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Abstract: The atomic mass table presents zones where the structure of the states changes rapidly as a function of the
neutron or proton number. Among them, notable examples are the A ≈ 100 Zr region, the Pb region around the neut-
ron midshell  (N = 104),  and the N ≈ 90 rare-earth region.  The observed phenomena can be understood in terms of
either shape coexistence or quantum phase transitions.  The objective of this study is  to find an observable that  can
distinguish between both shape coexistence and quantum phase transitions. As an observable to be analyzed, we se-
lected the two-neutron transfer intensity between the 0+ states in the parent and daughter nuclei. The framework used
for this study is the Interacting Boson Model (IBM), including its version with configuration mixing (IBM-CM). To
generate wave functions of isotope chains of interest needed for calculating transfer intensities, previous systematic
studies using IBM and IBM-CM were used without changing the parameters. The results of two-neutron transfer in-
tensities  are  presented  for  Zr,  Hg,  and  Pt  isotopic  chains  using  IBM-CM.  Moreover,  for  Zr,  Pt,  and  Sm  isotopic
chains, the results are presented using IBM with only a single configuration, i.e., without using configuration mixing.
For Zr, the two-neutron transfer intensities between the ground states provide a clear observable, indicating that nor-
mal and intruder configurations coexist in the low-lying spectrum and cross at A = 98 → 100. This can help clarify
whether shape coexistence induces a given quantum phase transition. For Pt,  in which shape coexistence is present
and the regular and intruder configurations cross for the ground state, there is almost no impact on the value of the
two-neutron transfer intensity. Similar is the situation with Hg, where the ground state always has a regular nature.
For the Sm isotope chain, which is one of the quantum phase transition paradigms, the value of the two-neutron trans-
fer intensity is affected strongly.
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1    Introduction

Quantum  phase  transition  (QPT)  implies  an  abrupt
change  in  the  ground  state  properties  of  a  system  under
study  when  a  control  parameter  reaches  a  critical  value
[1-3].  In  nuclear  physics,  usually,  a  complete  chain  of
isotopes  is  studied  to  observe  systematic  variations  and,

eventually,  abrupt changes in the ground state properties
[4],  where  the  neutron  number  is  the  control  parameter.
Typically,  QPTs are found in transitional  regions,  where
the  structure  of  nuclei  evolves  in  between  two  different
limiting structures  (symmetries),  either  spherical  and  ri-
gidly deformed, spherical and gamma unstable, or gamma
unstable and rigidly deformed. The appearance of a QPT
implies, and consequently has been characterized by, pe-
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culiar changes in  certain observables.  Some of  these ob-
servables are as follows:

●  The  slope  of  the  two-neutron  separation  energy
presents a discontinuity.

0+2

● There is a minimum in the excitation energy of cer-
tain  states  such  as  the  state  and  an  increase  in  the
density of states.

2+1

● There is a sudden decrease in the excitation energy
of certain states, such as the  state.

2+1 → 0+1● There is a rapid increase in B(E2: ), among
other transition probabilities.

2+1● There is a rapid increase in the  quadrupole mo-
ment.

For nuclei  placed at  the  critical  point,  Iachello  intro-
duced the concept of critical point symmetry [5-7], which
provides parameter-free values of energy ratios and trans-
ition probabilities.

Although  shape  coexistence  is  a  broad  phenomenon
that appears  almost  ubiquitously  in  the  nuclear  mass  ta-
ble, it is observed particularly near the proton or neutron
shell  closures  [8, 9].  It  supposes  the  presence  of  states
with  very  different  shapes  or  deformations,  for  instance
vibrational-like and deformed, in a narrow excitation en-
ergy  range.  The  existence  of  different  configurations  is
associated  with  particle-hole  (np-nh)  excitations  across
the shell closure. Typically, vibrational-like states corres-
pond  to  0p-0h  excitations,  whereas  the  deformed  states
are  associated  with  2p-2h  excitations.  It  may  be  pointed
out that the shape of a given state is not an observable al-
though it is an extensively used concept; it can be extrac-
ted  from the  Kumar-Cline  sum rule  over E2 matrix  ele-
ments  [10, 11].  The  presence  of  shape  coexistence  has
significant  impact  on  the  spectroscopic  properties  of  a
chain of nuclei.

● There is a family of states, with clear parabolic-like
excitation  energy  systematics  centered  at  the  midshell
when depicted as a function of the neutron (proton) num-
ber.

● The crossing of states belonging to different famil-
ies  implies  sudden  changes  in  the  deformation  of  the
states. These crosses lie before and after the midshell.

0+

0+
● There is a decrease in the energy of a number of 

states.  In  general,  several  states  correspond  to  very
low energies.

2+1 → 0+1

●  When  both  families  of  states  cross  in  the  ground
state, an  abrupt  change  in  the  deformation,  with  con-
sequences for the systematics of the two-neutron separa-
tion energy, quadrupole moment, or B(E2: ) val-
ues is experienced

According to  the  above  list,  QPT and  shape  coexist-
ence exhibit  similar  systematics.  In many cases,  it  is  not
easy to identify which of these two is responsible for the
rapid onset  of  deformation.  Therefore,  this  study  is  fo-
cused  on  investigating  the  two-neutron  transfer  intensity

as  an  observable  displaying  distinct  behaviors  under  the
presence of a QPT, shape coexistence, and QPT induced
by shape coexistence. This approach to explore the exist-
ence of QPTs was first used in Ref. [12], later in [13], and
more  recently  in  [14]. Moreover,  the  two-neutron  trans-
fer intensity  has  been used to  analyze the possible  inter-
play  between  QPT  and  shape  coexistence  in  [15, 16],
which indicated  that  some  differences  exist  when  com-
paring a schematic QPT with a schematic shape coexist-
ence situation. The two-neutron transfer intensity is signi-
ficantly more fragmented for QPT than for shape coexist-
ence, although rapid changes appear in this observable in
both cases. In this study, we will explore a set of realistic
calculations in detail.

