
 

Thermodynamics in rotating anti-de Sitter black holes with massive
scalar field in three dimensions*
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Abstract: We investigated the tendency in the variations of CFT2 when a rotating AdS3 black hole changes because
of  the fluxes  transferred by the scattering of  a  massive scalar  field  according to  the anti-de Sitter  (AdS)/conformal
field theory (CFT) correspondence. The conserved quantities of the black hole are definitely constrained by the ex-
tremal condition. Moreover, the laws of thermodynamics provide a direction for the changes in the conserved quantit-
ies. Therefore, the black hole cannot be extremal under the scattering; this is naturally preferred. According to the re-
lationship between the rotating AdS3 black hole and dual CFT2, we find that such changes in the black hole constrain
the variations  in  the  eigenstates  of  dual  CFT2.  Furthermore,  the  tendency  in  the  variations  is  closely  related  to  the
laws of thermodynamics.
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1    Introduction

Black  holes  are  a  type  of  compact  objects  with  an
event  horizon  from  which  all  particles,  including  light,
cannot  escape.  Owing  to  the  effect  of  this  boundary,  an
observer located  outside  the  black  hole  is  unable  to  de-
tect  emissions  from  the  horizon.  However,  considering
the quantum effects, black holes discharge a small quant-
ity of  emission called Hawking radiation [1, 2]. Accord-
ingly,  black holes  can be  considered as  radiative  objects
with  the  Hawking  temperature.  They  are  also  known  to
have  an  irreducible  mass  that  does  not  decrease  during
any physical  process  [3–6].  Focusing  on  this  irreducible
nature, which  is  similar  to  the  second  law  of  thermody-
namics, the entropy of black holes is found to be propor-
tional  to  the  surface  area  of  the  horizon [7, 8].  Hence,  a
black  hole  can  be  considered  as  a  system  having  both
Hawking temperature and Bekenstein–Hawking entropy.
Based on these variables,  we have identified the laws of
thermodynamics applicable to black holes.

The  thermodynamic  properties  of  black  holes  are
defined at the horizon. In this case, because of its nature,
the horizon acts as the effective surface of the black hole,
separating the inside of the hole from the outside. In par-

ticular,  the  horizon  hides  the  curvature  singularity  from
an  outside  observer.  A  naked  singularity  observed
without the horizon can cause the breakdown of a causal
structure; hence,  the singularity is  conjectured to be hid-
den  by  the  horizon.  This  is  known  as  the  weak  cosmic
censorship  conjecture  (WCCC) [9, 10].  The WCCC was
first  tested  in  Wald's  gedanken  experiment  for  the  Kerr
black  hole  by  adding  a  test  particle  [11].  Thereafter,  the
WCCC has been actively studied for various black holes
and test channels. Based on particle addition, the WCCC
has  also  been  investigated  considering  several  effects,
such as self-force and back-reaction effects [12– 30]. Fur-
thermore, the WCCC can be examined based on the scat-
tering of an external field because the back-reacted black
hole alters  its  states  depending  on  the  modes  of  the  ex-
ternal  field  [31– 45].  Although  the  external  field  affects
the  black  hole,  the  changes  in  the  hole  are  in  agreement
with the laws of thermodynamics, which ensure the valid-
ity of the WCCC [20, 36]; therefore, the laws of thermo-
dynamics are closely associated with the WCCC.

The thermodynamics of black holes is also important
in terms  of  the  anti-de  Sitter  (AdS)/conformal  field  the-
ory (CFT)  correspondence.  Here,  the  gravity  theory  de-
scribed in the AdS spacetime is related to the CFT in its
one-dimensional  lower  boundary  [46– 49].  According  to
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the  AdS/CFT  correspondence,  the  properties  of  AdS
black holes  provide  meaningful  insights  into  the  physics
of dual  CFTs.  The thermodynamics of  black holes is  re-
lated  to  that  of  the  dual  CFT.  Moreover,  because  the
Hawking  radiation  provides  the  temperature  of  a  black
hole,  the  dual  CFT  associated  with  the  AdS  black  hole
has a finite temperature provided by the Hawking temper-
ature that is identical to that of the AdS black hole in the
bulk  [50].  Furthermore,  in  three-dimensional  AdS  black
holes, the generators of diffeomorphisms can be obtained
such that  they  preserve  the  asymptotic  boundary  condi-
tions and obey the Virasoro algebra with a specific cent-
ral  charge  [51];  thus,  we can determine  the  dual  CFT to
AdS3.  Remarkably,  when AdS3 black  holes  are  assumed
to be an excitation from the zero-mass vacuum, the Cardy
formula corresponds to the Bekenstein–Hawking entropy
[52]. The AdS/CFT correspondence has been extended to
various topics, such as quantum chromodynamics (QCD)
[53–56] and condensed matter theory (CMT) [57, 58]. In
particular, AdS3 black holes, which are considered in this
study, are dual to holographic superconductors [59–61] in
terms of the AdS/CMT correspondence.

