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Abstract: Motivated by the problem of expanding the single-trace tree-level amplitude of Einstein-Yang-Mills the-
ory to the BCJ basis of Yang-Mills amplitudes, we present an alternative expansion formula in gauge invariant vec-
tor  space.  Starting from a generic  vector  space consisting of  polynomials  of  momenta and polarization vectors,  we
define a new sub-space as a gauge invariant vector space by imposing constraints on the gauge invariant conditions.
To characterize this sub-space, we compute its dimension and construct an explicit gauge invariant basis from it. We
propose an expansion formula in this gauge invariant basis with expansion coefficients being linear combinations of
the Yang-Mills  amplitude,  manifesting the gauge invariance of  both the expansion basis  and coefficients.  With the
help of quivers, we compute the expansion coefficients via differential operators and demonstrate the general expan-
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1    Introduction

U(1)

In recent  decades,  there  have  been  rapid  develop-
ments in  the  field  of  scattering  amplitudes.  For  in-
stance,  complicated  multi-loop  amplitudes  are  being
computed  by  new  computational  techniques  [1-5],
while new  formalisms  are  being  constructed  that  en-
code inspiring mathematical structures [6-14]. Among
these advances, the study of the scattering amplitudes
of  gravity  and gauge theories,  as  well  as  the  intimate
relationships between them, has attracted much atten-
tion. It is already well-known that there are non-trivi-
al  relationships  between  tree  level  color-ordered
Yang-Mills amplitudes such as -relations, Kleiss-
Kuijf  (KK)  relations  [15, 16],  and  Bern-Carrasco-Jo-
hansson  (BCJ)  relations  [17, 18],  which  reduce  the
minimal  number  of  independent  color-ordered  Yang-

(n−3)!Mills  amplitudes  to .  Regarding  the  gravity
amplitude,  the  Kawai-Lewellen-Tye  (KLT)  relations
[19], which  originally  state  that  a  closed  string  amp-
litude  is  a  combination  of  the  products  of  two  open
string  amplitudes,  degenerate  to  similar  relations
between  gravity  and  Yang-Mills  amplitudes  in  the
field  theory  limit.  In  addition,  the  BCJ  double  copy
conjecture  reveals  another  new  way  of  constructing
the  gravity  amplitude  from  Yang-Mills  amplitudes
based  on  the  exciting  idea  of  color-kinematic  duality
[17, 20, 21].

In addition  to  these  relations,  the  amplitudes  of  Ein-
stein-Yang-Mills (EYM) theories where gravitons are al-
lowed to  interact  with  gauge  bosons  have  also  been  in-
vestigated from many aspects [13, 14, 22, 23]. In particu-
lar, in [14], a generalized KLT relation is proposed from
the  study  of  Cachazo-He-Yuan  (CHY)  formalism  [10-
14],  schematically  formulated  for  the  tree-level  single-
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trace EYM amplitude1) as
AEYM

r,s (α) =
∑
σ,σ̃∈S n−3

AYM
n (n−1,n,σ,1)

×S[σ|σ̃]AYMs
r,s (α|1, σ̃,n−1,n) , (1.1)

AYMs

S

(n+1)

with  being the amplitudes of Yang-Mills-scalar the-
ory and  the momentum kernel, defined in [24-26]. Par-
allel to the study of monodromy relations in string theory,
in [27], the authors present a new relation formulating the
EYM amplitude with n gluons and one graviton as a lin-
ear  combination  of -point  Yang-Mills  amplitudes
in a compact expression. This result has been generalized

to  situations  with  more  than  one  graviton  [28, 29]  and
double color traces [28] in the framework of CHY form-
alism. Furthermore, in [30], by studying the constraints of
gauge invariance, a compact recursive formula is presen-
ted  for  the  expansion  of  EYM  amplitudes  with m grav-
itons  in  terms  of  the  KK  basis  of  color-ordered  Yang-
Mills  amplitudes;  the  result  has  also  been  proven  in  the
CHY formalism [31] and generalized to multi-trace amp-
litudes [32]. For the purpose of the current paper, we re-
call  the  expansion  of  EYM  amplitudes  to  color-ordered
Yang-Mills amplitudes in the KK basis, as in [30, 32],

AEYM
n,m (1,2, . . . ,n;H) =

∑
⊔⊔

∑
h|h̃=H\ha

Cha
(h)×AEYM

n+m−|h̃|,|h̃|(1, {2, . . . ,n−1}⊔⊔{h,ha},n; h̃) , (1.2)

H = {h1,h2, · · · ,hm}
α⊔⊔β

α,β α∪β
α β 1

1

Cha
(h)

where  is  a  set  of m gravitons,  and
 stands  for  the  shuffle  permutations  between  two

ordered  sets , i.e.,  permutations  of  keeping  the
respective orderings of  and . In this expansion, legs 
and n are always fixed in the first and last positions in the
color-ordering. Hence, using the recursive formula, at the
end, the EYM amplitude would be expanded to the basis
of Yang-Mills amplitudes with legs  and n being fixed.
The coefficient  of  each Yang-Mills  amplitude is  a  linear
combination of , which are polynomial functions of
polarization vectors  and  momenta  whose  precise  defini-
tion can be found in [30].