98 100

Several regions of the atomic mass table are of signi-
ficant  interest.  The  Zr  region  is  characterized  by  rapid
changes  in  the  ground  state  structure.  In  particular,  the
onset of deformation when passing from Zr to Zr is
one  of  the  fastest  ever  observed  in  the  nuclear  chart.  It
has been  determined  both  experimentally  and  theoretic-
ally that certain excited states of Zr isotopes have shapes
different than the ground state [17]. This change is asso-
ciated  with  low-lying  intruder  configurations.  In  the  Pb
region, the evolution of the structure of the ground state is
significantly stable, but the spectra own states with differ-
ent shapes, i.e., shape coexistence is present, as in Pb, Hg,
and  Pt  nuclei  [9].  However,  in  the  rare-earth  region,  the
changes in the structure of the ground state have been as-
sociated  with  QPT  [18],  for  instance  in  the  Sm  isotope
chain [19].

N = 104

2+1

0+2
N = 66

0+2

Although  the  onset  of  a  QPT  and  the  importance  of
shape  coexistence  for  the  aforementioned  isotopes  have
been  studied  in  detail  in  many  publications,  we  present
the partial spectra of Hg, Pt, Zr, and Sm isotopes in Fig. 1
for completeness.  In  this  figure,  the  spectra  of  Hg  iso-
topes clearly  illustrate  the  existence  of  a  family  of  in-
truder states  with  a  parabolic  trend,  centered at  the  mid-
shell,  [20]. For Pt, the presence of intruder states
is not clear,  and it  is  believed that  the shape coexistence
is concealed  under  somewhat  unclear  parabolic-like  en-
ergy systematics for the intruder states [21, 22], although
the  energy  trend  is  still  symmetric  with  respect  to  the
midshell. For Zr isotopes, a sudden onset of deformation
is observed, as can be deduced from the low energy of the

 state and the yrast band, in general; this can be inter-
preted as the existence of a QPT [17]. Moreover, the very
low energy of the  state and the influence of the mid-
shell, , on the energy systematics of the yrast band
is remarkable, which suggests the presence of configura-
tion  mixing  [23].  Finally,  for  Sm isotopes,  a  rapid  onset
of deformation is  observed,  with the lowering of  the en-
ergy of the yrast band and the existence of a QPT [18], as
well  as  a  notable  decrease  in  the  energy  of  the  state,
although  not  as  much  as  that  observed  for  the  Zr  case.
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Moreover, there are no hints pointing to the existence of
shape coexistence.

The concept of QPT was also analyzed in the frame-
work of IBM-CM, first by defining a method to construct
an energy functional considering different configurations,
as  introduced  in  [24, 25],  and  then  by  constructing  a
schematic  phase  diagram  of  the  model  [26]. Sub-
sequently, the phase diagram of the IBM-CM Hamiltoni-
an was studied in detail in [27, 28]. The phase diagram in
these cases is significantly more involved than that for a
single  configuration;  and it  is  difficult  to  obtain  a  single
phase diagram considering all possible parameters.

This paper is organized as follows. The formalism for
calculating  two-nucleon  transfer  intensities  is  discussed
briefly  in  Section  2.  In  Section  3,  a  systematic  study  of
the  two-nucleon  transfer  intensities  for  several  isotope
chains  is  presented,  first  by  considering  configuration
mixing  calculations  (subsection  3.1)  and  then  using  a
single  configuration  (subsection  3.2).  Finally,  our  main
conclusions are presented in Section 4.

2    The formalism

L = 0 L = 2

[N]⊕ [N +2]

To  compute  two-nucleon  transfer  intensities,  we  use
the IBM as the framework in this study [29]. The model
is proposed as a symmetry-dictated approximation of the
shell model,  assuming  that  the  relevant  degrees  of  free-
dom are pairs  of  nucleons coupled to either angular mo-
mentum  (S pairs) or  (D pairs), which are con-
sidered as bosons for further approximation. The number
of  active pairs  of  nucleons regardless  of  their  particle  or
hole  nature  or  proton or  neutron character  is  denoted by
N. The IBM was modified to account for particle-hole ex-
citations, e.g., 2p-2h excitations [30, 31]. In this case, the
original  Hilbert  space  is  enlarged  to .  The

[N +2] space corresponds  to  considering  two  extra  bo-
sons  that  arise  from  the  promotion  of  a  pair  of  protons
across the corresponding shell closure, generating an ex-
tra boson made of proton holes and another made of pro-
ton particles.

For the  case  of  the  IBM  without  configuration  mix-
ing, a  simplified  Hamiltonian,  called  the  extended  con-
sistent-Q  Hamiltonian  (ECQF)  [32, 33],  is  considered.
This  Hamiltonian has been used to describe successfully
even-even medium- and heavy-mass nuclei. The Hamilto-
nian can be written as

Ĥecqf = εn̂d + κ
′L̂ · L̂+ κQ̂ · Q̂, (1)

ε,κ′ κ

where the operators appearing in the Hamiltonian are the
d boson number, angular momentum, and quadrupole op-
erator. , and  are parameters of the model.

The considered Hamiltonian for the case of IBM-CM
has been

Ĥ = P̂†N ĤN
ecqf P̂N + P̂†N+2

(
ĤN+2

ecqf +∆
N+2
)
P̂N+2 + V̂N,N+2

mix , (2)

ĤN
ecqf ĤN+2

ecqf
P̂N

P̂N+2 [N] [N +2]
V̂N,N+2

mix
[N] [N +2]

∆N+2

where  and  correspond to the ECQF Hamilto-
nians  (1)  for  the  regular  and  intruder  sectors;  and

 are  projection  operators  onto  the  and 
boson  spaces,  respectively;  describes  the  mixing
between  the  and  the  boson  subspaces;  and

 accounts  for  energy  needed  to  promote  a  pair  of
protons across the proton shell closure [34, 35].

