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Abstract: A numerical study has indicated that there exists a relation between the quasinormal modes and the Davies
point for a black hole. In this paper, we analytically study this relation for charged Reissner-Nordström black holes in
asymptotically flat and de Sitter (dS) spacetimes in the eikonal limit, under which the quasinormal modes can be ob-
tained from the null geodesics using the angular velocity  and the Lyapunov exponent  of the photon sphere. Both
in  asymptotically  flat  and  dS  spacetimes,  we  observe  spiral-like  shapes  in  the  complex  quasinormal  mode  plane.
However, the starting point of the shapes does not coincide with the Davies point. Nevertheless, we find a new rela-
tion in which the Davies point exactly meets the maximum temperature T in the T-  and T-  planes. In a higher-di-
mensional asymptotically flat spacetime, although there is no spiral-like shape, such a relation still holds. Therefore,
we provide a new relation between black hole thermodynamics and dynamics in the eikonal limit. Applying this rela-
tion, we can test the thermodynamic property of a black hole using the quasinormal modes.
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1    Introduction

Recently,  the  direct  observation  of  gravitational
waves by the LIGO-Virgo collaboration marked the com-
ing of a new era of astronomical observation [1]. With the
data  of  gravitational  waves,  the  parameters  of  a  black
hole, such as the mass and spin, can be determined. It  is
expected that  with  improvement  of  the  detection  preci-
sion, further details of black holes and gravitational theor-
ies will be revealed.

It  is  widely known that  in the last  stage of  a  merged
black hole, the ringdown modes can be described well by
the quasinormal  modes  (QNMs).  These  modes  are  com-
plex numbers, and can be regarded as the perturbations of
a black hole in a given spacetime. To investigate the char-
acteristic  properties  of  a  black  hole  using  gravitational
waves,  one  first  needs  to  determine  what  is  directly
linked to the gravitational waves or QNMs. There are dif-
ferent approaches  for  calculating  QNMs,  aiming  to  re-
veal the characteristic properties of black holes [2-10].

Meanwhile,  after  the  discovery  of  the  four  laws [11-
14],  black  hole  thermodynamics  continues  to  be  one  of
the  most  interesting  subjects  in  black  hole  physics.  A
Schwarzschild  black  hole  has  only  one  thermodynamic
phase of  negative  heat  capacity,  indicating  that  the  isol-
ated black hole is thermodynamically unstable. However,
when the black hole obtains other hairs, such as the elec-
tric  charge  and  spin,  besides  the  negative  heat  phase,  a
phase  of  positive  heat  capacity  will  occur.  Across  these
two black hole phases, the sign of the heat capacity of the
black  hole  changes.  More  intriguingly,  the  heat  capacity
goes  to  infinity  at  the  joined  point  of  these  two  phases.
This behavior may indicate a phase transition of the black
hole system between the thermodynamically unstable and
stable  phases.  Davies  [15-17] found  that  this  second  or-
der  thermodynamic  phase  transition  only  takes  place  at
the singular point of the heat capacity.

Additionally, the  relation  between  the  phase  trans-
ition and QNMs has been studied [18-21]. Subsequently,
Jing and Pan [22] proposed a clear relation between them
stating  that  for  a  given  quantum  number  beyond  some
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certain critical value, the QNMs of a Reissner-Nordström
(RN) black  hole  take  on  a  spiral-like  shape  in  the  com-
plex  QNM  plane  when  the  Davies  point  is  approached.
Further, they found that both the real and imaginary parts
of the QNMs behave as oscillatory functions of the black
hole charge. However, Berti and Cardoso [23] argued that
this result is probably a numerical coincidence due to the
fact that it cannot be generalized to other black hole back-
grounds.  Whereas,  He et  al.  [24]  applied  the  study  to  a
charged Kaluza-Klein  black  hole  with  a  squashed  hori-
zon.  They  found  that  the  existence  of  the  spiral-like
shape, and its starting point was consistent with the Dav-
ies point within 8%, or even lower for some other cases.
These  results  imply  that  the  relation  between  black  hole
thermodynamics  and  dynamics  is  nontrivial.  Some other
relevant works can be found in Refs. [25-27]

Due to the complexity of  QNMs, only the numerical
result is available, and an analytical investigation method
for  the  relation  is  still  lacking.  According  to  the  light
ring/QNMs correspondence [28], the QNMs can be para-
metrized by  the  radius  of  the  photon  sphere  in  spheric-
ally symmetric spacetime, or the radius of the light ring in
stationary spacetime.  Moreover,  this  method  is  only  ef-
fective  in  the  eikonal  limit,  where  the  quantum numbers
must have  large  values.  It  is  interesting  that  this  condi-
tion naturally satisfies the requirement of Ref. [22] where
the  quantum  numbers  must  be  larger  than  some  critical
values. Thus, using this light ring/QNMs correspondence,
we can analytically check the relation given in Ref. [22],
which  is  the  main  purpose  of  this  paper.  Several  years
ago,  this  correspondence  was  also  applied  to  establish  a
universal  relation  between  the  QNMs  and  black  hole
lensing for asymptotically flat black holes with or without
spin [29, 30].