In this research, the variation tendency of CFT2 is in-
vestigated  as  the  rotating  AdS3 black hole  changes  be-
cause  of  the  flux  transfer  caused  by  the  scattering  of  a
massive scalar field on the gravity side. On this side, the
variables of  black  holes,  such  as  mass  and  angular  mo-
mentum, are  bounded by  the  extremal  condition.  In  par-
ticular, the  laws  of  thermodynamics  ensure  that  the  ex-
tremal condition  functions  as  a  physical  boundary.  Not-
withstanding the  AdS/CFT correspondence,  the  dual  de-
scription  of  the  extremal  condition  remains  unclear.  The
rotating AdS3 black hole is a well-studied case that is dir-
ectly related to dual CFT2; hence, the implications of dual
CFT2 may  be  determined  with  respect  to  the  extremal
condition while ensuring that the second and third laws of
thermodynamics for  black  holes  are  satisfied.  Further-
more, according to the third law, the temperature of black
holes  cannot  be  zero  because  of  any  physical  processes,
such as  the scattering of  a  scalar  field considered in this
study.  The  dual  description  regarding  the  zero-temperat-
ure  bound  is  also  investigated.  Therefore,  the  bound
found  in  dual  CFT2 is enforced  by  the  second  law.  Fi-
nally, the relationship of the bounded behaviors between
the  rotating  AdS3 black  hole  and  dual  CFT2 is  obtained
for  the  variations  originating  from  the  scattering  of  the
massive scalar field.

The  remainder  of  this  paper  is  organized  as  follows.
In  Section  2,  the  relationship  between  the  rotating  AdS3
black  hole  and  its  dual  CFT2 is  briefly  reviewed.  In
Section  3,  the  solution  to  the  scattering  of  a  massive
scalar field at  the horizon of the black hole is  described.
In  Section  4,  the  effects  of  the  scalar  field  on  the  black
hole  are  described  in  terms  of  the  fluxes  of  the  scalar

field.  The  variations  in  the  dual  CFT2 originating  from
the  changes  in  the  black  hole  caused  by  the  scalar  field
are described  in  Section  5.  The  results  are  briefly  sum-
marized in Section 6.

2    Review  of  rotating  AdS3 black  hole  and
dual CFT2

The relationship between the rotating AdS3 black hole
and its dual CFT2 is considered under the changes caused
by the  scattering  of  a  scalar  field.  The  AdS/CFT corres-
pondence is well-constructed for the rotating AdS3 black
hole.  Moreover,  the  entropy  of  black  holes  according  to
the  microscopic  derivation  is  well  explained  in  [51, 52].
Here,  the derivation is  briefly introduced to elucidate  on
the  dual  description  for  the  AdS3 black  hole.  The  three-
dimensional action with a cosmological constant is

S =
1

16πG

∫
d3x
√−g

(
R+

2
ℓ2

)
, (1)

ℓ

ℓ≫G
S L(2,R)L ⊗S L(2,R)R

where R is the curvature, and  is the AdS radius. Consid-
ering dual CFT2, the AdS radius is assumed in the semi-
classical  limit,  such  as . The  action  in  Eq.  (1)  in-
cludes the AdS3 spacetime in an  iso-
metry group. To define dual CFT2 at the boundary of the
AdS3 bulk, the asymptotic boundary condition is given by
[52]

gtt = −
r2

ℓ2
+O(1), gtϕ = O(1), gtr = O(r−3),

grr =
ℓ2

r2 +O(r−4), grϕ = O(r−3), gϕϕ = r2+O(1). (2)

Ln
L̄n −∞ < n < +∞

c =
3ℓ
2G

c =
3ℓ
2G

Diffeomorphisms can be constructed to preserve Eq. (2).
The generators of diffeomorphisms are defined as  and

 with ; these  also  obey  the  Virasoro  al-
gebra  with  the  central  charge .  This  implies  that

