiproton total cross-section, it is possible to
understand the role of the pomeron at high energies with-
in  the  logarithmic  Regge  approach.  As  obtained  in  [29],
the double pomeron picture is favored for energies above
1.0 TeV. In contrast,  as shall  be seen, starting the fitting
procedures  by  taking  into  account  energies  above 
GeV, the pomeron assumes values larger than 2, suggest-
ing  the  saturation  of  the  Froissart-Martin  bound.  This
problem can be solved using the recent TOTEM measure-
ment of  [18].

ρ(s)

ρ(s)

ρ(s)
ρ(s) = ρ

Applying  the  derivative  dispersion  relation,  the  real
part  of  the  elastic  scattering  amplitude  is  obtained.  The
parameters  are  obtained  from  the  fitting  procedures  and
predictions for the -parameter are presented.  Assum-
ing  a  null  subtraction  constant  (which  interferes  only  in
the  low  energy  experimental  data),  the  curves  suggest  a
double-pomeron exchange to reproduce the  obtained
in the TOTEM Collaboration. Then, using this constraint,
the double-pomeron trajectory is maintained, obtaining a
general description of the total  cross-section obeying the
FM  bound,  and  the  correct  prediction  for  the -para-
meter at high energies. Hereafter, .

ρ

The paper is organized as follows. Section 2 presents
the  experimental  data  set  and  the  fitting  procedure.  In
Section 3,  the main results  of  [29] are presented and the
subtracted  case  and  the  Regge  cut  case  are  developed.
Section  4  presents  a  brief  discussion on the -parameter
as  well  as  predictions  for  the  slope  of  the  differential
cross-section. The critical remarks are the subject of Sec-
tion 5.

2    Experimental data and fitting procedures

pp
pp̄ σ

pp
tot (s)

σ
pp̄
tot (s)

The main quantity in the forward elastic scattering is
the total cross-section, connected with the imaginary part
of  the  forward  elastic  scattering  amplitude  through  the
optical  theorem.  Bearing  this  in  mind,  we  consider  here
the experimental data for the proton-proton ( ) and pro-
ton-antiproton  ( )  total  cross-sections,  and

. As usual, t is the squared momentum transfer and
s is the squared energy, both in the center-of-mass system.

pp pp̄

s→∞
√

s ⩾ 25.0

σ
pp
tot (s) σ

pp̄
tot (s)

These  and  experimental data are used to form
a joint data set, as the Pomeranchuk theorem asserts that
they tend to the same limit if . This behavior, pre-
dicted to occur only at the asymptotic regime, seems yet
to be started from energies above  GeV. Figure 1
shows the  experimental  data  used  in  the  fitting  proced-
ures for  and for .

pp

pp̄

The goal  of  treating  both  data  sets  as  one  resides  on
the possibility  that  the  absence of  experimental  data,
within some energy range, can be compensated by the ex-
istence  of  data  in  this  range,  and  vice-versa.
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Moreover, there is no data selection in any set considered.
The  following  experimental  data  set  is  used  throughout
this work.

σ
pp
tot (s) σ

pp̄
tot (s)

√
s = 1.0

● The SET 1 is  formed by the experimental  data  for
 and  above  TeV up to the cosmic-

ray data.
σ

pp
tot (s)

σ
pp̄
tot (s)

√
s = 1.0

●  The  SET  2  uses  the  experimental  data  for 
and  above  TeV,  excluding  the  cosmic-
ray experimental data.

σ
pp
tot (s)

σ
pp̄
tot (s)

√
sc

●  The  SET  3  contains  experimental  data  for 
and  above  GeV up to the cosmic-ray data.

●  The  SET 4  excludes  the  cosmic-ray  data  from the
SET 3. √

sc

√
sc = 25.0

ln ln(s/sc)√
sc √

sc = 15.0

√
s ⩾
√

esc

The  energy  cut ,  corresponds  to  the  energy  for
which  the  total  cross-section  achieves  its  minimum
value [32]. For the SET 1 and 2,  GeV is used.
However,  as  shall  be  seen,  the  emergence  of  a  term

 in the logarithmic Regge cut implies a change
in  to  avoid  the  emergence  of  negative  or  complex
values.  Then,  for  the  SET  3  and  4,  one  uses 
GeV,  which  is  a  consequence  of  the  constraint

, where e is the Napier's constant.

ρ

ρ pp p̄p
√

s = 25.0

ρ

pp p̄p

Using the derivative dispersion relations, the real part
of  the  forward  elastic  scattering  amplitude  is  obtained.
Then,  it  is  possible  to  present  the  predictions  for  the -
parameter  based  on  the  fitting  results.  We  use  only  the
experimental data for  (  and ) above  GeV.
It  is  important  to  stress  that  these  experimental  values
were not used in the fitting procedures, i.e., they are used
only  as  a  background  to  show the  predictions  for  the -
parameter.  Predictions  for  the  slope  of  the  diffe-
rential  cross-section  are  also  shown,  considering  some
energies of interest. Moreover, a fitting procedure for the
slope  using  the  and  experimental  data  above  1.0
TeV is performed.