Lπ = 0+

P̂† = ŝ† P̂ = ŝ

After  the  parameters  of  the  Hamiltonian  have  been
fixed, the wave functions are available and can be used to
calculate the value of the two-neutron transfer intensities.
Because we are interested only in two-neutron transfer re-
actions between the low-lying  states, we will use
the  simplest  possible  option  for  the  transfer  operator,
namely,  and , which are the transfer intens-
ities proportional to the square of the reduced matrix ele-

Fig. 1.    (color online) Partial spectra of Hg (panel (a)), Pt (panel (b)), Zr (panel (c)), and Sm isotopes (panel (d)).
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ment. Therefore, we implicitly assume that the results do
not depend strongly on the precise structure of the trans-
fer operator.  For IBM-CM, the intensities can be written

as (note that the emission or absorption of a nucleon pair

implies that the number of bosons changes in one unit)

I(N,0+i → N −1,0+f ) =
∣∣∣∣⟨N −1,Lπ = 0+f ||P̂

†
N−1P̂P̂N + P̂†N+1P̂P̂N+2||N,Lπ = 0+i ⟩

∣∣∣∣2 (3)

(p, t)for  reactions, and as

I(N,0+i → N +1,0+f ) =
∣∣∣∣⟨N +1,Lπ = 0+f ||P̂

†
N+1P̂†P̂N + P̂†N+3P̂†P̂N+2||N,Lπ = 0+i ⟩

∣∣∣∣2 (4)

(t, p)for  reactions. The structure of the two-neutron trans-
fer operator implies that it  connects only the regular (in-
truder)  part  of  the  wave  function  of  the  parent  nucleus
with the regular (intruder) part of the daughter one, which
does not exist; therefore, it crosses terms connecting dif-
ferent sectors. Otherwise, the operator will connect states
with a different number of active protons, which is not al-
lowed because  we  are  dealing  with  a  two-neutron  trans-
fer operator. In the case of IBM calculations with a single
configuration, only the first terms in Eqs. (3) and (4) will
give a non-null  contribution. Note that,  in this study, we
assume no scale factors in front of the operators and the
same  weight  for  the  regular  and  intruder  contributions;
therefore,  all  the  provided  results  are  given  in  arbitrary

units.
Assume  the  wave  function  of  the  involved  nuclei

written in the U(5) basis of the IBM as

Ψ(0+k ; N) =
∑

nd ,τ,n∆

ak
nd ,τ,n∆ [N]ψ((sd)N

nd ,τ,n∆ ;0+)

+
∑

nd ,τ,n∆

bk
nd ,τ,n∆ [N +2]ψ((sd)N+2

nd ,τ,n∆ ;0+) , (5)

nd τ
n∆

where  is the number of d bosons,  is the boson seni-
ority,  is  the  number  of d boson  triplets  coupled  to
zero, k is  a  rank  number  to  label  the  state,  and  [N]  and
[N+2]  are  the  regular  and  intruder  sectors,  respectively.
Then, the two-neutron transfer intensity for the (p,t) reac-
tion can be expressed as

I(N,0+i → N −1,0+f ) =

∣∣∣∣∣∣∣ ∑nd ,τ,n∆

√
N −nd ai

nd ,τ,n∆ [N]a f
nd ,τ,n∆ [N −1]+

∑
nd ,τ,n∆

√
N +2−nd bi

nd ,τ,n∆ [N +2]b f
nd ,τ,n∆ [N +1]

∣∣∣∣∣∣∣
2

, (6)

where as for the (t,p) reaction, it is expressed as

I(N,0+i → N +1,0+f ) =

∣∣∣∣∣∣∣ ∑nd ,τ,n∆

√
N +1−nd ai

nd ,τ,n∆ [N]a f
nd ,τ,n∆ [N +1]+

∑
nd ,τ,n∆

√
N +3−nd bi

nd ,τ,n∆ [N +2]b f
nd ,τ,n∆ [N +3]

∣∣∣∣∣∣∣
2

. (7)

∆nd = 0
∆τ = 0

β

γ

From  these  expressions,  it  is  evident  that  as  soon  as
the  initial  and  final  states  fully  lie  on  a  single  sector,
either regular or intruder, the value of the intensity will be
lost (i.e., if the parent state is fully regular and the daugh-
ter state is purely intruder, or vice versa, the intensity will
be  lost).  However,  for  vibrational  nuclei,  the  intensity
will be lost when the initial and final states have a differ-
ent phonon composition due to the selection rules 
and .  For  well-deformed  nuclei,  the  same  as  that
shown in [12]  holds,  i.e,  the ground state  band is  hardly
connected  with  the  quasi-  band  or  not  at  all  connected
with the double-  one.

3    Two-nucleon transfer intensity calculations
3.1    IBM with configuration mixing

In this section, Zr, Hg, and Pt isotope chains are ana-
lyzed using the IBM-CM with the parameters obtained in
previous IBM-CM calculations without any fine-tuning.