1/2

Moreover, we conducted a study that explored the re-
lation between the photon sphere (light ring) and the Van
der Waals-type phase transition [31] for a charged or ro-
tating black hole in anti-dS (AdS) spacetime [32, 33]. For
a  charged  AdS  black  hole,  non-monotonic  behaviors  of
the photon  sphere  radius  and  the  minimum impact  para-
meter when the pressure and temperature are below their
critical  values  were  found,  and  the  behaviors  disappear
when  the  parameters  exceed  their  critical  values  [32].
Therefore,  such  non-monotonic  behaviors  can  reflect  a
small/large  black  hole  phase  transition.  During  a
small/large black hole phase transition, the radius and the
minimum impact  parameter  of  the  photon  sphere  sud-
denly  change,  and  these  changes  can  serve  as  the  order
parameters  to  describe  the  small/large  black  hole  phase
transition. More interestingly, there exists a universal crit-
ical exponent of  for the changes of the radius and the
minimum impact parameter near the critical point, that is
also independent of the dimension of the spacetime [32].

Such a study was also generalized to a rotating Kerr-AdS
black  hole  [33]. In  addition,  another  new  issue  was  ex-
amined,  and  the  result  shows  that  the  temperature  and
pressure corresponding to the extremal points of the radi-
us  or  the  angular  momentum  of  the  light  rings  exactly
agree with that of the metastable curves from the thermo-
dynamic side. All studies confirm that there exists a rela-
tion  between  the  null  geodesics  and  small/large  black
hole phase transition in AdS spacetime. The correspond-
ence  of  the  phase  transition  and  the  time-like  geodesics
can also be found in Ref. [34].

As  the  angular  velocity  and  Lyapunov  exponent  of
the photon sphere respectively correspond to the real and
imaginary  parts  of  the  QNMs,  in  this  paper,  we  mainly
aim to explore the relation between the angular velocity,
Lyapunov  exponent,  and  the  Davies  phase  transition
point in a static and spherically symmetric spacetime. We
expect that our study on this relation could provide a pos-
sible way to test black hole thermodynamics with the ob-
servation of gravitational waves.

The  paper  is  organized  as  follows:  In  Sec.  2,  we
briefly review the null geodesics and photon sphere for a
black hole  in  a  static  and  spherically  symmetric  space-
time.  In  Sec.  3,  we  calculate  the  Davies  point  and  the
photon sphere  from the null  geodesics  for  a  four-dimen-
sional, charged RN black hole. Then, we analytically ob-
tain  the  angular  velocity  and  Lyapunov  exponent,  and
further  explore  the  relation  between  the  QNMs  and  the
Davies point, as proposed in Ref. [22]. Unfortunately, the
relation  does  not  exactly  hold.  However,  we  propose  a
new and exact relation between the Davies point and the
maximum of  the  temperature.  Following this,  we extend
the study to a higher dimensional spacetime in Sec. 4.  It
is surprising that the spiral-like shape does not appear in
the  higher  spacetime.  Nevertheless,  our  new  relation  is
still effective. In Sec. 5, we apply the study to a charged
RN  black  hole  in  dS  spacetime  and  obtain  some  novel
results. Finally, the conclusions are presented in Sec. 6.

2    Null geodesics and photon sphere

d(⩾ 4)In  a -dimensional, static,  and  spherically  sym-
metric  spacetime,  a  black  hole  can  be  described  by  the
following equation:

ds2 = − f (r)dt2+
1

f (r)
dr2+ r2dΩ2

(d−2), (1)

dΩ2
(d−2) (d−2)

S (d−2)

θi ∈ [0, π] (i = 1, · · · ,d−3) ϕ ∈ [0, 2π]
f (r)

where  is the line element on a unit -dimen-
sional  sphere .  The  usual  angular  coordinates  are

  and .  The  metric
function  depends on the radial coordinate r and oth-
er black hole parameters, such as the mass and charge.

Next,  the  motion  of  a  free  photon  in  a  black  hole
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θi =
π

2
i = 1, · · · ,d−3

background is examined. As the spacetime here is spher-
ically symmetric, without loss of generality, one can con-
sider  the  motion  limited  in  the  equatorial  hyperplane
(  for ).  Then,  the  Lagrangian  for  a
photon reads

2L = − f (r)ṫ2+ ṙ2/ f (r)+ r2ϕ̇2. (2)

pµ = ∂L∂ẋµ = gµν ẋν

The dot over a symbol denotes the ordinary differenti-
ation with respect to an affine parameter. With the help of
this  Lagrangian,  the  generalized  momentum  defined  by

 has the following form

pt = − f (r)ṫ ≡ −E, (3)

pϕ = r2ϕ̇ ≡ l, (4)

pr = ṙ/ f (r). (5)
∂t ∂ϕ

ϕ

For this spacetime, there are two killing fields  and .
Thus, there are two conservation constants E and l corres-
ponding to each geodesics, which are the energy and or-
bital angular momentum of the photon, respectively. The
t-motion and -motion can be easily obtained by solving
Eqs. (3) and (4),

ṫ =
E

f (r)
, (6)

ϕ̇ =
l

r2 . (7)

The Hamiltonian for this system reads

2H = 2(pµ ẋµ−L)

= − f (r)ṫ2+ ṙ2/ f (r)+ r2ϕ̇2

= −Eṫ+ lϕ̇+ ṙ2/ f (r) = 0. (8)

ϕUsing the t-motion and -motion, it is easy to obtain the
radial r-motion, which can be expressed in the following
form

ṙ2+Veff = 0, (9)
where the effective potential is

Veff =
l2

r2 f (r)−E2. (10)