CFT2 with  is  dual  to  the  gravity  theory  on  the
AdS3 bulk.

r = rh

The rotating  AdS3 black  hole  with  mass, M, and  an-
gular  momentum,  J,  has  an  AdS3 boundary  that  satisfies
Eq. (2) [62, 63]. When the horizon is located at , its
metric is expressed as [52]

ds2 = −N2dt2+ρ2(Nϕdt+dϕ)2+
r2

N2ρ2 dr2, (3)

and

N2 =
r2(r2− r2

h)

ℓ2ρ2 , Nϕ = −4GJ
ρ2 , ρ

2 = r2+4GMℓ2− 1
2

r2
h,

r2
h = 8Gℓ

√
M2ℓ2− J2.

(4)
This metric significantly differs from that of the Bañados,

Chinese Physics C    Vol. 44, No. 12 (2020) 125106

125106-2



Teitelboim, and Zanelli (BTZ) black hole in [62, 63] be-
cause  the  metric  in  Eq.  (3)  is  transformed  to  associate
CFT2. The rotating velocity at the horizon is

Ωh =
4GJ
ρ2

h

, ρ2
h =

1
2

r2
h +4GMℓ2. (5)

The Hawking  temperature  and  Bekenstein–Hawking  en-
tropy are expressed as

TH =
4G
√

M2ℓ2− J2

πℓρh
, S BH =

π
√

16GMℓ2+2r2
h

4G
. (6)

c =
3ℓ
2G

M = J = 0

M = − 1
8G

− 1
8G
< M < 0

L0 L̄0

The  dual  theory  is  still  CFT2 with  because  the
boundary condition in Eq. (3) satisfies Eq. (2). However,
the metric of the AdS3 spacetime is not at  but
at .  Hence,  the  black hole  and AdS3 spacetime
are  locally  equivalent  [52].  The  black  hole  in  Eq.  (3)  is
regarded as the finite mass excitation from the black hole
with  (M =  0)  because  of  the  naked  singularity  in

. Thus, the mass and angular momentum are
related to generators  and  as follows:

M =
1
ℓ

(L0+ L̄0), J = L0− L̄0. (7)

Therefore,  the  Cardy  formula  for  the  asymptotic  growth
of the states of dual CFT2 is

S CFT = 2π
√

cnR

6
+2π

√
cnL

6
, (8)

nR nL L0 L̄0where  and  are  the  eigenvalues  of  and , re-
spectively.  According  to  Eq.  (7),  the  Cardy  formula  in
Eq. (8) can be rewritten in terms of M and J of the black
hole,  exactly  corresponding  to  the  Bekenstein –Hawking
entropy [52]:

S CFT = π

√
ℓ(ℓM+ J)

2G
+π

√
ℓ(Mℓ− J)

2G
= S BH. (9)

Therefore, the  Bekenstein –Hawking  entropy  microscop-
ically originates from the asymptotic growth of the states
of CFT2. Considering this correspondence, the changes in
the rotating AdS3 black hole caused by the scattering of a
massive  scalar  field  and  the  impact  of  these  changes  in
terms of CFT2 are examined herein.

3    Solution to massive scalar field

The fluxes of a massive scalar field are considered to
be  scattered  by  the  rotating  AdS3 black  hole.  Owing  to
the energy and angular momentum of the scalar field that
are transferred to the black hole during the scattering, the
black hole changes. These transferred energy and angular
momentum  can  be  estimated  based  on  the  fluxes  of  the
scalar  field  at  the  horizon.  Therefore,  according  to  Eq.

(7), the changes in the black hole can be related to those
in dual CFT2. The general procedure and convention fol-
lowed are those reported in [36, 42, 64]. Note that such a
scalar solution has also been reported in [65] for the met-
ric  of  the  BTZ  black  hole  [62, 63].  The  action  of  the
massive scalar field begins as

SΨ = −
1
2

∫
d3x
√−g

(
∂µΨ∂

µΨ∗+µ2ΨΨ∗
)
, (10)

µwhere the mass of the scalar field is considered as to in-
clude  the  null  and  timelike  cases  in  terms  of  a  particle.
Consequently, the equation of motion of the scalar field is
obtained as

1
√−g
∂µ

(√−ggµν∂νΨ
)
−µ2Ψ = 0. (11)