0+

In  this  section,  we  present  the  theoretical  IBM-CM
results of (t,p) two-neutron transfer intensities, as well as
the excitation energies of the unperturbed regular and in-
truder band heads and the regular content of the two first

 states.  The  results  for  the  ground  to  the  excited  state
(p,t) reactions  are  not  presented  owing  to  space  con-
straints;  however,  the results  for them are essentially the
same as those for (t,p) reactions.
3.1.1.    Two-neutron transfer intensities in the even-even

Zr isotope chain (two configurations)

A = 94 A = 110

We  use  an  IBM-CM  Hamiltonian,  as  mentioned  in
Section 2. The details of the calculations can be found in
Ref.  [23],  where  the  systematics  of  the  spectroscopy  of
the low-lying  collective  states  for  Zr  isotopes  was  as-
sessed using IBM-CM from  to .  For each
of the  isotopes,  a  set  of  parameters  was  fixed  to  repro-
duce  excitation  energies  and E2  transition  probabilities.
The  obtained  Hamiltonians  also  provided  a  rather  good
description of other observables such as two-neutron sep-
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ρ2(E0)

98 100

aration  energies,  values,  or  isotopic  shifts,  which
point to an accurate description of the wave functions of
the  nuclei  under  study.  In  particular,  the  rapid  onset  of
deformation when passing from Zr to Zr is  well  re-
produced. The  objective  of  this  study  is  to  take  advant-
age of those calculations without any extra fitting and ob-
tain  the  systematic  behavior  of  the  (t,p)  two-neutron
transfer intensities in this isotope chain.

0+

0+1
0+2

0+1 0+2

In Fig.  2,  for  the  Zr  isotopes,  we  present  the  values
obtained for the (t,p) two-neutron transfer intensities from
the  ground  state  of  the  parent  nucleus  into  the  first  five
low-lying  states of the daughter one (panel (a)) using
operator  (4)  and  the  parameters  given  in  Ref.  [23].  For
clarity,  the  energies  of  the  unperturbed  regular  ([N])
and  intruder ([N+2]) states are presented in panel (b).
In  addition,  the  regular  content  (fraction  of  the  wave
function in the regular sector, [N]) of the  and  states
is shown in panel (c) (see [23] for details).

0+1 0+2 A = 98

0+1 0+2

A = 98 A = 100 I(0+1 (A)→ 0+1 (A+2)) <
I(0+1 (A)→ 0+2 (A+2))

0+1,2

Some comments  in relation to Fig.  2 are in order.  In
panel (a), one can see that the values of the intensities of
the  and  states  cross  at  point ,  precisely
where  the  regular  and  intruder  configurations  also  cross
(panel (b)). This latter fact is also manifested in the inter-
change of  the regular  content  of  states  and  (panel
(c)).  The  relevant  observation  is  that  at  this  point
(between  and ) 

,  whereas  the  opposite  holds  for  the
rest of the cases. This fact is linked to the use of two con-
figurations, as will be seen in Section 3.2.1, where only a
single configuration is considered. To understand why the
intensity  in  states  other  than  the  ground  state  is  roughly
zero, we resort  to  the argument  given at  the end of  Sec-
tion  2,  where  we  have  seen  that  the  intensities  vanish
when  the  structures  of  the  involved  states  in  parent  and
daughter  nuclei  are  different  (one  normal  and  the  other
intruder). The  cancellation  of  the  transfer  intensity  oc-
curs for states that either belong to different sectors (regu-
lar or  intruder),  for  those  with  different  phonon  struc-
tures,  e.g.,  different  number  of  phonons  in  a  vibrational
nucleus, or those having phonons of different nature in a
well-deformed  one.  In  fact,  the  (t,p)  transfer  intensity  is
always  zero  for  states  other  than ,  i.e.,  intensity  is

barely fragmented.

A = 98−100

A = 98 A = 100

A < 98
A > 100

A = 98 A = 100

In Fig. 3, we depict schematically how the (t,p) two-
neutron  transfer  operator  connects  states  with  similar
structures and how they cross for , assuming
that  states  with  a  similar  structure  (same  color)  are
strongly connected. Fig. 2(a) simply shows the manifesta-
tion  of  the  schematic  configuration  crossing  represented
in Fig. 3. All along the isotope chain, two configurations
coexist,  and  they  cross  between  and .
Thus,  the  transfer  is  large  between  vibrational  ground
states for  (blue lines) and between deformed ones
for  (red  lines).  However,  at  the  crossing  point,
i.e.,  between  and ,  the  corresponding

 

0+1
0+i

0+1 0+2

Fig. 2.    (color online) (t,p) transfer intensities from  in the
parent nucleus to  in the daughter for Zr isotopes,  given
in arbitrary units, using the IBM-CM Hamiltonian provided
in [23]. Panel (a) depicts the value of (t,p) transfer intensity.
Panel  (b)  depitcs  the unperturbed energy of  [N]  and [N+2]
band  heads.  Panel  (c)  depicts  the  regular  content  of  states

 and  in each isotope.

0+Fig. 3.    (color online) Schematic representation for Zr isotopes of the relative position of the two first  states and (t,p) transfer in-
tensities connecting them (the width of the arrow is proportional to the value of the intensity).  States with the same color that are
connected with dotted lines have the same structure.
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A = 98 A = 100
ground states have different shapes (structures): spherical
in  and  deformed  in .  Consequently,  there
is  a  decrease  in  the  two-nucleon  transfer  intensity
between the ground states.

90−96

90−94 96

Remarkably,  a  two-level  mixing  calculation  is  used
for  light  Zr  isotopes  [36],  namely, Zr,  where  the
mixing  amplitude  is  extracted  considering  two-neutron
transfer  intensities,  concluding  that  mixing  is  moderated
in Zr. However, the mixing is small in Zr, which is
in agreement with the results presented here.
3.1.2.    Two-neutron transfer intensities in the even-even

Hg isotope chain (two configurations)

≈ 104

B(E2) ρ2(E0)

The nuclear region around Pb isotopes is identified by
the coexistence of low-lying states with different deform-
ations [9]. In this region, the structure of the ground state
of the isotope chains presents a rather smooth evolution;
however,  the  structure  of  the  states  as  a  function  of  the
excitation energy changes abruptly, especially around the
midshell, i.e., N . This is the result of the presence of
intruder states corresponding to 2p-2h or even 4p-4h ex-
citations across the Z = 82 shell closure [37]. The Hg iso-
topic chain  is  a  paradigmatic  example  of  shape  coexist-
ence. It depicts the presence of a family of intruder low-
lying states and has been studied systematically using the
IBM-CM Hamiltonian  in  Refs.  [20, 38, 39],  obtaining  a
rather  satisfactory  description  of  excitation  energies,

 values,  isotopic  shifts,  and  values.  Here
again,  the obtained parameters from that  study allow the
generation  of  the  wave  functions  of  the  different  nuclei
without any additional fitting.