ṙ2 >

Veff = 0

As 0, the photon can only appear at the region of neg-
ative  potential.  A  photon  coming  from  infinity  will  fall
into  the  black  hole  if  it  has  low  angular  momentum.
Meanwhile, for the larger angular momentum case, it will
be bounded back to infinity when it meets a turning point
determined by . Among these two cases, there ex-
ists a critical case in which the photon traveling from in-
finity plunges into a circular orbit and will orbit the black
hole in  a  closed  loop.  Nevertheless,  such  an  orbit  is  un-
stable.  Due  to  the  spherical  symmetry  of  the  spacetime,
such a circular orbit  is  known as the photon sphere.  The
conditions to determine this photon sphere are

Veff = 0,
∂Veff

∂r
= 0,

∂2Veff

∂r2 < 0. (11)

rps
lps

The first two conditions can determine the radius  and
the  critical  angular  momentum  of  the  photon  sphere,
while the  third  guarantees  that  the  photon  sphere  is  un-
stable.

rps

Substituting  the  effective  potential  (10)  into  the
second  condition,  we  obtain  the  equation  that  the  radius

 must satisfy

2 f (rps)− rps∂r f (rps) = 0. (12)

f (r) rpsFor  a  given  metric  function ,  we  can  obtain  by
solving  the  equation.  Then,  from  the  first  condition,  the
critical angular momentum can be obtained as

ups =
lps

E
=

r√
f (r)

∣∣∣∣∣
rps

. (13)

The third condition is also closely linked to the QNMs of
the black hole. Without loss of generality, we set E = 1.

l≫ 1 ωQ

Now,  we  consider  the  QNMs.  In  the  eikonal  limit
( ),  the  QNMs  can be  calculated  with  the  prop-
erty of the photon sphere [28, 35, 36]

ωQ = lΩ− i
(
n+

1
2

)
|λ|, (14)

Ω λ

where n and l are the number of the overtone and the an-
gular  momentum of  the  perturbation,  respectively.  Here,
we would like to emphasize that our calculation and dis-
cussion  in  this  paper  mainly  depend  on  this  relation,
hence our result is only accurate in the eikonal limit. The
other two quantities  and  are the angular velocity and
Lyapunov  exponent  of  the  photon  sphere,  respectively,
which can be parameterized by the null geodesics

Ω =
ϕ̇

ṫ

∣∣∣∣∣
rps

, λ =

√
−

V ′′eff
2ṫ2

∣∣∣∣∣
rps

. (15)

V ′′eff |rps
< 0Note that , and the term under the square root is

positive.  In  the  background  of  (1),  these  two  quantities
can be expressed as

Ω =

√
fps

rps
=

1
lps
,

λ =

√
fps(2 fps− r2

ps f ′′ps)

2r2
ps

, (16)

Ω λ
rps = 3M

lps = 3
√

3M Ω = 1/3
√

3M λ = 1/3
√

3M

where  we  have  used  (12).  For  a  given  metric  function,
one  can  easily  obtain  and .  Taking  a  Schwarzschild
black  hole  as  an  example,  we  have  and

, which gives  and .
Although this method is effective for large l, it is still ac-
curate for some cases with small l [10, 37].

Following  Refs.  [28, 38],  we  would  like  to  briefly
comment on the relation between the QNMs in the eikon-
al  limit  and  null  geodesics.  It  is  well  known  that  in  the
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Φl(r)

eikonal limit, the scalar, electromagnetic, and gravitation-
al perturbations in the background (1) have the same be-
havior, so we take the scalar perturbation as an example,
which  obeys  the  Klein-Gordon  equation.  By  employing
the method of the separation of variables,  the radial  par-
tial  wave  function  satisfies  the  Regge-Wheeler
equation

d2Φl

dr2
∗
−VlΦl = 0, (17)

r∗
−∞ +∞ Vl(r)

where  the  convenient  “tortoise ”  coordinate  ranges
from  to . The potential  reads

Vl(r) =
l(l+d−3)

r2 f (r)+
(d−2)(d−4)

4r2 f 2(r)

+
d−2

2r
f (r) f ′(r)−ω2, (18)

ω

E = h̄ω
l≫ 1

l(l+d−3) ≈ l2

where  is the frequency of the perturbation and can cor-
respond to the energy  of the perturbation particle.
In the eikonal  limit ,  the second and third terms on
the  right-hand  side  of  (18)  can  be  ignored,  and

; thus, the potential reduces to

Vl(r) =
l2

r2 f (r)−ω2. (19)

It is clear that these two potentials in (10) and (19) are the
same,  as  well  as  the  equation  of  motion.  Therefore,  it  is
reasonable  to  obtain  the  QNMs  following  the  null
geodesics method. It is worth noting that this method can-
not be extended to asymptotically AdS spacetime.

3    Four-dimensional  charged  Rreissner-
Nordström black holes

3.1    Thermodynamics and Davies point

The four-dimensional  charged  RN  black  hole  solu-
tion is given by equation (1) with the following function

f (r) = 1− 2M
r
+

Q2

r2 . (20)

f (r) = 0
The parameters M and Q are the mass and charge of

the  black  hole,  respectively.  Solving ,  the  outer
and inner  horizons  of  the  black  hole  can  be  easily  ob-
tained, which are located at

r± = M±
√

M2−Q2. (21)
The entropy  and  temperature  corresponding  to  the  event
horizon are

S = π(M+
√

M2−Q2)2, (22)

T =
M2−Q2+M

√
M2−Q2

2π(M+
√

M2−Q2)3
. (23)