This is rewritten as

− 1
N2 ∂

2
tΨ+

2Nϕ

N2 ∂t∂ϕΨ+
1
r
∂r

(
N2ρ2

r
∂rΨ

)
+

(
− (Nϕ)2

N2 +
1
ρ2

)
∂2
ϕΨ−µ2Ψ = 0, (12)

ω

where  the  angular  parts  and  time  are  easily  separated.
Thus,  the  solution  of  the  scalar  field  is  considered  with
the separation constants  and m corresponding to its fre-
quency and angular number, respectively:

Ψ(t,r,ϕ) = e−iωteimϕR(r). (13)
The remaining radial equation becomes

1
R(r)
∂r

(
N2ρ2

r
∂rR(r)

)
+

(
ω2

N2 +
2ωmNϕ

N2

+

(
(Nϕ)2

N2 −
1
ρ2

)
m2−µ2

)
r = 0. (14)

This  radial  equation  (Eq.  (14))  can  be  rewritten  and
solved in the tortoise coordinate defined as

dr∗

dr
=

r
N2ρ2 . (15)

(rh,+∞) (−∞,0)The interval  in the r coordinate becomes 
in  the  tortoise  coordinate.  The radial  equation (Eq.  (14))
is simplified as

1
R(r)

d2R(r)
dr∗2

+

(
ω2+2ωmNϕ+

(
(Nϕ)2−N2

ρ2

)
m2−µ2N2

)
ρ2=0,

(16)
which should be satisfied by an exact solution to the scal-
ar  field.  To solve  Eq.  (16),  two boundary  conditions  are
necessary for the horizon and radial infinity. There is no
alternative for  the  boundary condition at  the  horizon be-
cause the scalar field is ingoing into the horizon; accord-
ingly, the reflection rate is assumed to be zero. However,
the  boundary  condition  at  the  radial  infinity  can  be
defined  in  various  ways.  Nevertheless,  it  is  ensured  that
the  two boundary  conditions  also  satisfy  Eq.  (16).  Here,
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r→ rh

the fluxes of the scalar field are significant to estimate the
energy and angular momentum transferred from the scal-
ar field into the black hole. Hence, the fluxes may be ob-
tained without fixing the boundary condition at the radial
infinity because they are solely the solution to the scalar
field at the horizon. To obtain these fluxes, the foregoing
solution  should  be  determined.  Equation  (16)  is  reduced
by  setting .  Then,  at  the  horizon,  the  scalar  field
satisfies

1
R(r)

d2R(r)
dr∗2

+ (ω−mΩh)2 ρ2
h = 0. (17)

The solution of the scalar field to Eq. (17) is also the ex-
act solution to Eq. (16), because Eq. (17) is simply the re-
duced form  of  Eq.  (16)  at  the  horizon.  The  radial  solu-
tions to Eq. (17) at the horizon are

R(r) = e±i(ω−mΩh)ρhr∗ . (18)

The  plus  and  minus  signs  in  the  solutions  indicate  the
outgoing and ingoing scalar fields, respectively. Note that
these  radial  solutions  are  independent  of  the  boundary
condition at  the radial  infinity.  Therefore,  Eq. (18) is  in-
variably  the  solution  regardless  of  the  chosen  boundary
condition  at  the  radial  infinity.  Here,  it  is  assumed  that
the  ingoing  scalar  field  is  scattered  by  the  black  hole;
hence,  the  radial  solution  should  describe  an  ingoing
wave with a minus sign in Eq. (18). The solutions to the
ingoing scalar field are

Ψ = e−iωteimϕe−i(ω−mΩh)ρhr∗ : ingoing,

Ψ∗ = eiωte−imϕei(ω−mΩh)ρhr∗ : conjugate. (19)

By applying these solutions, the energy fluxes and angu-
lar momentum flowing into the black hole are derived.

4    Fluxes in black hole and states in dual CFT2

nR nL

Based on the fluxes of the scalar field, the amount of
mass  and  angular  momentum  flowing  into  the  rotating
AdS3 black  hole  may  be  estimated.  Accordingly,  the
changes in the mass and angular momentum of the black
hole can  be  specified  for  an  initial  condition.  Further-
more, because the conserved quantities of the black hole
are  directly  related  to  states  and  in  Eq.  (7),  these
changes  are  also  associated  with  the  variations  in  dual
CFT2 [64].