0+

0+1 0+2

In Fig. 4, the values of the calculated (t,p) transfer in-
tensities  for  the  Hg  isotope  chain  between  the  ground
state of the parent and the first five states of the daughter
nucleus are presented in panel (a). In panel (b), the beha-
vior of the energies obtained for the unperturbed [N] and
[N+2] lowest  states is plotted. Finally, the regular con-
tent  of  the  states  and  is  depicted in  panel  (c)  (see
[20] for details).

I(0+1 (A)→ 0+1 (A+2))
0+

0+

0+2
A = 172 A = 192−200

0+

A = 174 0+

For this  isotope  chain,  the  two competing  configura-
tions  never  cross,  as  can  be  observed  in Fig.  4(b),  with
the almost pure [N] configuration being always below the
pure [N+2] one. Because of this, it is shown that there is
little  mixing  between  both  configurations  all  along  the
isotope  chain.  Consequently,  the  dominant  two-neutron
transfer  intensity  for  all  the  isotopes  is  between  the
ground  states,  i.e., .  The  transfer  to
any other low-lying  is very small for all isotopes. We
conclude  that  no  significant  impact  is  observed  in  the
transfer intensities of the Hg isotopes involving  states
because  there  is  almost  no  mixing  between  the  regular
and intruder sectors (panel (c)). It is seen that the  state
in  isotopes  and  is  mostly  the
second regular  state, i.e., it belongs to the [N] config-
uration. From  to 190, the lowest intruder  state

[N +2]
0+ [N]

0+2

0+

belonging  to  the  configuration  comes  lower  than
the  second  of . However,  the  intensity  still  van-
ishes  because  the  ground  and  states  present  different
numbers of vibrational phonons. To help understand this
better,  in Fig.  5,  we  plot  the  energy  systematics  of  the
first three  states together with the value of the regular
component.
3.1.3.    Two-neutron transfer intensities in the even-even

Pt isotope chain (two configurations)

[N +2]

Another  significant  isotope  in  the  Pb  region  is  Pt,
which presents low-lying intruder states arising from the

 configuration.  The  systematics  of  this  isotope
chain  including  configuration  mixing  have  been  studied
within  the  IBM-CM  Hamiltonian  in  Refs.  [21, 22].  One
of  the  main  conclusions  from  these  previous  studies  is
that  a  very  large  degree  of  mixing  between  the  intruder
and the regular states exists in Pt. Furthermore, the shape
coexistence is  somehow concealed,  with  hardly  any  dif-
ferences between the calculations with one or two config-
urations.  The  parameters  obtained  from  these  studies
were used to generate the wave functions of the relevant
states considered in the present study.

0+1 0+i

[N] [N +2] 0+

0+1 0+2

In Fig.  6, the  calculated  values  for  (t,p)  transfer  in-
tensities from the  state in the parent nucleus to the 
states  in  the  daughter  one  for  the  Pt  isotope  chain  are
plotted in panel (a). As in the case of Hg, the energies of
the  unperturbed  and   band  heads  are
presented  in  panel  (b),  and  the  regular  content  of  the
states  and  is  depicted  in  in  panel  (c).  Panel  (a)  is
very  similar  to  that  in  the  Hg  case;  however,  looking  at
panels (b) and (c), one notices significant differences. Re-

 

Fig.  4.     (color  online)  The  same as Fig.  2,  for  Hg  isotopes.
IBM-CM results sourced from [20].
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0+1 0+2

garding the Pt isotopes, both relevant configurations com-
pete, cross, and are very close for most of the isotopes. In
panel  (c),  it  is  evident  that  the  and  states  are
strongly  mixed,  around  50%  in  both  of  them  for  many
midshell  isotopes.  The  systematics  of  the  two-neutron
transfer  intensity  (panel  (a))  indicates  that  the  transfer

[N]

[N +2]

I(0+1 (A)→ 0+1 (A+2))

0+1 → 0+1 0+1 → 0+2

0+2 (A+2)

0+1
0+2

between the ground states in neighboring isotopes domin-
ates. However, in this case, it does not follow that the 
configuration  dominates,  because  it  is  strongly  mixed
thoroughly with the intruder  configuration. In this
case, the intruder and regular configurations cross before
and  after  the  midshell,  with  the  ground  state  around  the
midshell becoming  the  intruder  configuration.  Concern-
ing the two-neutron transfer intensities, one notices some
impact  at  the  place  where  the  states  cross;  however,  the
impact  is  hardly  noticeable,  and  re-
mains the dominant intensity all the way. This fact could
be  considered  as  unexpected  because  of  the  crossing  of
the  configuration  and  the  large  mixing  between  them,
roughly  50%,  at  the  points  where  the  configurations
cross.  Indeed,  the  50%  mixing  in  both  the  father  and
daughter isotopes allows obtaining a large fraction of in-
tensity from both sectors. Note that the transition operat-
or connects the regular (intruder) sector of the parent nuc-
leus with the regular (intruder) one in the daughter nucle-
us; therefore, both sectors contribute either in a construct-
ive  (for )  or  destructive  (for )  way.  The
leading  transition  remains  quite  stable  and  only  a  minor
lowering  (a  modest  increase  in  the  transfer  to  the

 state)  is  observed  around  the  crossing  points.
Based on the results, the contributions for the transition to

 sum up in  a  constructive  manner,  whereas  these  sum
up in a negative manner for the transition to the  state,
which is almost zero all the way.