All experimental data were collected from the Particle

σ
pp
tot (s)

√
s = 2.76

σtot(s)
σ

pp
tot (s) σ

pp̄
tot (s) ρ

Data  Group [30].  Moreover,  at  TeV is
from [31]. Hereafter, we use only  to refer to both

 and  (the same for ).

3    Logarithmic leading Regge pole

s→∞

In the Regge theory, the scattering amplitude is written
as an analytic function of the angular momentum J. This
representation  is  formulated  in  the  high  energy  limit

 and associates the asymptotic behavior of the sca-
ttering amplitude in the s-channel to the exchange of one-
particle or more, represented in the t-channel by the lead-
ing Regge poles. The scattering amplitude is written as

A(s, t) = ReA(s, t)+ iImA(s, t), (1)

A(s, t) ≈ ImA(s, t)

and  we  also  assume  that  behavior  of  such  a  function,  at
very  high  energies,  is  given  only  by  the  absorptive  part

.  As  is  well-known,  in  the  usual  Regge
pole  formalism,  the  asymptotic  scattering  amplitude  is
written as

A(s, t)→ (η+ e−iπα(t))β(t)(s/sc)α(t), s→∞, (2)
η = ±1

s↔ t
√

sc β(t)
where  is  the  signature  related  with  the  crossing
symmetry ,  some critical energy, and  is the
residue function of  the pole  depending only on t.  In  this
formalism, s and t are treated  as  complex-valued  func-
tions. Using (2), we attain the asymptotic form of the dif-
ferential cross-section

dσ
dt
≈ (s/sc)2α(t), (3)

sσtot(s) = ImA(s, t) ≈
A(s, t)
and  adopting  the  normalization 

, one has

σtot(s) ≈ (s/sc)α(0)−1. (4)
The  mathematical  disagreement  between  (4)  and  the

FM bound is given below

σtot(s) ⩽ c ln2(s/sc), (5)
1 < α(0)

(s/sc)α(t)

lnk(s/sc) α(0) = 1

k ⩽ 2

where c is  some  real  constant,  inevitable  for .
However,  it  is  important  to  stress  that  the  Regge  theory
predicts both a leading pole behaving as  as well
as sub-leading terms behaving as . If  in
(4),  only  the  logarithmic  terms  survive,  being  controlled
by the FM bound, which means . Therefore, the pre-
cise knowledge of the leading pole functional form in the
Regge approach is subject to experimental evidence.

0 ⩽ cosθ ⩽ 1 |t| << s

However,  the  Regge  theory  and  the  FM  bound  can
agree  with  each  other  if  a  constraint  is  imposed  on  the
scattering angle as well as a mathematical approximation
on the  cosine  series  [29]. The scattering angle  is  restric-
ted to the range  for .  In this  case,  the
s-channel has the following approximation, valid near the
forward  direction,  for  the  cosine  of  the  scattering  angle
[29]

 

pp pp̄
√

s ⩾ 25.0
Fig. 1.    Experimental data for  and  total cross-sections

above  GeV  up  to  the  cosmic-ray.  Experimental
data are adopted from [30, 31].
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cos(θ) = 1+
2t
s
≲ ln

(
1+
√

e
(
1+

2t
s

))
, (6)

s > 4m2

|cosθ| ⩽ 1
s↔ t s→∞

where physical t is negative, , and m is the particle
mass. Importantly, in the s-channel, fixed t represents the
squared momentum transfer, and s is the squared energy.
Moreover, ,  making  it  necessary  to  use  the
crossing property  in the high energy limit .

The  approximate  representation  (6)  can  be  obtained
by noting that the usual cosine series can be written as

cos(x) = 1−
∞∑

n=1

(−1)n−1

(2n)!
x2n, (7)

n ∈ N

where the sum in the r.h.s enclose the information about
the energy  and  momentum  transfer.  Observing  the  fol-
lowing inequalities holds for 

(2n)2n+ 1
2 ⩾ nn+ 1

2 ⩾ nn ⩾ n. (8)

Then, the  factorial  number  in  (7)  can  be  circumven-
ted using the Stirling's approximation

(2n)! ≈ (2n)2n+ 1
2 e−2n

√
2π. (9)

Then,

cos(x) = 1−
∞∑

n=1

(−1)n−1

(2n)!
x2n ≈ 1−

∞∑
n=1

(−1)n−1d2n

(2n)2n+ 1
2

√
2π

x2n, (10)

To reduce  the  series  on  the  r.h.s.  of  (7)  into  logar-
ithmic series,  using  (8),  we  can  always  find  a  real  num-
ber a, satisfying

d2n

√
2π(2n)2n+ 1

2

⩽
a2n

n
. (11)

a = e = 2.71828 · · ·

Naturally, the  result  (11),  when  replaced  in  the  con-
venient  series,  possibly  implies  a  slower  convergence
than the original cosine series, near the forward direction.
Moreover, the choice of a is not unique. For example, the
above inequality  holds  for ,  where e is
the Napier's number.