The fluxes of  the scalar  field are  defined in terms of
its energy–momentum tensor expressed as

Tµν = ∂(µΨ∂ν)Ψ
∗−gµν

(
1
2
∂µΨ∂

µΨ∗− 1
2
µ2ΨΨ∗

)
. (20)

The  energy  and  angular  momentum  fluxes  are  obtained
as

dE
dt
=

∫
T r

T
√−gdΦ = 2πω(ω−mΩh)ρh,

dJ
dt
=−

∫
T r
ϕ

√−gdΦ = 2πm(ω−mΩh)ρh,
dJ
dt
=
ω

m
dE
dt
.

(21)

(ω,m)
ω > mΩh

ω < mΩh

dt

The energy and angular momentum of the scalar field are
conserved quantities because they are added to the corres-
ponding quantities of the black hole, i.e., mass, and angu-
lar  momentum.  Note  that  the  signs  of  the  fluxes  in  Eq.
(21)  depend  on  the  modes  of  the  scalar  field .  If

,  then the ingoing scalar field adds its energy to
the black hole. However, if , then the energy flux
is  negative;  thus,  the  scalar  field  becomes  an  outgoing
wave  and  extracts  energy  from  the  black  hole.  This  is
called the superradiance. The analysis includes both pos-
itive  and  negative  flux  cases.  According  to  the  fluxes  in
Eq. (21),  the exact changes in the mass and angular mo-
mentum during the infinitesimal time interval, , may be
explained.

dM = 2πω(ω−mΩh)ρhdt, dJ = 2πm(ω−mΩh)ρhdt. (22)

(M, J)
(M+dM, J+dJ)

The  changes  in  Eq.  (22)  above  are  caused  by  the  scalar
field;  hence,  the  initial  black hole  of  becomes the
final black hole of  with as much energy
and angular momentum transferred from the scalar field.
The  thermodynamic  properties  of  the  black  hole  depend
on the mass and angular momentum, causing infinitesim-
al changes in the properties.  In particular,  the validity of
Eq. (22) can be ensured because these changes agree with
the  laws  of  thermodynamics.  Note  that  the  energy  scale
of the scalar field is assumed to be small compared to that
of  the  black  hole.  Therefore,  the  scattering  of  the  scalar
field still conserves geometric symmetry, and the form of
the metric is retained.

S BH(M, J) S BH(M+dM, J+dJ)

The  black  hole  entropy,  which  is  a  function  of  mass
and angular momentum, is given in Eq. (6). Hence, by the
fluxes  of  the  scalar  field,  the  black  hole  undergoes
changes indicated  in  Eq.  (22).  The  foregoing  also  infin-
itesimally  varies  the  entropy  of  the  black  hole  from

 to . The entropy change is

dS BH =S BH(M+dM, J+dJ)−S BH(M, J)

=
∂S BH

∂M
dM+

∂S BH

∂J
dJ, (23)

rh ρh (M, J)
(M, J)

where  and  can  be  written  in  terms of ;  thus,
the  independent  variables  are  only .  Then,  the
change in entropy is obtained as

dS BH =
π2ρ2

hℓ(ω−mΩh)2dt

4G
√

M2ℓ2− J2
> 0. (24)

The entropy  for  any  initial  state  of  the  black  hole  in-
creases for the arbitrary modes of the scalar field. This ir-
reducible  entropy  is  the  second  law  of  thermodynamics.
Note that this is consistent with [65] for the metric of the
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BTZ  black  hole.  Furthermore,  by  combining  Eqs.  (22)
and (24), it is found that

dM = THdS BH+ΩhdJ. (25)
which is the first  law of thermodynamics.  Therefore,  the
analysis on the scattering of the scalar field is congruent
with  the  laws  of  thermodynamics  and  ensures  that  Eq.
(22) is physically reasonable.

Accordingly,  the  variation  in  the  eigenvalues  in  the
dual  CFT  may  be  determined  under  the  changes  in  the
mass and  angular  momentum given  in  Eq.  (22).  The  ei-
genvalues are related to the mass and angular momentum
of  the  black  hole,  as  indicated  in  Eq.  (7).  The  changes
between the  initial  and  final  black  holes  can  be  demon-
strated by the corresponding eigenvalues in the dual CFT.
Hence, the relationship between the changes in the black
hole and dual CFT may be derived as follows:

dnR =π(ω−mΩh)(ωℓ+m)ρhdt,

dnL =π(ω−mΩh)(ωℓ−m)ρhdt. (26)

Equation  (26)  provides  the variation  tendency  in  dual
CFT2 originating  from  the  changes  in  the  black  hole
caused by the scattering of the scalar field.