3.2    IBM with a single configuration Hamiltonian

In this section, the two-neutron transfer intensities for
Zr, Pt, and Sm isotopes are explored using the IBM with
a  single  configuration.  As  in  the  preceding  section,  the
parameters  of  the  Hamiltonians  are  the  same as  those  in
previous  studies.  In  this  study,  the  wave  functions  are
used without further tuning.

0+

0+2 2+1

In this section, we present theoretical IBM results us-
ing  a  single  configuration  concerning  (t,p)  two-neutron
transfer intensities, as well as the excitation energy of the
first  excited state and the E2 reduced transition prob-
ability  between  the  and  states. The  two  latter  ob-
servables are considered as indicators for the existence of
a QPT [1, 2].
3.2.1.    Two-neutron transfer intensities in the even-even

Zr isotope chain (single configuration)
To study the two-neutron transfer intensities based on

systematic calculations within the Zr isotope chain using
a  single  configuration,  we  use  the  IBM  Hamitonian  and
the parameters obtained in Ref. [40] without extra fitting
for  the  calculation  of  the  two-neutron  transfer  intensity.
In Ref. [40], the spectroscopic properties of even-even Zr
isotopes  were  studied  in  detail  with  the  objective  of  an
appropriate  reproduction  of  the  two-neutron  separation
energy. Moreover, this study indicated the possibility of a

 

Fig.  5.     (color  online)  Energy  systematics  for  the  low-lying
0+ states in  the Hg isotopes.  The size of  the dot  is  propor-
tional to the regular component of the wave function.

 

Fig.  6.     (color  online)  The  same  as Fig.  2,  for  Pt  isotopes.
IBM-CM results sourced from [21].
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100QPT being Zr, the critical nucleus.

0+1 0+i

0+2
B(E2 : 0+2 → 2+1 )

I(0+1 (A)→ 0+1 (A+2)) I(0+1 (A)→ 0+2 (A+2)) A = 100
0+

A = 100
E(0+2 )

A = 100
A = 100

0+2

100

A = 100

In  panel  (a)  of Fig.  7, (t,p)  two-neutron  transfer  in-
tensities from  in the parent nucleus to  in the daugh-
ter one for Zr isotopes, described using a single configur-
ation calculation,  are  shown.  As  complementary  observ-
ables,  the  excitation  energy  of  the  state  is  plotted  in
panel (b), and the  values are presented in
panel  (c)  .  Regarding  the  systematics  of  the  intensities,
one  notices  a  certain  drop  and  an  associated  increase  in

 and  at ,
whereas the transfer to other  states remains all the way
almost at zero, which supposes little fragmentation of the
strength even at , where a QPT is supposed to ex-
ist. Concerning the  excitation energy (panel (b)), a
minimum for  is observed; however, the energy of
the experimental one at  is significantly lower be-
cause it corresponds to a state of vibrational nature that is
not  considered  in  our  IBM  calculation,  which  uses  a
single configuration. In the present calculation, owing to
the use  of  a  single  configuration,  both  ground  and  ex-
cited  states  (intruder)  have  a  deformed  character.
Therefore, the  presented  energy  systematics  are  smooth-
er than the experimental one. The lowering of this excita-
tion energy with a  minimum for Zr  is  consistent  with
the presence of a critical point at .

B(E2 : 0+2 → 2+1 )
A = 100

For  (panel (c)),  the  situation  is  ana-
logous  and  the  decrease  when  passing  from  to

A = 102 is  smoother  than  the  experimental  observation.
This decrease is caused by the transformation of a spher-
ical  shape,  where the transition involves the change of  a
two-phonon state into a one-phonon state, to a deformed
one, where the transition implies the connection of states
belonging  to  different  irreps  (if  they  were  in  the SU(3)
limit).  When calculating  this  same observable  using  two
configurations, instead of modifying the Hamiltonian as a
function of  the neutron number to generate the observed
sudden change in deformation (see [40]), the onset of de-
formation is generated through the crossing of two famil-
ies,  one  spherical  and  the  other  deformed  (see  Section
3.1.1).  In  general,  all  the  analyzed  quantities  present  a
significantly faster rate of change.

B(E2 : 0+2 → 2+1 )

e = 2.8
√

W.u.
B(E2 : 2+1 → 0+1 )

100

E(2+1 ) E(4+1 )/E(2+1 )
E(0+2 )
100 0+2

Note  that  the  theoretical  values  of 
have  been  calculated  with  an  effective  charge

 , which has been fixed to reproduce the ex-
perimental  value  of  [40]. This  observ-
able  resembles  the  behavior  of  the  order  parameter  of  a
QPT,  with  a  null  value  in  one  of  the  phases  and a  rapid
increase when passing to the other. The observed behavi-
or  is  smoother  than  the  experimental  one  and  than  that
obtained using two configurations (see [23]). Clearly, the
smoother  trends  obtained  theoretically  in  this  subsection
are due to the use of a single configuration. This IBM cal-
culation (with  a  single  configuration)  was  tailored  to  re-
produce the rapid changes observed around Zr, such as
two-neutron separation energies, , and .
However  the  trend  for  cannot be  reproduced  cor-
rectly, in particular for Zr, because in this case the 
state  corresponds  to  a  regular  state  whereas  the  ground
state corresponds to the intruder one. In other words, the
passing  from  a  spherical  to  a  deformed  shape  has  been
generated,  changing  appropriately  the  parameters  of  the
Hamiltonian;  however,  when  regular  and  intruder  states
are involved simultaneously in the description of a given
observable, it  is  not  possible  to  provide  an  accurate  de-
scription using a single configuration.