Using  the  results  (9)  and  (11),  the  series  on  r.h.s.  of
(7) can be exchanged by the approximation

cos(x) ≲ 1−
∞∑

n=1

(−1)n−1

n
[(ax)2]n = 1−

∞∑
n=1

(−1)n−1

n
[(y)]n,

(12)
y ⩾ 0with the condition . Using the last result, one finally

obtains

1−
∞∑

n=1

(−1)n−1

n
[(y)]n = ln

(
e

1+ y

)
. (13)

To ensure the first-order approximation, one uses

y = e−
[
1+
√

e
(
1+

2t
s

)]
, (14)

√
e y ⩾ 0where  the  factor  arises  from the  fact  that . Ob-

t = 0 cosθ = 1
cosθ ≈ 0.97

serving that,  for ,  one has , and the approx-
imation performed furnish .

s↔ t (s→∞

Using the asymptotic properties of the Legendre poly-
nomial,  taking  into  account  the  approximation  (6),  and
the crossing , one writes  and fixed t)

Pl(s)→ lnl(s/sc). (15)
Indeed,  the  above  result  can  be  used  to  write  the

asymptotic  scattering  amplitude  as  a  logarithmic  leading
Regge pole

A(s, t)→ lnα(t)(s/sc), (16)
respecting the FM bound.

The very  successful  model  of  Donnachie  and  Land-
shoff  [4],  earlier  proposed  by  Badatya  and  Patnaik  [28],
describes the  hadronic  exchanges  remarkably  well,  as-
suming a simple Regge pole

A(s, t) =C(t)s1.08+0.25t, (17)
C(t)
σtot(s)

where  is a constant depending only on t. The corres-
ponding  of such parameterization is written using
the optical theorem as

σtot(s) =C(0)s0.08, (18)

σtot(s) ∼ ln(s/sc)

saturating the FM bound. This Regge pole corresponds to
the  one-pole  exchange,  while  the  double-pole  exchange
leads to . The intercept of the Regge pole
in this model is defined as a linear function

α(t) = α(0)+α′t, (19)
α(0) = αP = 1.08

α′ = 0.25 −2
where  the  intercept  takes  the  value  and
the slope  GeV .

αP ≈ 1.05 ∼
1.08

αP ≈ 1.4 ∼ 1.5

F2(x,Q2)
Q2

In the language of physics, this intercept corresponds
to a soft pomeron - low momentum transfer - 

. In contrast, the hard pomeron, predicted to mediate
diffractive  processes  -  large  momentum  transfer  -  has  a
value .  This  hard  pomeron  emerges  due  to
the use of the Regge formalism as an analogy to explain
the  structure-function  in  terms  of  the  Bjorken
scale x and the photon virtuality .

≳ 1

σtot ≈ ln2(s/sc)

Note  that  both,  the  one-pomeron  exchange  in  the
Donnachie  and  Landshoff  model  or  the  double-pomeron
exchange in  the  logarithmic  Regge  pole,  lead  to  inter-
cepts  [4, 29].  However,  the  one-pomeron  exchange
with an intercept slightly above 1 violates the FM bound,
while  for  the  double-pomeron  exchange,  this  violation
only  occurs  for  an  intercept  above  2.  If  the  intercept  is
equal  2,  then  the  triple-pomeron  exchange  is  favorable,

. Neither the soft nor the hard pomeron has
been discovered to date.

3.1    Non-subtraction case

In  [29],  one  considers  only  the  non-subtraction  case.
Then, using the optical theorem one has a simple relation
for the asymptotic total cross-section
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σtot(s)→ lnαP (s/sc). (20)
cos(θ)

αP ⩽ 2
αP

ρ

In  the  specified  range  for ,  it  respects  the  FM
bound if , providing a physical relation between the
pomeron  intercept, ,  and  the  saturation  of  this  bound.
The soft pomeron, if it exists, is the particle allowing the
maximum growth  of  the  total  cross-section,  obeying  the
FM bound. As shall be seen, the phenomenology associ-
ated with the -parameter is crucial to obtain the correct
pomeron intercept.

Using  a  simple  parameterization  for  the  total  cross-
section

σtot(s) = β lnαP (s/sc), (21)
β αPwhere  and  are free fitting parameters, we can attain

the  pomeron  intercept.  Using  the  SET  1,  we  obtain  the
values for the fitting parameters shown in the first line of
the Table 1. Fig. 2(a) shows the curve obtained from the
fitting  procedure  using  (21).  The  intercept  agrees  with  a
double-pole  pomeron exchange.  The fitting results  using
the  SET  2  are  shown  in  the  second  line  of  the Table  1.
From the statistical point of view, the absence of the cos-
mic-ray  data  in  the  SET  2  practically  does  not  alter  the
results.

3.2    Subtraction case

The  total  cross-section  with  one  subtraction  can  be
written  using  the  following  normalization  of  the  optical
theorem

sσtot(s) = ImA(s). (22)
This normalization implies in the logarithmic leading

Regge pole

σtot(s) ≈ lnαP (s/sc)
s

. (23)

αP
αP→ 2

αP

First  of  all,  we note that  to tame the fast  decrease of
the total cross-section entailed by the subtraction, it is ne-
cessary to have a  far above from the expected satura-
tion  of  the  FM  bound, .  Indeed,  to  give  some
physical  meaning  for  is now a  difficult  task.  The  ef-
fect of using s in the above result can be observed by ad-
opting the parameterization given below

σtot(s) = β
lnαP (s/sc)

s
. (24)

The fitting  results  obtained  using  the  parameteriza-
tion (24) to the SET 1 and 2 are shown in Table 2. Natur-
ally, the subtracted case cannot be used as a realistic para-

σtot(s)meterization  to  describe  the . Fig.  2(b) shows  the
curve obtained from the fitting procedure using (24).