The heat capacity at a fixed charge is

CQ = T
(

dS
dT

)
Q
=

2S (S −πQ2)
3πQ2−S

=
2π(M+

√
M2−Q2)2((M+

√
M2−Q2)2−Q2)

3Q2− (M+
√

M2−Q2)2
. (24)

CQ
CQ

CQ

We plot the heat capacity  in Fig. 1. It is clear that
when  the  charge  is  small,  is  negative  just  like  for  a
Schwarzschild black hole, indicating that the black hole is
thermodynamically  unstable.  Meanwhile,  for  the  large
charge  case,  becomes  positive  and  the  black  hole  is
thermodynamically  stable.  Among  these  two  cases,  the
heat capacity diverges at

QD =

√
3

2
M ≈ 0.8660M, (25)

which is called the Davies point. It was shown by Davies
[15-17] that this divergence point measures a phase trans-
ition  of  the  black  hole  between  the  thermodynamically
unstable and stable phases.

3.2    Quasinormal modes and Davies point

ωQ

In Ref.  [22],  Jing and Pan explored the Davies  point
using the  QNMs.  They proposed that  when a  black hole
passes  through  this  phase  transition  point,  the  QNMs  in
the  complex  plane  begin  to  take  a  spiral-like  shape,
and both the real and imaginary parts of the QNMs for a
given  overtone  number  and  angular  quantum  number
beyond the  critical  values  become  the  oscillatory  func-
tions of the black hole charge. This provides an interest-
ing dynamic to study the thermodynamic phase transition.
However, in Ref. [23], Cardoso et al. argued that this res-
ult  is  probably  a  numerical  coincidence.  Nevertheless,
this  relation  between  the  thermodynamic  and  dynamic
properties  of  black  holes  was  further  confirmed  in  Ref.
[24]. In  the  following,  we  would  like  to  analytically  ex-
amine this relation in detail in the eikonal limit.

As  shown in  Ref.  [22],  the  relation  holds  for  a  large
overtone number n and small l. In  our  approach,  we ex-

 

CQ

QD/M =

√
3

2

Fig. 1.    (color online) Heat capacity  vs. Q for the four-di-
mensional charged  RN  black  hole.  The  heat  capacity  di-

verges at .
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tend this  study to  the  eikonal  limit  to  check whether  the
relation holds. For a charged black hole, the radius of the
photon sphere can be obtained by solving (12)

rps =
1
2

(
3M+

√
9M2−8Q2

)
. (26)

Q = 0 rps = 3MFor  the  case  of ,  we  have  for  the
Schwarzschild black hole. For the extremal charged black

Q = M r = 2M
rps

hole , the photon sphere will be located at .
Substituting  into (16),  we obtain the angular velocity
and Lyapunov exponent of the photon sphere

Ω =
1

3M+
√

9M2−8Q2

√
2+

M(
√

9M2−8Q2−3M)
2Q2 ,

(27)

λ =
4
√(

M(3M+
√

9M2−8Q2)−2Q2
) (

3M(3M+
√

9M2−8Q2)−8Q2
)

(
3M+

√
9M2−8Q2

)3 . (28)

2M = 1
Note  that  in  Ref.  [22],  the  authors  studied  this  issue  by
fixing  the  mass,  i.e., ;  here,  we  will  rescale  all
these quantities with the black hole mass, which is equi-
valent to settin M = 1. In the small charge limit and for a
fixed mass, we have

ΩM ∼ 1

3
√

3
+

1

18
√

3

( Q
M

)2
+O

( Q
M

)4
, (29)

λM ∼ 1

3
√

3
+

1

54
√

3

( Q
M

)2
+O

( Q
M

)4
. (30)

ωQ

Ω λ

Ω λ

Q/M
Q/M

Q/M
ΩM

λM
Q/M ΩM

Q/M
λM

Q/M
ΩM λM

λM

λM

The study of  Ref.  [28]  showed that  the  spiral-like  shape
exists in the complex  plane when the Davies point is
passed.  As  and  respectively  correspond  to  the  real
and imaginary parts of QNMs, here, we would like to dis-
cuss  the  corresponding  result  in  the -  plane by  vary-
ing the charge . The result is given in Fig. 2. Appar-
ently, with the increase of the charge , the spiral-like
shape will  appear at  a certain value of .  For clarity,
we  plotted  the  angular  velocity  (top  red  line)  and
Lyapunov exponent  (bottom blue line) as a function
of the charge , as shown in Fig. 3. Interestingly, 
is a monotonically increasing function of . However,

 first slowly  increases  with  the  charge  and  ap-
proaches its maximum at a certain value of , then de-
creases.  Therefore,  no  oscillatory  exists  for  or ,
which is different from that of Refs. [10, 22]. The reason
for  this  might  result  from  the  fact  that  we  consider  the
case in the eikonal limit, while in Refs. [10, 22], the case
with  small l and  a  higher  overtone  number n was con-
sidered.  Moreover,  the  non-monotonic  behavior  of 
shown in Fig.  3 is  closely  linked to  the  starting point  of
the spiral-like shape. Therefore, this point can be determ-
ined by the maximum of . After a simple calculation,
we determine the point as

QS/M =

√
51−3

√
33

8
≈ 0.7264. (31)

Hence, the starting point of the spiral-like shape is smal-
ler  than  the  Davies  point  given  in  (25).  The  deviation

nc

between  them  is  approximately  16%.  It  is  worth  noting
that the starting point occurs at the value of the charge at
which the  real  part  of  the  oscillatory  quasinormal  fre-
quencies arrives at its maximum, with the different critic-
al overtone number  [22].