5    Variations in dual CFT2

In this section, the bounded behaviors of the rotating
AdS3 black hole and their implications for dual CFT2 are
discussed.  Owing  to  the  transferred  energy  and  angular
momentum, the mass and angular momentum of the black
hole changes under constraints,  such as the laws of ther-
modynamics. Hence, the changes in the black hole are re-
lated  to  the  variations  in  the  eigenvalues  for  dual  CFT2
and may be analyzed.

5.1    Non-zero states

TH(M, J)

The  mass  and  angular  momentum  transferred  by  the
fluxes  of  the  scalar  field  alter  various  properties  of  the
black  hole.  Among  these  properties,  a  relevant  quantity
for measuring the tendency of changes depending on the
scalar  field  is  the  Hawking  temperature.  Owing  to  the
scalar  field  fluxes,  the  temperature, ,  changes
during the infinitesimal time interval:

TH(M+dM, J+dJ) =
∂TH

∂M
dM+

∂TH

∂J
dJ, (27)

where
∂TH

∂M
=

4GMℓ

πρh
√

M2ℓ2− J2
− 2G
πρh
,

∂TH

∂J
=

8GJ
πρ3

h

− 4GJ

πℓρh
√

M2ℓ2− J2
.

Using Eq. (22),  the temperature change during the infin-
itesimal time interval is given by the following:

dTH =
4Gℓ(4GJ2+Mρ2

h)

ρ2
h

√
M2ℓ2− J2

(ω−mΩh)

×
ω−m

J(4GMℓ2+ρ2
h)

ℓ2(4GJ2+Mρ2
h)

dt. (28)

The change in Eq. (28) depends on the initial state of the
black hole and the modes of the scalar field; therefore, the
temperature  may  either  increase  or  decrease.  However,
when the initial black hole becomes extremal, the temper-
ature change exhibits a tendency. To denote the extremal-
ity of the black hole, the following is introduced:

δ ≡ M2ℓ2− J2. (29)
δ

δ≪ 1

When  is zero, the black hole is extremal. The change in
Eq.  (28)  is  divergent  to  the  extremal  black  hole;  thus,  it
can  be  expanded  under  the  near-extremal  condition,

 [42]. Equation (28) becomes

dTH =
8GMℓ
√
δ

(ω−mΩe)2dt+O(δ0), Ωe =
J

Mℓ2
, (30)

Ωe

(M, J)

(ω,m)

300

(M, J)

where  is  the  angular  velocity  of  the  extremal  black
hole. When the black hole becomes extremal, the leading
term  in  Eq.  (30)  becomes  dominant  and  positive  for  all
modes of the scalar field. This implies that the temperat-
ure  of  the  near-extremal  black  hole  invariably  increases.
However,  the  temperature  of  an  extremal  black  hole  is
zero,  indicating that  a  non-extremal  black  hole  cannot
evolve to an extremal black hole under this physical pro-
cess.  This  agrees  with  the  third  law  of  thermodynamics
presented  in  [66].  In  other  words,  the  black  hole  cannot
achieve zero surface gravity via a finite physical process.
Thus, we conclude that the third law of thermodynamics
remains  valid  when  the  scaterring  of  the  scalar  field  is
used; details  regarding  the  temperature  are  depicted  in
Fig. 1. Here, each point  represents the initial state
of the  black  hole,  and  the  colors  represent  the  temperat-
ure  variations  for  the  given  modes  is  pre  of  the
scalar  field.  The  sign  of  the  change  is  more  important
than  the  value  of  the  change.  Accordingly,  the  sign  of
temperature change  is  preserved  using  a  hyperbolic  tan-
gent  function.  It  should  be  noted  that  the  denominator
(i.e., )  is  arbitrarily  chosen.  According  to Fig.  1,  the
temperature variations  may  be  positive  or  negative  de-
pending on  the  initial  states.  In  particular,  when  the  ini-
tial  states  approach  the  extremal  condition,  sudden  and
large  positive  changes  occur,  as  presented  in  Eq.  (30).
Thus,  based  on  the  third  law  of  thermodynamics,  it  is
concluded that a black hole cannot be extremal. This im-
plies  that  the extremal  condition acts  as  a  type of  bound
to  attain  the  extremal  condition  in  the  parameter  space