δ

However, if we release the subtraction mechanism by
introducing  the - index  as  a  measurement  of  the  devi-
ation of  the non-subtraction to the subtraction case,  then
one writes the parameterization

σtot(s) = β
lnαP (s/sc)

sδ
. (25)

δ

δ

Using the SET 1 and 2,  we obtain very small  values
for the -index (near zero). In Table 3 displays the fitting
parameters. The -index introduces an error in the fitting
parameters  higher  than  the  non-subtraction  case.
However, the  central  value  of  each parameter  is  practic-
ally the same. The fitting result is shown in Fig. 3(a).

 

Fig. 2.    In both panels, the solid line depicts SET 1, and the
dashed line depicts SET 2. In panel (a), we use the paramet-
erization  (21).  In  panel  (b),  the  parameterization  used  is
given by (24). Experimental data are adopted from [30, 31].

√
sc = 25.0

Table  1.    Parameters  obtained  using  (21)  in  fitting  procedures  for
SET 1 and 2, taking  GeV.

SET αP β/mb χ2/nd f

1 ±1.05 0.05 ±7.54 0.92 1.26

2 ±1.04 0.05 ±7.72 0.98 1.31

√
sc = 25.0

Table 2.    Fitting parameters obtained using (24) in fitting procedure
to SET 1 and 2, taking  GeV.

SET αP β/mb χ2/nd f

1 ±11.02 0.09 ×10−5 ±4.9×10−61.99 5.14

2 ±10.99 0.10 ×10−5 ±5.7×10−62.15 5.89
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δTo circumvent the need for the use of the -index, we
introduce the approximation [29]

1
(s/sc)δ

≈ 1
a(lnϵ(s/sc))

, (26)

0 < sc ⩽ s 0 ⩽ ϵ ⩽ δ ∈ R
which is a consequence of the fact that the inequality giv-
en below holds for  and 

lnϵ(s/sc) ⩽ (s/sc)δ⇒ 1
(s/sc)δ

⩽
1

lnϵ(s/sc)
. (27)

0 < a ∈ RIn  particular,  for  some ,  the  approximation
(26) can be used, resulting in the total cross-section

σtot(s) ≈ β′ lnα′P (s/sc), (28)

α′P = αP− ϵ β′ = c/awhere  and .  The  choice  of a is  not

β′

unique,  and  in  general,  its  value  depends  on  the  energy
range,  where  the  experimental  data  are  being  analyzed.
However,  in  the  fitting  procedure,  it  is  absorbed  by .
Therefore, the expression (28) corresponds to the subtrac-
tion  case,  and  it  is  exactly  equal  to  the  non-subtraction
case given by (21).

3.3    The cut case

As is well-known, the singularities play a fundament-
al role in the determination of the divergences of the par-
tial-wave amplitude. Neglecting the signature of the par-
tial-wave amplitude, one may express the singularities as

Al(t) ∝
∫ ∞

z
discA(s, t)Ql(z′)dz′, (29)

Ql(z′)
discA(s, t)

discA(s, t)
Pαc(t)(z) αc(t)

where  is the Legendre function of the second kind,
and  is  the  discontinuity  across  the l-plane cut.
The easy way to obtain singularities from (29) is to asso-
ciate the  with the Legendre function of the first
kind, , where  is the cut. Then, in the simplest
case,

discA(s, t) ∝ Pαc(t)(z). (30)

In this picture, we use the properties of the Legendre
functions [33]∫ ∞

1
Pαc(t)(z)Ql(z)dz =

1
(l+1+αc(t))(l−αc(t))

, (31)

l = αc(t) l ∈ Rrevealing a pole for  ( ).
The Watson-Sommerfeld  representation  for  the  par-

tial-wave expansion in the complex angular plane can be
written as

A(s, t)s→∞ ∝ Rp(s, t)+Rc(s, t)+vanishing terms, (32)

Rp(s, t) Rc(s, t)where  and  denote the Regge pole and the
Regge cut  contributions  for  the  scattering  amplitude,  re-
spectively. The logarithmic Regge pole introduced in [29]
yields the first term in the r.h.s. of (32)

Rp(s, t) ≈Pα(t)(cos(θ))s>>|t|
s→∞ −→

Γ(2l+1)
Γ2(l+1)

lnα(t)(s/sc)

≈ lnα(t)(s/sc). (33)

If a branch point with a cut is encountered during the
deformation  of  the  contour  in  the  complex  momentum
angular plane, then it contributes to the asymptotic beha-
vior of the scattering amplitude. Then, one should take in-
to account the cut contribution. We write

Rc(s, t) ∝ −1
i

∫ αc(t)
dl(2l+1)discA(l, t)

Pl(−z)
sinπl

. (34)

As stated  above,  the  functional  form  of  the  discon-
tinuity is not known a priori, and there is no phenomeno-
logical approach for it. Therefore, the only way to go thro-
ugh this point is using an ansatz, as performed in Ref. [34].