QS

In summary, for the charged RN black hole, the Dav-
ies point and the starting point of the spiral-like shape are
not  the  same.  Thus,  the  relation  proposed  in  Ref.  [22]
cannot be exactly extended to the eikonal limit. Neverthe-
less, the spiral-like shape can reflect the existence of the
thermodynamic  phase  transition  or  Davies  point.
Moreover,  we  note  that  the  black  hole  with  charge 
(31) is characterized by the fastest relaxation rate among
all the charged RN black holes [39].

3.3    New relation

As shown above, the relation given in Ref. [22] is ap-
proximate.  Here,  we  would  like  to  examine  whether  a

 

Ω λ

Q/M

Fig. 2.    (color online) Angular velocity and Lyapunov expo-
nent  in  the -  plane. The  black  arrow  indicates  the  in-
crease of the charge .
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new precise relation exists.
Our  recent  work  [32, 33]  showed  the  existence  of  a

relation  between  the  black  hole's  null  geodesics  and  the
thermodynamic  phase  transition  of  a  liquid/gas  type  in
AdS spacetime. Motivated by this,  we expected to apply
it  to  a  charged  RN black  hole  to  investigate  the  relation
between null geodesics and the Davies point.

From (26),  we can  express  the  black  hole  mass  with
the radius of the photon sphere as

M =
2Q2+ r2

ps

3rps
. (32)

Substituting this into (23), the temperature will be of the
form

T =
3rps

√
(r2

ps−Q2)(r2
ps−4Q2)

(√
(r2

ps−Q2)(r2
ps−4Q2)+ (2Q2+ r2

ps)
)

2π
(
8Q4−Q2r2

ps+2r4
ps+2(2Q2+ r2

ps)
√

(r2
ps−Q2)(r2

ps−4Q2)
)3/2 . (33)

rpsIn  terms  of  and Q,  the  angular  velocity  and  the
Lyapunov exponent are

Ω =

√
r2

ps−Q2

√
3r2

ps

, (34)

λ =

√
(r2

ps−Q2)(r2
ps−2Q2)

√
3r3

ps

. (35)

Ω

λ

Ω λ

In Fig. 4, the temperature T is plotted as a function of 
and , respectively. From Figs. 4(a) and 4(b), the temper-
ature behaviors  are  seen  to  be  similar.  At  first,  the  tem-
perature increases with  or . After its maximum is ap-
proached, it  decreases. Therefore, there are two different
black hole phases bounded by the maximum of the tem-
perature. In the last subsection, we showed that the Lya-
punov exponent has a peak at a certain charge. This beha-

vior is quite similar to that of Fig. 4(b). Thus, there must
exist a characteristic charge corresponding to the maxim-
um  temperature.  Next,  we  will  calculate  this  charge.  At
the maximum  temperature,  the  parameters  have  the  fol-
lowing values

TM =
1

6
√

3πQ
, ΩM =

1
2Q

√
2
√

3
3
−1,

λM =
1

2Q

√
3− 5
√

3
. (36)

Correspondingly, the radius of the photon sphere for this
case is

rpsM = (1+
√

3)Q. (37)

Finally, using (26), we obtain the point corresponding to
the maximum of the temperature

 

ΩM

λM

Q/M

Fig. 3.    (color online) Angular velocity  (top red line) and
the Lyapunov exponent  (bottom blue line) as functions
of the charge .

Ω λFig. 4.    (color online) (a) T vs. , (b) T vs.  for the four-dimensional charged RN black hole.
 

Chinese Physics C    Vol. 44, No. 11 (2020) 115103

115103-6



QM =

√
3

2
M. (38)

It is clear that this point exactly matches the Davies point
(25),  where  the  heat  capacity  diverges.  It  is  close  to  the
point (31) with only a small difference.

Ω λ

In  summary,  we  established  a  new  relation  between
the black hole thermodynamics and dynamics. The phase
transition  point  or  Davies  point  is  exactly  located  at  the
maximum in the T-  or T-  plane. This may provide us a
new dynamic way to precisely probe the Davies point.

4    Higher-dimensional  charged  Reissner-
Nordström black holes

For a d-dimensional charged black hole, the line ele-
ment is in the same form of (1), while the metric function
is given by

f (r) = 1− m
rd−3 +

q2

r2(d−3) . (39)

The parameters m and q are linked to the black hole mass
M and charge Q as

m =
16πM

(d−2)Ad−2
, (40)

q =
8πQ

√
2(d−2)(d−3)Ad−2

, (41)

Ad−2 = 2π(d−1)/2/Γ ((d−1)/2)
f (r) = 0

where  is  the area of  the unit
(d-2) sphere. The horizons located at the roots of 

rd−3
± =

1
2

(
m±

√
m2−4q2

)
. (42)

q/m < 1
2

q/m = 1
2 q/m > 1

2

Similar  to  the  four-dimensional  case,  the  higher-dimen-
sional black hole has two horizons for , one hori-
zon for , or no horizon for . The temper-
ature and entropy corresponding to the outer horizon are

T =
(d−3)(r2d

+ −q2r6
+)

4πr2d+1
+

, (43)

S =
Ad−2rd−2

+

4
. (44)

The heat capacity at fixed charge Q is

CQ =
Ad−2(d−2)(r2d

+ −q2r6
+)

4(2d−5)q2r8−d
+ −4rd+2

+

. (45)