. Note  that  the  third  law has  various  versions.  Ac-
cording to  the  Nernst  theorem,  in  the  limit  of  zero  tem-
perature, an isothermal reversible process can be an isen-
tropic  process,  and  zero  temperature  cannot  be  attained
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by finite processes.  Among these  versions,  Planck's  ver-
sion is more definitive: the entropy of the system is an ab-
solute  constant  that  can  be  considered  zero  [67].
However,  the  third  law  is  not  as  robust  as  the  first  and
second  laws.  In  particular,  relative  to  black  holes,  Wald
showed  that  the  entropy  cannot  be  zero;  thus,  the  third
law is  violated  in  some  systems  [68].  Here,  the  focus  is
set  on  the  version of  Bardeen,  Carter,  and Hawking:  the
zero surface gravity cannot be attained in the finite opera-
tion of  black holes [66]. In an asymptotically flat  space-
time, this version of the third law was shown to be valid
in [67]. The analysis of Eq. (30) may be a specific proof
about the third law in the asymptotically AdS black hole
in three  dimensions.  The  significance  of  the  bounds  ori-

ginating  from  the  third  law  of  thermodynamics  in  dual
CFT2 according  to  the  AdS/CFT  correspondence  is
demonstrated.

(nL,nR)
The third law for the black hole side acts as a bound

for  the  eigenvalues .  According  to  the  third  law,
the extremal condition cannot be saturated via a physical
process.  In  terms  of  the  eigenvalues  related  to  the  dual
CFT, the extremal condition is rewritten as

δ = (nR+nL)2− (nR−nL)2. (31)
δ nR nR

δ
nR nR

δ

To  make  equal  to  zero,  and/or  should  be  zero.
However,  because the third law prevents  from becom-
ing zero, neither  nor  can be zero for a process. For
the eigenvalues corresponding to the non-extremal  black
holes, the variation of  is

dδ =
∂δ

∂nR
dnR+

∂δ

∂nL
dnL =

8π(m(nL−nR)+ (nL+nR)ℓω)
(
m(nL−nR)+

(
nL+nR+2

√
nLnR

)
ℓω

)
√(

nL+nL+2
√

nLnR
)
ℓ

. (32)

δ nR = 0
nL = 0

M = 0
nR = nR = 0

M = 0 nR = nR = 0

This  can  be  observed  in Fig.  2,  which  is  rescaled  using
the hyperbolic  tangent  to  preserve  the  sign  of  temperat-
ure  change.  The  eigenvalues  cannot  be  zero  under  the
variations because the change in  is positive near 
or .  Interestingly,  this  implies  that  the  black  hole
cannot be an  vacuum by extracting its energy, be-
cause  cannot  be  achieved,  as  previously
stated. The black hole is considered to be excited from an

 vacuum  [52];  hence,  also  acts  as  a
bound. Therefore, the eigenstates of the dual CFT cannot
become zero via any process.

5.2    Asymptotic growth of states

The  Cardy  formula  indicates  that  the  asymptotic
growth  of  states  corresponds  to  the  Bekenstein –
Hawking  entropy,  as  shown  in  Eq.  (9).  When  the  mass
and  angular  momentum  of  the  rotating  AdS3 black  hole
vary because of  the scalar  field,  dual  CFT2 alters the ei-

nR nLgenvalues  and .  Consequently,  this  modifies  the
value of the asymptotic growth of states. According to the
variation in this  growth,  the tendency of  the eigenvalues
and the application of the second law in the dual CFT are
derived. The asymptotic growth of states varies as

dS CFT =
∂S CFT

∂nR
dnR+

∂S CFT

∂nL
dnL, (33)

where  the  variations  in  the  eigenvalues  are  given  in  Eq.
(26) in  terms  of  the  parameters  of  the  scalar  field.  Ac-
cordingly, the following is obtained:

dS CFT = π
2ℓ

(√
c

6nR
+

√
c

6nL

)
(ω−mΩh)2ρhdt ⩾ 0. (34)

nR nL

nR = 0 nL = 0

The increase  in  the  asymptotic  growth  of  states  repres-
ents the second law of thermodynamics according to Eq.
(9).  Moreover,  because  it  is  known  that  and  are
non-zero values, the variation in the Cardy formula diver-
sifies near  or . The detailed behaviors in Eq.