 

Fig. 3.    In both panels, the solid line depicts SET 1, and the
dashed line depicts SET 2. In panel (a), we use the paramet-
erization  (25).  In  panel  (b),  the  parameterization  used  is
given by (39). Experimental data are adopted from [30, 31].

√
sc = 25.0

Table 3.    Fitting parameters obtained using (25) in fitting procedure
to SET 1 and 2, taking  GeV.

SET αP β/mb δ χ2/nd f

1 ±1.05 0.82 ±7.55 8.07 ±0.00 0.08 1.29

2 ±1.04 1.07 ±7.72 10.70 ±0.00 0.11 1.77
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ImPl(z) = −Pl(−z) sinπl z < −1
discA

(l, t) = (αc(t)− l)1+β(t)

Using the property , ,  in
the  logarithmic  Regge  approach,  one  adopts 

, obtaining the approximation

Rc(s, t) ≈ − lnαc(t)(s/sc)(ln ln(s/sc))−(2+β(t)), (35)
−2 < β(t)where  is  a  function  of t only.  Considering  the

results (33) and (35), the asymptotic scattering amplitude
is written as

A(s, t) ≈ lnα(t)(s/sc)− lnαc(t)(s/sc)(ln ln(s/sc))−(2+β(t)). (36)

discA(l, t)
β(t) αc(t)

αc(t) β(t)
t = 0

Naturally,  the  above  result  is  strongly  dependent  on
the  form  of  and  there  is  no  information  about

. The Regge cut  is also an unknown function of
t.  We  suppose  here  that  and  are  real-valued
functions, and they assume finite values at .

σtot(s)
discA(l, t)

ln2(s/sc)
αc(0) = αc

It  is  important  to  stress  that ,  independently of
the  functional  form  of ,  must  obey  the  FM
bound. Then, the rise of (36) is controlled by . It
is not difficult to see that (hereafter, )

0 ⩽ 1− lnαc−αP (s/sc)(ln ln(s/sc))−(2+β(0)), (37)
s→∞implies that in the asymptotic regime 

αc−αP
2+β(0)

⩽ 0⇒ αc ⩽ αP, (38)

β(0) > −2 αc ⩽ αP

∼

for .  The  inequality  implies  the  Regge
cut  is  bounded by  the  Regge  pole.  According  to  general
belief, the  subleading  (secondary)  contributions  are  im-
portant below 1.0 TeV. Then, at  ISR energies,  the effect
of  secondary  and leading  contributions  are  mixed,  while
at  LHC  energies  the  leading  contribution  dominates.
Therefore, the Regge cut (36) may be used to describe the
experimental  data  behavior  from  the  minimum  value  of
the total cross-section up to  1.0 TeV, as the role of the
cut is now clear: it represents mixed contributions below
the logarithmic  Regge  pole  dominance  according  to  in-
equality (38).

To  take  into  account  the  Regge  pole  and  the  Regge
cut  contributions  for  the  total  cross-section,  we  use  the
simple parameterization

σtot(s) = β1 lnαP (s/sc)−β2 lnαc (s/sc)(ln ln(s/sc))−(2+β(0)),
(39)

to fit the SET 3 and 4. The fitting results are displayed in
Table  4.  The Fig.  3(b) shows  the  curve  obtained  for  the
parameterization (39).

It  is  important  to  stress  that  there is  no constraint  on
the fitting parameters.  Then, one allows the pomeron in-

s→∞
ρ

tercept to  assume  any  value  necessary  to  fit  the  experi-
mental data. The result, at first glance, shows a pomeron
intercept far above the saturation of the FM bound - a su-
percritical value. Then, a control mechanism must be im-
posed  to  tame  the  growth  of  the  total  cross-section  as

. This  control  mechanism,  as  shall  be  seen,  is  ob-
tained by looking at the -parameter experimental data.

ρ4    The -parameter and slope B(s,t)

As is well-known, the validity of the Cauchy theorem
is  crucial  for  the  convergence  of  the  integral  dispersion
relation.  This  kind  of  relationship  helps  obtain  the  real
part of the forward scattering amplitude from the imagin-
ary  part.  First  of  all,  one  writes  the  scattering  amplitude
as  the  sum  of  the  even  (+)  and  odd  (−)  amplitudes  as

A(s, t) = A+(s, t)±A−(s, t), (40)
A±(s, t) = ReA±(s, t)+ iImA±(s, t)

t = 0

where  are  the  crossing
even (+) and odd (-) amplitudes. The integral form of the
dispersion relations is a consequence of analyticity, unit-
arity, and crossing properties. In the non-subtraction case,
it is simply written as ( )

ReA+(s) =
2s
i

P
∫ ∞

smin

ds′
ImA+(s′)

s− s′
, (41)

where P is the principal value of the Cauchy integral. The
convergence  of  the  above  integral  can  be  ensured  using
the subtraction procedure, i.e., by rewriting the scattering
amplitude as