CQ
CQ

CQ

The behavior of this heat capacity is similar to that in the
four-dimensional black hole case. For small charge,  is
negative,  while  for  large  charge,  becomes  positive.
Moreover,  diverges at

q2 =
r2(d−3)
+

2d−5
. (46)

We list the Davies points in Table 1 for d = 5–10.
Solving (12),  we can obtain  the  radius  of  the  photon

sphere

rd−3
ps =

4π
(d−2)Ad−2

(d−1)M+

√
(d−1)2M2− 2(d−2)2Q2

d−3

 .
(47)

Moreover,  the  angular  velocity  and  Lyapunov  exponent
are

Ω2 =
1+q2r6−2d

ps −mr3−d
ps

r2
ps

, (48)

λ2 =
(q2r6

ps+ r2d
ps −mrd+3

ps )(2r2d
ps −2(d−2)(2d−7)q2r6

ps+ (d−1)(d−4)mrd+3
ps )

2r2(2d+1)
ps

. (49)

Ω λ

In Fig. 5, we show the angular velocity and Lyapunov ex-
ponent in the -  plane for the spacetime dimension d =
5–10, respectively. Different from the d = 4 case, no spir-
al-like shapes exist for the higher-dimensional black hole

Ω

λ

cases, and the angular velocity  is just a monotonically
decreasing function of . To further  understand this  res-
ult,  the  behaviors  of  the  angular  velocity  and  Lyapunov
exponent are presented in Fig. 6 as functions of the black

TMTable 1.    Davies points and parameter values corresponding to the maximum value of the temperature  for higher-dimensional charged Reissner-
Nordström black holes.

d=5 d=6 d=7 d=8 d=9 d=10

QD/M 0.8607 0.8101 0.7589 0.7136 0.6744 0.6404

QM /M 0.8607 0.8101 0.7589 0.7136 0.6744 0.6404

rpsM/Q
1

d−3 1.3189 1.1085 1.0497 1.0361 1.0410 1.0547

TMQ
1

d−3 0.1404 0.2552 0.3593 0.4528 0.5373 0.6146

ΩMQ
1

d−3 0.5240 0.6916 0.7735 0.8130 0.8301 0.8349

λMQ
1

d−3 0.6897 1.1478 1.5033 1.7806 2.0017 2.1820
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Ω λhole  charge.  Apparently,  increases  while  decreases
with charge Q.  Both of these are monotonic functions of
Q.  Therefore,  the spiral-like shape does not  exist  for  the
higher-dimensional  charged  black  holes.  Meanwhile,  we
note  that  in  Ref.  [24],  for  a  five-dimensional  charged
Kaluza-Klein  black  hole  with  squashed  horizons,  the
QNMs were found to demonstrate spiral-like shapes near
the  Davies  point,  which  may  be  caused  by  the  non-van-
ishing Kaluza-Klein parameters.

In  the  above  section,  we  presented  a  new  relation

Ω λ

Ω λ

between  the  black  hole  thermodynamics  and  dynamics
for the four-dimensional  spacetime.  The temperature has
a maximum value in the T-  or T-  plane, and the max-
imum  point  is  found  to  correspond  to  the  Davies  point.
Here,  we  speculate  if  this  property  holds  for  higher-di-
mensional spacetime.  To  answer  this  question,  we  de-
scribe  the  temperature T as  a  function  of  and , re-
spectively, as shown in Fig. 7. Interestingly, similar to the
four-dimensional case, maximum values for the temperat-
ure  are  also  exhibited  in  both  the  figures  for d =  5 –10.

Ω λ Ω λ

2
√

3

√
3
2

2

√
2
5

√
5
3

2

√
3
7

√
7

2

Fig. 5.    (color online) Angular velocity  and Lyapunov exponent  in the -  plane. The black hole charge Q increases from bot-

tom right to top left. The maximum bound of the charge is 1, , , , , , and  respectivelyfor (a) d = 5, (b) d =

6, (c) d = 7, (d) d = 8, (e) d = 9, (f) d = 10.
 

Ω λ

Fig. 6.    (color online) Behaviors of the angular velocity and Lyapunov exponent as functions of the black hole charge. Spacetime di-
mension d=5–10 from bottom to top. (a)  vs. Q; (b)  vs. Q.
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QM

QM

Using these maximum values of the temperature, we can
obtain the corresponding charge . The parameter val-
ues corresponding to the maximum values of the temper-
ature are listed in Table 1 for d = 5–10.  From the table,
we can clearly see that the Davies points and the  ex-
actly match each other  for d = 5–10.  Thus,  we can con-
firm  that  the  relation  proposed  above  also  holds  for  the
higher-dimensional black holes.

5    Charged  Reissner-Nordström  dS  black
holes

Recently,  there  has  been  a  great  focus  on  the  strong
cosmic censorship in dS spacetime [40-49]. Many works
have  shown  that  this  censorship  may  be  violated  for  a
charged  RN-dS  black  hole  by  calculating  the  QNMs  of
different types of perturbations. In particular, in Ref. [40],
the  authors  divided  the  QNMs  for  the  charged  RN-dS
black hole  into  three  families:  the  photon sphere  modes,
dS modes, and near-extremal modes. Therefore, it is very
interesting to examine the relation presented in the above
section by  calculating  the  angular  velocity  and  the  Lya-
punov exponent of the photon sphere modes.