I(0+1 (A)→ 0+1 (A+2)) > I(0+1 (A)→ 0+2 (A+2))

I(0+1 (A = 98)→ 0+1 (100)) < I(0+1 (98)→ 0+2 (100))

The  (t,p)  transfer  intensity  changes  are  smoother  for
single configuration calculations than for the two mixing-
configuration case. Moreover, for all  the isotopic chains,

 in  the  single
configuration  calculation;  for  the  configuration  mixing
study, , re-
flecting the crossing of two configurations (see Fig. 2).
3.2.2.    Two-neutron transfer intensities in the even-even

Pt isotope chain (single configuration)

172−196

In  this  section,  we  study  the  systematics  of  the  two-
neutron transfer  intensity  of  even-even Pt  isotopes  using
the IBM  Hamiltonian  with  a  single  configuration  ob-
tained in [41],  wherein the excitation energy systematics
and the E2 transition rates of the even-even Pt iso-
topes  have  been  described  adequately.  We  generate  the
wave  functions  and  study  the  two-neutron  transfer

 

0+1 0+i

0+2 B(E2 : 0+2 → 2+1 )

Fig. 7.    (color online) (a) (t,p) transfer intensities for Zr iso-
topes  from  in  the  parent  nucleus  to  in  the  daughter
one,  given  in  arbitrary  units,  using  the  IBM  with  a  single
configuration  and  the  parameters  from [40].  (b)  Excitation
energy of state . (c)  values.
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without any additional parameter fitting.

0+2
B(E2 : 0+2 → 2+1 )

I(0+1 (A)→ 0+1 (A+2))

I(0+1 (A)→ 0+2 (A+2)) A = 176
0+2

A = 182

B(E2 : 0+2 → 2+1 )

In  panel  (a)  of Fig.  8, (t,p)  two-neutron  transfer  in-
tensities in Zr isotopes obtained using a single configura-
tion calculation  are  shown.  As  complementary  observ-
ables,  the  excitation  energy  of  is  plotted  in  panel  (b)
and the  values are depicted in panel (c).
Regarding the systematics of the intensities, one notices a
relatively constant and large value of ,
with  the  rest  of  intensities  being  almost  zero  except  for

 at . The excitation energy of
the  state depicted  in  panel  (b)  exhibits  a  rather  con-
stant  value,  which  is  not  affected  by the  presence  of  the
midshell at . Although slowly, the structure of the
state is evolving along the isotope chain, as can be read-
ily  seen  in  the  continuous  drop  in  the 
value (panel  (c));  however,  there is  almost  no impact  on
the value of the (t,p) transfer intensity.

The  Hamiltonian  obtained  in  [41]  provides  a  sound
and detailed description of the spectroscopic properties of
the whole isotope chain, almost as good as that obtained
using IBM-CM [21]. Furthermore, the values of the two-
neutron intensities  provided  by  both  approaches  are  al-
most equal.
3.2.3.    Two-neutron transfer intensities in the even-even

Sm isotope chain (single configuration)

N = 90

0+

eeff =2.2
√

W.u.

B(E2 : 4+1 → 2+1 ) A = 152

The  Sm  isotope  chain  is  considered  a  clear  example
of  a  QPT  from  spherical  to  axially  deformed  shapes  at

.  There are many indications of abrupt changes in
this  isotope  chain:  the  two-neutron  separation  energies,
B(E2) values,  energy ratios,  etc.  In  Ref.  [42],  systematic
calculations  for  a  large  set  of  isotopes,  including  Sm,
have been performed using IBM with a single configura-
tion.  In  this  section,  we  use  the  IBM parameters  for  the
case of even-even Sm isotopes without any fine-tuning to
generate  the  corresponding  wave  functions.  With  these
conditions,  the  two-neutron  transfer  intensities  between

 states in  the  initial  and  final  nuclei  have  been  calcu-
lated. To compute B(E2) values, we considered the same
effective charge for the whole chain,  (this
value of the effective charge reproduces the experimental
value  in ).

0+

0+

0+2
B(E2 : 0+2 → 2+1 )

0+2

In Fig. 9, the values of the calculated (t,p) transfer in-
tensities from the  ground state into the first five low-
lying  states in the daughter nucleus have been plotted
in panel  (a).  In  panel  (b),  the  systematics  of  the  excita-
tion  energies  of  the  states  are  presented.  Finally,  the

 values  are  depicted  in  panel  (c).  Note
that,  in  panel  (b),  the drop in the  energy is  somehow
similar to that in the presence of intruder states, although
the minimum is not placed at midshell, but where a QPT
is  supposed  to  exist.  Note  that  the  rare-earth  region  is
known  by  the  interplay  between  quadrupole  degrees  of
freedom  and  pairing  vibrations,  as  reported  recently  in
[43]. Considering that a phenomenological IBM Hamilto-

B(E2 : 0+2 → 2+1 )
A = 150 A = 154

nian has been used in [42] to describe the excitation ener-
gies and B(E2) transition rates, it is expected that quadru-
pole and pairing degrees of freedom have been incorpor-
ated  correctly.  In  panel  (c),  an  abrupt  change  in

 is evident, from a reasonably large value
to basically zero when passing from  to ,

 

Fig.  8.     (color  online)  The  same  as Fig.  7,  for  Pt  isotopes.
IBM results sourced from [41].