Ã(s) =
∣∣∣∣∣A(s)

s

∣∣∣∣∣ , (42)

which results in the subtraction term

ReÃ+(s) = K +
2s2

i
P
∫ ∞

smin

ds′
ImÃ+(s′)
s(s2− s′2)

, (43)

ReÃ−(s) =
2s2

i
P
∫ ∞

smin

ds′
ImÃ−(s′)
(s2− s′2)

, (44)

where K is the subtraction constant. Naturally, this meth-
od is  valid only for  a  finite  number of  subtractions [35].
However, the  integral  dispersion  relations  are  very  re-
strictive,  because  to  know the  value  of  the  real  part  to  a
specific value one should know the value of the imagin-
ary part in the whole plane. Then, despite its rigorous for-
mulation,  the  use  of  integral  dispersion  relations  is  of
little interest in the Regge theory.

In  contrast,  the  derivative  dispersion  relation  can  be
used  in  the  present  case  [36, 37]. These  derivative  rela-
tions  can  be  written  in  the  first-order  approximation  for
the odd and even amplitudes as [38]

ReA+(s, t)
s

=
K
s
+
π

2
d

dln s
ImA+(s)

s
, (45)

√
sc = 15.0

Table 4.    Fitting parameters  obtained by (39)  in  fitting procedure to
SET 3 and 4, taking  GeV.

SET β1 /mb αP β2 /mb αc β(0) χ2/nd f

3 ±0.01 0.01 ±3.22 0.43 ±−31.32 1.10 ±0.32 0.04 ±−1.86 0.02 2.91

4 ±0.01 0.01 ±3.24 0.50 ±−31.29 1.19 ±0.32 0.04 ±−1.86 0.02 3.36
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ReA−(s, t)
s

=
π

2

(
1+

d
dln s

)
ImA−(s)

s
. (46)

ρ

Considering (21) and (39), it is possible to obtain the
real part of the scattering amplitude in the subtraction as
well as in the Regge cut. Then, the real part of the scatter-
ing amplitude can be used to define the -parameter

ρ(s) =
ReA(s)
ImA(s)

. (47)

K = 0Without loss of generality, we set , as the influ-
ence of this  parameter is  restricted to the low energy re-
gion,  and  the  main  interest  here  is  to  understand  the
asymptotic  regime.  Then,  all  parameters  are  obtained
from the previous fits to the total cross-section.

ρ

ρ

√
s = 1.0

αP ≈ 1.05

Fig. 4 shows the predictions for the -parameter. The
results from the  logarithmic  Regge  pole  (21)  are  repres-
ented by the dotted line and by the dot-dashed line, SET 1
and 2, respectively. These curves represent the pure con-
tribution  arising  from  the  double  pomeron  exchange.
Therefore, these results are not able to reproduce the low
energy behavior of the -parameter. Using the parameter-
ization (39), solid and dashed lines, respectively, display
the Regge cut contribution obtained from the fitting pro-
cedures for SET 3 and 4. These predictions show behavi-
or in the high energy regime that is not present in experi-
mental data. There is a fast-rise introduced by the experi-
mental data below  TeV, which is not present in
the experimental  data above this energy,  because the fit-
tings  for  the  SET  1  and  2  show  a  pomeron  intercept

.

ρ√
s = 13.0

An  attempt  to  solve  this  problem  can  be  tried  using
the  recent  experimental  data  for  the -parameter  at

 TeV. These experimental data suggest a double
pomeron  intercept  taming  the  rise  of  the  total  cross-sec-
tion. Then,  considering  the  above  discussion,  the  con-

αP ⩽ 1
σtot(s)

χ2/nd f
σtot(s) s→∞

straint  can be  introduced to  reduce the  fast-rising
of  above 1.0 TeV, introduced by (39). The Table 5
shows the fitting parameters only for SET 3. Despite the
high  value  of ,  the  fitting  parameters  seem  to  be
able to reproduce the growth of  as .

σtot(s)

ρ

ρ
√

s = 13.0

The Fig.  5(a) shows  the  fitting  results  for  us-
ing  the  parameterization  (39)  under  the  double-pomeron
constraint. Fig. 5(b),  one shows the prediction for the -
parameter. Despite  this  naive  parameterization,  we  ob-
serve that the only way to reproduce the high energy be-
havior  of  at  TeV  is  assuming  a  double
pomeron exchange in the logarithmic Regge pole repres-
entation.

σtot(s)
ρ

A possible  understanding  here  is  that  the  fast  rise  of
 in the logarithmic Regge approach cannot be ana-

lyzed independently of the -parameter. In particular, the

 

Fig. 4.    The dot-dashed and dotted lines are obtained by ap-
plying  (21)  to  SET  1  and  2,  respectively.  The  solid  and
dashed lines  are  obtained  using  (39)  for  SET  3  and  4,  re-
spectively. Experimental data are adopted from [30, 31].

 

αP ⩽ 1 ρ

Fig. 5.     Experimental data are from SET 3 in panel (a),  and
the parameterization  is  given  by  (39)  with  pomeron  con-
straint . In panel (b), the prediction for the -paramet-
er is presented under the double-pomeron constraint.