Here, we  only  consider  the  four-dimensional  space-
time. The charged RN-dS black hole solution is also de-
scribed by equation (1) with the function

f (r) = 1− 2M
r
+

Q2

r2 −
Λ

3
r2. (50)

Λ

f (r) = 0
r+

Here,  the  parameter  is  the  cosmological  constant,
which  is  positive  for  dS  spacetime.  For  this  case,  there
exists  a  cosmological  horizon  outside  the  event  horizon,
and both can be obtained by solving .  Moreover,
we can express the mass M with the radius  of the event
horizon

M =
3Q2+3r2

+− r4
+Λ

6r+
. (51)

S = A/4 = πr2
+

The black  hole  entropy  corresponding  to  the  event  hori-
zon is  still  a  quarter  of  its  area .  Thus,  the

mass can be further expressed as

M =
3π2Q2+3πS −S 2Λ

6π3/2S 1/2 . (52)

Similarly, the temperature of the event horizon is

T =
−π2Q2+πS −S 2Λ

4(πS )3/2 . (53)

ΛThe heat capacity at fixed charge Q and cosmological 
is

CQ,Λ =
2S (π2Q2−πS +S 2Λ)
−3π2Q2+πS +S 2Λ

. (54)

CQ,ΛNote  that  exactly  vanishes  at T = 0,  which  corres-
ponds to  the  extremal  black  hole  case.  Further,  it  di-
verges at the point where its denominator vanishes, i.e.,

S =
π(

√
1+12Q2Λ−1)

2Λ
. (55)

This  is  just  the  Davies  point.  Substituting  into  Eq.  (52),
we can find another form of the Davies point

ΛM2 =
2
9

( √
12Q2Λ+1−1

)
, (56)

or (QD

M

)2
=

3
4
+

27
16
ΛM2. (57)

Λ→ 0

81
16

27
16
Λ→ 3Λ

It  is  clear  that  when  the  cosmological  constant ,
this  result  will  reduce back to  that  of  the  RN black hole
case (25). It is worth noting that this Davies point (57) is
different from that given in [17], where the coefficient of
the  second  term  on  the  right  side  of  the  corresponding
equation is , not . The reason for this is that Davies
made a change of . Thus, both results are consist-
ent with each other.

Now, we consider the null geodesics for a charged dS
black  hole.  By  solving  (12),  we  obtain  the  radius  of  the
photon sphere,

rps =
1
2

(
3M+

√
9M2−8Q2

)
. (58)

Interestingly,  this  result  is  of  the  form  in  (26)  for  the

Ω λFig. 7.    (color online) (a) T vs. ; (b) T vs. ; Spacetime dimension d=5–10 from bottom to top.
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Λ

∂rVeff = 0
Λ f (r)

asymptotically flat  case  without  the  cosmological  con-
stant. The reason for this is not hard to understand. From
(10),  we can find that  the  cosmological  constant  term
only  comes  to  the  effective  potential  as  a  constant.  The
photon  sphere  is  obtained  by  solving ,  so  after
the derivation, the effect of  in the metric function 

disappears,  resulting  in  the  same  form  of  the  photon
sphere as in the asymptotically flat case. Nevertheless, it
should be considered that the mass M here depends on the
cosmological constant, see Eq. (52).

Adopting the form of (58),  we can further obtain the
angular velocity and the Lyapunov exponent,

Ω =

√
−9M2 (4ΛQ2+1

)
+3M

√
9M2−8Q2 (1−4ΛQ2)+4Q2 (4ΛQ2+3

)
√

6Q
( √

9M2−8Q2+3M
) , (59)

λ=
4
√

8Q2−3M
( √

9M2−8Q2+3M
)

√
3
( √

9M2−8Q2+3M
)3

√
81ΛM4−9M2 (8ΛQ2+1

)
+3M

√
9M2−8Q2 (9ΛM2−4ΛQ2−1

)
+8ΛQ4+6Q2.

(60)

Ω λ ΛM2

ΛM2

λ Ω

ΛM2

QS/M
QD/M

In addition,  we plotted the behavior  of  the angular  velo-
city and Lyapunov exponent in the -  plane for  =
0.01, 0.05, and 0.1, as shown in Fig. 8. For fixed , it
is  clear  that  there  exist  spiral-like  shapes  in  this  plane,
similar  to  the  asymptotically  flat  case.  The  existence  of
the spiral-like shapes also indicates the nonmonotonic be-
havior of  rather than . For clarity, these are shown in
Fig. 9. The values of the charge at the starting point of the
spiral-like  shapes  for  =  0.01,  0.05,  and  0.1  are

 = 0.7684, 0.8862, and 0.9716, respectively, which
are  different  from  the  Davies  points  = 0.8757,
0.9134,  and  0.9585.  Therefore,  the  result  clearly  shows
that  the  starting  points  of  the  spiral-like  shapes  and  the
Davies points do not match.

Ω λ

ΛQ2

ΛQ2

Ω λ

In Fig. 10, we describe the behavior of the temperat-
ure  as  a  function  of  and ,  respectively.  From  this,
there  is  a  local  maximum for  each  fixed .  With  the
increase of , the maximum decreases and is shifted to
small value of  or . Moreover, the values for different
parameters corresponding to the maximum of the temper-

 

Ω λ ΛM2

Fig. 8.    (color online) Angular velocity and Lyapunov expo-
nent  in  the -  plane  for =  0.01  (solid  line),  0.05
(dashed  line),  and  0.1  (dotted  line)  for  the  charged  RN-dS
black hole.