 

Fig.  9.     (color  online)  The same as Fig.  7,  for  Sm isotopes.
IBM results sourced from [42].
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I(0+1 (A)→ 0+2 (A+2))
I(0+1 (A)→ 0+1 (A+2))

A = 150→ 152 N = 90
0+3 0+4 0+5

I(0+1 (A)→0+1 (A+2))> I(0+1 (A)→
0+2 (A+2))

which resembles the behavior of an order parameter in a
QPT. As for  the (t,p)  intensity  values  presented in  panel
(a), a sudden increase in  accompan-
ied  by  a  decrease  in  is  observed  at

 ( ). The two-neutron transfer intens-
ities of , ,  and  in the daughter nucleus are signi-
ficantly  small.  Note  that 

.  A  previous  IBM  calculation  reported  in  [44]
provides almost identical results.

0+3,4,5

The results  of  this  case are similar  to those observed
in the IBM calculation with a single configuration for Zr,
although the  intensities  of  states  in  the  case  of  Sm
are a little higher than those for Zr.  Therefore, there is a
certain degree of fragmentation of the (t,p) strength in Sm.

150−152
Recently, a two-level mixing calculation has been re-

ported  for Sm  isotopes  [45];  this  calculation  tried
to  reproduce  two-neutron  transfer  intensities  and E2
transition rates.  It  concluded that  a  moderate  mixing ex-
ists between two families of states.

4    Conclusions

0+

In  this  study,  we  calculated  the  values  of  the  (t,p)
two-neutron  transfer  intensities  by  taking  advantage  of
the  previous  systematic  studies,  using the  IBM with  and
without configuration mixing in the regions of Zr, Pb, and
Sm, which provided the corresponding wave functions of
the  low-lying  states  in  each  isotope  chain.  Next,  we
calculated  the  value  of  the  intensity  without  additional
tuning.  Our  main  objective  was  to  confirm  whether  the
two-neutron intensity  is  a  reliable  observable  to  distin-
guish  between  the  existence  of  shape  coexistence  and
QPT,  as  previously  suggested  in  [15, 16],  where  the
schematic calculations indicated that  the two-neutron in-
tensities suffer abrupt changes in both cases, although the
intensity is significantly more fragmented in the presence
of a quantum phase transition than shape coexistence.

A = 100

The  first  studied  chain  of  isotopes  was  Zr.  We  used
both approaches,  IBM-CM and  IBM,  with  a  single  con-
figuration. In both cases, a rapid change in the (t,p) trans-
fer  intensity  at  was  seen.  The  change  was  more
abrupt in  the  case  of  shape  coexistence.  No  fragmenta-
tion was  observed  in  the  QPT case.  Evidently,  the  pres-
ence or absence of fragmentation in the case of a QPT de-
pends on the precise characteristics of the used Hamilto-
nians,  which  is  fragmented  in  the  schematic  calculation
shown in [12, 15, 16] but not in the realistic case shown
here.

The second case was the Hg isotope chain, which was
studied using IBM-CM alone [20] because  it  is  not  pos-
sible to describe the experimental spectroscopic systemat-
ics  when  using  IBM  with  a  single  configuration.  In  this
case, there  was  no  significant  impact  of  shape  coexist-

ence  on  the  value  of  the  intensities  because  the  intruder
configuration was always well above the regular one, and
the two hardly mixed.

0+1 0+2

0+1
0+2

The  third  case  corresponds  to  the  Pt  isotope  chain,
which  has  been  analyzed  using  both  the  IBM-CM  [21,
22] and the IBM with a single configuration [41]. The ob-
tained  systematics  are  somehow  surprising  owing  to  the
large mixing  before  and  after  the  midshell,  which  is  ex-
pected to affect strongly the two-neutron intensities in the

 and  states of the daughter nuclei; however, the par-
ticular  phases  of  the  different  components  of  the  wave
function  produce  a  constructive  impact  on  the  state
and a destructive impact on the  state.

0+1 0+2

The  final  case  was  the  chain  of  Sm  isotopes,  which
was studied using an IBM Hamiltonian with a single con-
figuration [42]. Clearly, the presence of a QPT had signi-
ficant  impact  on  the  two-neutron  intensity,  affecting  the
transitions  in  the  and  states, but  without  any  fur-
ther fragmentation. This result is in disagreement with the
conclusion  reported  in  [12, 15, 16],  where  a  schematic
QPT was  simulated  and  a  large  fragmentation  was  ob-
served, which suggested that the results should be sensit-
ive to the precise characteristic of the Hamiltonian evolu-
tion along the isotope chain.

πg9/2 νg7/2
πh11/2 νh9/2

The evolution of nuclear structure is the result of the
fine  balance  of  the  nuclear  interaction.  This  can  be
schematically  understood  in  terms  of  the  competition
between the  quadrupole  interaction,  which  tends  to  de-
form the nucleus, and the monopole part, which is signi-
ficantly  dependent  on  the  specific  orbitals  around  the
shell  closures.  This  tends  to  keep  the  nucleus  spherical.
This competition is at the origin of the appearance of de-
formation in the nuclear  chart.  In the case of  Zr and Sm
isotopes, where a rapid onset of deformation appears, the
competition can be understood easily in terms of the im-
pact suggested by Federman and Pittel in 1979 [46]. They
emphasized the importance of the simultaneous filling of
neutron and proton spin-orbit partners (  and  in
the case of Zr, and  and  in the case of Sm) to
understand the appearance of deformation. In the case of
Zr,  the  description  of  the  spectroscopic  properties  needs
the inclusion of an intruder configuration, which is not in
the  case  corresponding  to  Sm,  although  there  is  a  rapid
onset  of  deformation  in  both  cases  and  several  states
present significantly different degrees of deformation (see
[17]  for  Zr  and  [19]  for  Sm).  In  both  cases,  there  is  a
strong  impact  on  two-neutron  transitions;  however,  the
precise trend along the chain depends on the precise  de-
tails of  the  interaction,  and  it  is  not  possible  to  disen-
tangle clearly the shape coexistence from the QPT by us-
ing only the two-neutron transfer intensity.
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