√
sc = 15.0 αP ⩽ 1

Table 5.    Fitting parameters  obtained by (39)  in  fitting procedure to
SET 3, taking  GeV and with constraint .

β1 /mb αP β2 αc(0) β(0) χ2/nd f

±6.12 5.59 ±1.00 0.27 ±−30.96 3.29 ±−0.14 0.31 ±−1.92 0.04 4.36
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ρ
√

s = 13.0 value  at  TeV is  crucial  to  determine an up-
per  bound  to  the  pomeron  intercept.  It  must  be  stressed
that this is a feature of the Regge theory: the phenomeno-
logy.

dσ/dt

Another physical quantity that can be predicted from
the  fitting  procedures  performed  here  is  the  (forward)
slope  of  the  elastic  differential  cross-section ,
defined as

B(s, t→ 0) =
d
dt

(
ln

dσ
dt

)
t=0
. (48)

In  the present  approach,  using the simple asymptotic
parameterization  (21),  for  example,  one  obtains  for  the
forward case

B(s) = B0+2α′ ln(ln s/s0), (49)
√

s0√
sc s0

B0 = 19.9±0.3 −2 √
s0 = 7.0

α′ = 0.25 −2

B(s) = 20.0±0.3 −2 √
s = 13.0√

s = 13.0
B(s) = 20.36±0.19 −2

√
s = 1.8 B(s) = 16.98±0.25 −2

where  is  some initial  energy not  necessarily  related
with .  The value  can be  taken from some current
known experimental result for the slope, being used as in-
put to predict the slope at s. For example, using the TO-
TEM result  GeV  at  TeV [39]
and  GeV ,  we  have  the  prediction  for  the
elastic  slope  GeV  at  TeV.
As  is  well-known,  the  LHC  result  at  TeV  is

 GeV  [31],  in  accordance  with  the
value predicted  here.  In  contrast,  starting  from  the  TO-
TEM result, one cannot reproduce, for example, the unex-
pected value for the slope encountered by the E710 Col-
laboration  at  TeV,  GeV
[40].

√
s ⩾
√

es0 √
s = 13.0√

s ≈ 22
ρ √

s0 = 13.0 B(s) = 20.38
−2 √

s = 22.0

B(s) = 20.88 −2

The prediction  capability  of  (49)  is,  evidently,  lim-
ited  by  the  constraint . This  implies,  for  ex-
ample, that the next energy above the LHC at 
TeV can  predict  the  slope  at  TeV (likewise  for
the -parameter).  Therefore, using the LHC result as the
initial  value  TeV,  we  obtain 
GeV  at  TeV, indicating a very slow increase
for the slope. At the same energy, the slope from the usu-
al leading Regge pole is  GeV .

In contrast, if instead of (21), we use the parameteriz-
ation considering the logarithmic Regge cut (39), then for
the slope in the forward case,

B(s) = B0+3[(α′+α′c(0)) ln(ln s/s0)−β′(0) ln(ln(ln s/s0))].
(50)

ln(ln(ln s/s0))

s0
ln(ln(ln s/s0)) =−7.49×10−4

ln(ln(ln s/s0)) =
−1.54
β′(0) = 0

Evidently,  the  importance  of  the  factor 
in  the  r.h.s.  of  the  above  result  depends  strongly  on  the
values  of s and .  For  example,  from  the  E710  to  the
TOTEM  energy,  we  obtain ,
while  from  the  TOTEM  to  the  LHC, 

.  Therefore,  we  set,  for  the  sake  of  simplicity,
. Then, we express the slope as

B(s) ≈ B0+3(α′+α′c(0)) ln(ln s/s0). (51)

α′c(0)

B0 = 19.9±0.3 −2 √
s0 = 7.0

α′c(0) = 0.25 −2
√

s = 13.0 B(s) = 20.22±0.3 −2

α′c(0) = 0.25
−2 B(s) = 18.47±0.25 −2
√

s = 7.0

The  parameter  is unknown  and  strongly  influ-
ences  the  slope.  For  example,  using  the  TOTEM  result

 GeV  at  TeV  and  taking
 GeV ,  we  obtain  the  LHC  result  at

 TeV,  GeV .  Furthermore,
using  the  E710  experimental  result  and 
GeV ,  we  have  GeV  for the  TO-
TEM at  TeV.

α′c(0) = 0.50 −2
√

s = 13.0
B(s) = 20.38±0.3 −2
√

s = 1.8√
s = 7.0 B(s) = 19.22±0.25
−2 α′c(0) = 0.25
−2

However,  setting  GeV  and  starting
from the TOTEM energy, then for the LHC at 
TeV,  we  obtain  GeV .  Nonetheless,
using  the  E710  at  TeV  and  the  TOTEM  at

 TeV,  then  the  slope  is 
GeV .  The  last  result  is  better  than  using 
GeV , but still below the TOTEM result.

B0 α′c(0)
α′ = 0.25 −2 √

s0 = 15.0

pp pp̄

α′c(0) = 2.91±0.25 −2 B0 =−3.51±1.73
−2

In  contrast,  assuming  and  as  free  para-
meters, and setting  GeV  and  GeV,
we can fit  the  experimental  data  for  the  slope  above 1.0
TeV (  and ).  In  this  energy range,  the slope seems
to be a linear function of s, and therefore, we can use the
result  (51)  to  fit  these  experimental  data  [30].  Thus,  we
obtain  GeV  and 
GeV .