ΛM2Fig. 9.    (color online) Behaviors of the angular velocity and Lyapunov exponent as functions of the black hole charge for =0.01,
0.05, and 0.1, respectively, from top to bottom.
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Λ QS QD

Λ QS
QD ΛQ2 = 0.1 QS

QD QM

QD

ature are listed in Table 2. It is clear that the Davies point
and starting point of the spiral-like shape are not consist-
ent with each other. For small ,  is smaller than .
However, with the increase of ,  increases faster than

.  For  example,  for ,  will  be  larger  than

. Meanwhile, the value of the charge  correspond-
ing  to  the  maximum  exactly  coincides  with  the  Davies
point  given  in  (57).  Therefore,  this  further  confirms
our new relation between the black hole thermodynamics
and dynamics  shown  in  Sec.  3.3.  In  summary,  this  con-
jecture is not only effective for asymptotically flat space-
time, but also for asymptotically dS spacetime.

6    Conclusions and discussions

In  this  paper,  we  focused  on  extending  the  relation
first  proposed  in  [22]  to  the  eikonal  limit  between  the
spiral-like  shape  of  the  QNMs  and  the  thermodynamic
phase transition point, the Davies point.

Ω λ

λ

Ω

For  the  four-dimensional  charged  RN  black  hole,  a
simple spiral-like behavior is exhibited in the -  plane.
The reason for  this  is  because the Lyapunov exponent 
has  a  maximum  as  the  black  hole  charge Q changes.
Meanwhile,  the  angular  velocity  is a  monotonic  in-
creasing function of the black hole charge.  This result  is

Ω λ

Ω λ

QS =

√
51−3

√
33

8
M ≈ 0.7264M

QD =

√
3

2
≈ 0.8660M

Ω λ

Ω λ

very  different  from  the  numerical  results  given  in  Ref.
[22], where both  and  are non-monotonic functions of
the  charge,  leading  to  an  explicit  spiral-like  behavior  in
the -  plane. Nevertheless, the authors claimed that the
Davies point is linked to the starting point of this spiral-
like shape.  Their  numerical  result  states  that  the  differ-
ence  between  these  two  points  is  very  small,  indicating
the  existence  of  a  correspondence.  We  also  analytically
examined this issue in detail and the result shows that the
starting  point  of  the  spiral-like  shape  is

,  which deviates by  ap-

proximately  16%  from  the  Davies  point

. Therefore, the Davies point and the
starting point of the spiral-like shape do not exactly coin-
cide in  the  eikonal  limit.  However,  we  further  investig-
ated the behavior of the black hole temperature as a func-
tion of the angular velocity and Lyapunov exponent. The
temperature  in  both  the  figures  clearly  demonstrates  a
local  maximum.  More  interestingly,  the  local  maximum
analytically coincides  with  the  Davies  point.  This  indic-
ates that there is a relation between the Davies point and
the  maximum  of  the  temperature  in  the T-  and T-
planes. As both  and  correspond to the QNMs of the
black hole, this relation may provide an exact correspond-
ence between the black hole thermodynamics and dynam-
ics.

Ω λ

Ω λ

In addition, we extended our investigation to the high-
er-dimensional spacetime.  One  interesting  result  differ-
ent  from  the  four-dimensional  case  is  that,  in  the -
plane, the spiral-like shape does not exist. Therefore, the
relation between the Davies point and the behavior of the
spiral-like shape is completely lost.  Fortunately,  the pro-
posed relation between the Davies point and the maxim-
um  of  the  temperature  in  the T-  and T-  planes  still
holds for higher-dimensional charged black holes.

Moreover,  we  applied  the  study  to  a  charged  RN
black hole in dS spacetime, and the results are similar to

TM

Table 2.    Charges of the Davies point and starting point of the spiral-
like  shape  of  the  charged  RN-dS black  holes.  The  other  parameter
values correspond to the maximum value of the temperature .

ΛQ2 =0.01 ΛQ2 =0.05 ΛQ2 =0.1
QD/M 0.8786 0.9216 0.9650

QS /M 0.7906 0.9085 0.9774

QM /M 0.8786 0.9216 0.9650

rpsM/Q 2.6639 2.4333 2.1996
TMQ 0.0293 0.0240 0.0176

ΩMQ 0.1924 0.1736 0.1460
λMQ 0.1631 0.1412 0.1118

Ω λ ΛQ2

Ω λ

Fig. 10.    (color online) Behaviors of the temperature T as a function of  and  for = 0.01, 0.05, and 0.1 from top to bottom. (a)
T- ; (b) T-
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Ω λ

those  of  the  asymptotically  flat  spacetime.  The  Davies
point,  the  starting  point  of  the  spiral-like  shape,  and  the
maximum of  the  temperature  in  the T-  and T-  planes
were all found to increase with the cosmological constant.
As expected, the Davies point and the starting point of the
spiral-like shape do not coincide with each other.  Mean-
while, the  Davies  point  exactly  coincides  with  the  max-
imum of the temperature, which further confirms our new
relation even in dS spacetime.

Before ending this paper, we would like to provide a
few comments. First, at least in the eikonal limit, there is

Ω λ

no exact relation between the Davies point and the spiral-
like shape of the QNMs. Second, there is a nontrivial and
exact relation  between  the  Davies  point  and  the  maxim-
um of the temperature in the T-  and T-  planes. Addi-
tionally, some other relations between the thermodynam-
ics and dynamics are worth exploring beyond the eikonal
limit.
 

We would like to thank Profs. Qiyuan Pan and Robert
B. Mann for the useful discussions.
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