S[σ|σ̃] AR
S n−3

While the expansion of the EYM amplitude in the KK
basis of  Yang-Mills  amplitudes  has  been  solved  com-
pletely, as the KK basis is not the minimal basis of color-
ordered  Yang-Mills  amplitudes,  a  question  naturally
arises:  what  would  happen  when  expanding  an  EYM
amplitude  to  the  minimal  basis, i.e.,  the  BCJ  basis  of
Yang-Mills amplitudes? At first glance, it seems that this
question has already been solved by the generalized KLT
relation  (1.1).  However,  in  (1.1),  the  momentum  kernel

 and  are difficult  to compute;  we also need to
sum  over  all  permutations.  Hence,  the  generalized
KLT relation does not work well with respect to practical
computation.  One  could  also  start  with  expression  (1.2)
and reformulate the KK basis to the BCJ basis using the
BCJ relations.  However,  computation  of  several  ex-
amples is sufficient to suggest that the algebraic manipu-
lations  are  rather  complicated.  The  resulting  expansion
coefficients are rather cumbersome, without any hints of
systematic and compact reorganization, because there are
too many equivalent  expressions.  In  [33],  a  new method
is proposed by introducing differential operators into this
problem. The differential operator was originally applied
to the study of the relationships among the amplitudes of

different  theories  [34],  and  later,  a  series  of  studies
showed how to apply differential operators to the expan-
sion of the EYM amplitude to the KK basis [33, 35, 36].
Then, differential operators were naturally applied to the
expansion of the EYM amplitude into the BCJ basis, be-
ing limited  to  some  simple  cases  where  the  EYM  amp-
litudes  contain  one,  two,  or  three  gravitons.  However,  a
systematic  method  for  a  generic  EYM amplitude  with n
gluons and m gravitons is still needed.

In  this  study,  we  attempt  to  fulfill  this  request  by
providing a systematic method for computing the expan-
sion coefficients of the EYM amplitude with m gravitons
in the BCJ basis. In addition to the use of differential op-
erators, we also require the principle of gauge invariance.
Because the Yang-Mills amplitudes of the BCJ basis are
linearly independent,  if  we can write an EYM amplitude
as  a  linear  combination of  Yang-Mills  amplitudes  of  the
BCJ basis, the gauge invariance of polarization tensors of
gravitons  would  be  transformed  partially  into  the  gauge
invariance  of  expansion  coefficients,  which  contain  one
half of the polarization vectors of the polarization tensors.
Hence, the gauge invariance places strong constraints on
the form of the expansion coefficients. In fact, the gauge
invariance principle has already played an important role
in the study of scattering amplitude. It is expected that the
gauge invariance  could  completely  determine  the  amp-
litudes of certain field theories [8, 37, 38], and further ex-
ploration can be found from various perspectives [30, 34,
39-42].  In  particular,  as  demonstrated  in  [30],  it  is  the
constraints of gauge invariance that make a compact for-
mula  available  for  expansion  of  EYM  amplitude  in  the
KK  basis.  However,  the  potential  applications  of  gauge
invariance have still  not  been fully exploited.  In this  pa-
per,  we  would  like  to  propose  a  different  understanding
of gauge invariance.  Similar to what we have performed
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N = 4for  the  symmetries  in  the  amplitudes  of  super-
Yang-Mills theory, because the principle of gauge invari-
ance is a strong constraint for gauge theory, we prefer to
make it manifest at the level of scattering amplitudes.

With  the  new  understanding  of  gauge  invariance,  in
this study, we will show how to expand the general EYM
amplitude  into  the  BCJ  basis  of  Yang-Mills  amplitudes
systematically. This paper is organized as follows. In §2,
we  review  some  background.  In  §3,  we  introduce  the
gauge  invariant  vector  space  living  in  a  general  vector
space  consisting  of  polynomials  of  Lorentz  contractions
of momenta and polarization vectors. We compute the di-
mension of gauge invariant space, characterize the expli-
cit form of vectors, and finally construct the gauge invari-
ant  basis.  In  §4,  we  define  gauge  invariant  vectors  and
differential  operators  in  quiver  representation,  which  is
the  description  of  the  mathematical  structures  of  these
vectors and  operators.  With  the  help  of  quivers,  we  im-
plement  a  systematic  algorithm  to  compute  expansion

coefficients. In §5, we illustrate our method using several
explicit  examples,  e.g.,  the  EYM  amplitudes  with  up  to
four gravitons  for  the  purpose  of  clarifying  some  sub-
tleties.  In  §6,  we  conclude  our  discussion  and  point  out
some problems that remain to be solved in the future. De-
tailed proofs of some propositions as well as some expli-
cit BCJ coefficients in the BCJ relations are presented in
the appendices.