B(s) t = 0

t ≈ 0

[0.04,0.29] 2

t ∈ [0.012,0.2] 2

It is interesting to note that it is a very difficult task to
access the slope , since it is not extracted at . In
general,  the  slope  is  obtained  considering  very  small
ranges of , which implies Coulomb and Nuclear con-
tributions  to  the  scattering  amplitude.  For  example,  for
the  E710  Collaboration  [40],  the  interval  for t is

 GeV  and for the TOTEM Collaboration, one
has  GeV  [31].  Then,  these  experimental
values  may  carry  some  dependence  on  the  momentum
transfer.

5    Conclusions

σtot(s)

We obtain  the  leading  Regge  pole  with  one  subtrac-
tion as well as the Regge cut, both in the logarithmic rep-
resentation introduced previously in [29]. The fitting pro-
cedures  for  the  subtraction  case  led  to  unrealistic  results
to , i.e., to a decrease that is faster than the rise of
the experimental  data,  rendering  the  subtraction  a  prob-
lem in the logarithmic Regge pole.

δ

δ

By attempting  to  understand  this  problem,  we  intro-
duce  a  small  parameter,  the -index,  to  determine  the
strength of  subtraction  in  this  approach.  The  fitting  pro-
cedures  indicate  a -index  value  near  to  zero  (a  very
weak dependence on the subtraction). This result allowed
the use of a logarithmic representation for the subtraction.
Then,  the  subtraction  and  the  non-subtraction  cases  can
be described by the same logarithmic Regge pole.

The  fitting  procedures  considering  only  energies
above  1.0  TeV result  in  a  pomeron  intercept  compatible
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αP ≈ 1.04 ∼ 1.05with  the  double-pomeron  value, .  This
value corroborates the Double-Logarithmic contributions,
indicating  that  the  higher  accuracy  of  calculations,  the
lower  the  intercept,  resulting  in  the  best  value  given  by
the intercept close to 1 [41, 42].

αP
discA(l, t) = (αc(t)− l)1+β(t)

25.0 GeV ⩽√
s ⩽ 1.0 TeV

The Regge cut  in  the  original  Regge formalism does
not  have a  clear  role.  However,  in  the  present  approach,
the logarithmic  Regge  cut  may  represent  the  contribu-
tions coming from below the logarithmic Regge pole, ,
when  one  adopts .  Then,  it  can
be  used  to  explain  the  mixed  region  (

), where the odderon and the pomeron com-
pete as the leading contribution to the total cross-section.

pp pp̄

αP

Here, we  expect  that  logarithmic  Regge  cut  can  de-
scribe  the  total  cross-section  for  and ,  from  the
minimum  of  the  total  cross-section  up  to  1.0  TeV.
However,  assuming  the  parameters  coming  from  the
Regge  cut  can  act  as  free  fitting  parameters,  then  they
cause a supercritical value to the pomeron intercept, lead-
ing  to  the  saturation  of  the  FM bound.  Notwithstanding,
the dominance  of  the  pomeron  as  the  leading  contribu-
tion at LHC energy seems to be an experimental fact [43].
It is important to stress that the fitting procedures for SET
1  and  2,  using  the  parameterization  (21),  furnish
an  important  constraint  on  the  pomeron  intercept .
Moreover, the  experimental  data  at  the  cosmic-ray  ener-
gies seem to have little influence on the pomeron intercept.

ρ √
s = 13.0

αP ⩽ 1
σtot(s)

ρ√
s = 13.0

σtot(s) ρ√
s = 13.0

To solve this problem, it is necessary to use the exper-
imental data for the -parameter. In particular, one should
use the experimental result at  TeV. This value
seems to impose a double pomeron exchange, resulting in
an intercept .  When this experimental fact is used,
then  rises  below the  saturation  of  the  FM bound.
By all means, as stated in [18], the values for the -para-
meter  at  TeV excluded  all  the  models  classi-
fied and  published  by  COMPETE.  Therefore,  the  slow-
ing down of the  seems to be given by the -para-
meter at  TeV.

B(
√

s = 13.0 TeV) = 20.0±0.3 −2

B(
√

s = 13.0 TeV) = 20.36±0.19 −2

The slope of the differential cross-section can also be
predicted by the logarithmic Regge pole. Using the slope
obtained  by  the  TOTEM  Collaboration,  one  predicts

 GeV , which is in accord-
ance  with  the  result  obtained  by  the  LHC,

 GeV .

25.0 GeV ≲
√

s ≲ 1.0 TeV

A(l, t)

In  the  logarithmic  Regge  pole  approach  presented
here,  the  Regge  cut  seems  to  have  a  clear  role:  it  spans
the  mixed  region  ( ),  where  the
total  cross-section  can  be  described  by  the  odderon  and
pomeron  contributions.  However,  this  result  is  strongly
dependent on  the  discontinuities  of  the  scattering  amp-
litude. Unfortunately, there is no theoretical nor phenome-
nological  information  about  the  discontinuity  of .
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