tanh
(

1
300

dTH
dt

)
3 (ω,m)Fig. 1.    (color online) Graphs of  in rotating AdS  black holes with scalar field mode .
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(34)  are  depicted  in Fig.  3;  here,  the  increase  in  the
asymptotic  growth  is  ensured.  Furthermore,  as  shown in
Fig. 2, the eigenvalues cannot be zero, and the asymptot-
ic growth sharply increases similar to the bound that en-
sures non-zero eigenvalues. This implies that the changes
in  eigenvalues  are  also  connected  and  constrained  under
physical  processes in a manner similar  to that  applied to
its  dual  black hole.  As the changes in the black hole are
clearly related to the scattering of the scalar field, the ei-
genvalues can  only  change  with  specific  directions  be-
cause the  mass  and  angular  momentum  are  directly  re-
lated to the eigenvalues as a result of the AdS/CFT dual-
ity. According to Eq. (7),

dnR =
1
2

(ℓdM+dJ), dnL =
1
2

(ℓdM−dJ), (35)

which  is  also  connected  to  the  modes  of  the  scalar  field
by  Eq.  (26).  The  one-to-one  correspondence  in  Eq.  (35)
makes  the  zero-eigenvalue  states  working  as  bounds
meaningful. Again, the black holes and CFTs are dual to
each  other;  hence,  the  changes  in  eigenvalues  should  be
restricted  because  these  changes  also  satisfy  Eq.  (7)  on
the  gravity  side.  Then,  according  to  the  third  law,  the
black hole  cannot  be  extremal  by  a  finite  process.  Thus,
the eigenvalues cannot be zero states that are dual to the

extremal condition.

nR nL

Therefore,  according  to  the  laws  of  thermodynamics
for  the  black  hole,  the  eigenvalues  and  cannot  be
zero. If one of these eigenvalues tends to zero, the asymp-
totic growth sharply increases,  thereby increasing the ei-
genvalue.

6    Summary

The relationships between the physical boundaries for
the rotating AdS3 black hole and its dual CFT2 according
to  the  AdS/CFT correspondence  are  invetigated,  and  the
black  hole  is  specified  by  its  conserved  quantities.  The
conserved quantities,  such  as  mass  and  angular  mo-
mentum,  are  clearly  bounded  by  the  extremal  condition.
The third  law of  thermodynamics  ensures  that  extremal-
ity cannot  be achieved via any physical  process,  and the
second law implies that such a bounded behavior is natur-
ally  preferred.  For  the  rotating  AdS3 black hole  satisfy-
ing  this  particular  boundary  condition,  the  conserved
quantities can be directly related to the microstates of its
dual  CFT2. Moreover,  the  second  law  of  thermodynam-
ics coincides with the Cardy formula in dual CFT2. Ow-
ing to the scattering of the scalar field, we conclude that

tanh
(

dδ
dt

)
(nR,nL) (ω,m)Fig. 2.    (color online) Graphs of  in eigenvalues  with scalar field mode .

 

tanh
(

1
300

dS CFT
dt

)
(nR,nL) (ω,m)Fig. 3.    (color online) Graphs of  in eigenvalues  with scalar field mode .
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nR nL

the changes in the black hole conform to the laws of ther-
modynamics  and  that  the  third  and  second  laws  act  as
bounds to  the  mass  and  angular  momentum.  Con-
sequently, this particular relationship is imposed for a few
black holes  to  rewrite  the  conserved  quantities  as  eigen-
values in dual CFT2.  Here, the third law implies that the
eigenvalues  and  cannot  be  zero.  The  variation  in
the eigenvalues decreases their difference; hence, the ex-
tremality becomes small under the changes caused by the
scalar  field.  The  second  law ensures  that  the  asymptotic

nR nL

growth of states on the CFT2 side sharply increases when
one of  the  eigenvalues  tends  to  zero.  Therefore,  such an
extremely large difference between  and  cannot be
achieved via a physical process. Even if such a large dif-
ference is  considered as  an initial  condition,  it  decreases
by  a  small  perturbation.  Therefore,  according  to  the
AdS/CFT  correspondence,  the  laws  of  thermodynamics
for the rotating AdS3 black hole are closely related to the
non-zero state of the eigenvalues in CFT2.
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