2    Expansion  of  EYM  amplitudes  to  Yang-
Mills amplitudes in BCJ basis

In this  section,  we  review  some  background  know-
ledge, which is useful in the subsequent discussion of ex-
panding  the  EYM  amplitude  to  the  BCJ  basis  of  Yang-
Mills  amplitudes.  First,  as  reviewed in  [33],  an  arbitrary
color-ordered  Yang-Mills  amplitude  can  be  expanded  to
the  BCJ  basis  with  three  particles  being  fixed  in  certain
positions related to the color-ordering, as follows:

An(1,β1, · · · ,βr,2,α1, · · · ,αn−r−3,n) =
∑

{ξ}∈{β}⊔⊔P{α}
C{α},{β};{ξ}An(1,2, {ξ},n) . (2.1)

The expansion coefficients, i.e., the BCJ coefficients,
were first conjectured in [17] and later proven in [18], us-
ing the expression

C{α},{β};{ξ} =
r∏

k=1

Fβk
({α}, {β}; {ξ})
K1β1...βk

. (2.2)

Notations  in  the  above expression and explicit  examples
are presented in Appendix B.

Second,  we  review the  differential  operators  that  are
originally  introduced  in  [34].  An  important  differential
operator is the insertion operator, defined as

Tik(i+1) := ∂ki·ϵk −∂ki+1·ϵk . (2.3)

i+1

i, i+2

Physically,  it  represents  changing  a  graviton k into  a
gluon and inserting it between i and  in the color or-
dering of  gluons.  If  two  gluons  are  not  adjacent,  for  in-
stance , we will have

Tik(i+2) = Tik(i+1)+T(i+1)k(i+2) , (2.4)
and its  physical  meaning  is  also  clear1). Another  import-
ant operator is the gauge invariance differential operator,
defined as

Ga :=
∑
i,a

(ka · ki)
∂

∂(ϵa · ki)
+

∑
j,a

(ka · ϵ j)
∂

∂(ϵa · ϵ j)
. (2.5)

ϵa→ ka

It  has a physical  meaning of imposing gauge invariance,
i.e., changing . For an arbitrary polynomial of po-
larization vectors and momenta, if it vanishes under oper-

Ga
ϵa

[Ga,Gb] = 0

ator , we can conclude that it is gauge invariant for po-
larization vector . Gauge invariance operators are com-
mutative, i.e., , so  the  result  of  a  multiplica-
tion of sequential operators does not depend on the order-
ing, and we can denote a sequential gauge invariance op-
erator as

Gi1i2...is
:= Gi1

Gi2
· · ·Gis

, i1 < i2 < · · · < is . (2.6)
The insertion operator and gauge invariance operator

satisfy the following commutative relation,

[Ti jk,Gl] = δliTi j−δlkT jk , (2.7)

Ti j := ∂(ϵi·ϵ j)with ,  and  it  is  valid  after  application  to  any
functions of polarization vectors and momenta 2).

ϵ̃
µ

i ϵ
µν
hi

ϵ
µν
hi
= ϵ̃

µ
hi
⊗ ϵνhi

ϵ̃
µ

hi

ϵνhi

kµκ , κ =
1, · · · ,n,h1, · · · ,hm ϵ

µ
hκ
, κ = 1, . . . ,m

Finally, let us present a general discussion on the ex-
pansion  of  the  EYM  amplitude  to  the  BCJ  basis.  For
particles with spin, the corresponding Lorentz representa-
tions  are  constructed  by  polarizations, e.g., the  polariza-
tion vector  for  gluons  and polarization tensor  for
gravitons.  When  expanding  the  EYM  amplitude  to  the
BCJ basis,  the  polarization  tensor  of  gravitons  is  factor-
ized into two parts, . The part  is inherent
because of the polarization vector of gluons in the Yang-
Mills basis, while the other part, ,  is absorbed into the
expansion  coefficients.  More  explicitly,  the  expansion
coefficients  are  rational  functions  of  momenta 

 and polarization vectors .
A crucial  difference between expanding to  the  KK basis

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

i, j1) If  are not in the same trace, it has no clear physical meaning.
2) For detailed description of these differential operators and their relations please refer to the paper mentioned before.
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and BCJ basis  is  that  the BCJ basis  is  truly an algebraic
independent basis, and the corresponding expansion coef-
ficients must be gauge invariant, i.e.,

AEYM =
∑

cgauge−inv× (AYM in BCJ basis) . (2.8)

This observation inspires us to consider another form
of expansion:

AEYM =
∑

(linear sum of AYM)×bgauge−inv . (2.9)

ϵhκ
ϵhκ κ = h1,h2, . . . ,hm bgauge−inv

AYM

bgauge−inv

In equation  (2.8),  independent  Yang-Mills  amp-
litudes are taken to be the expansion basis, and each coef-
ficient as a function of momenta and polarization vectors

 should  satisfy  the  conditions  of  gauge  invariance  for
all  with .  In  equation  (2.9), 
represents the expansion basis, and the expansion coeffi-
cients become a linear combination of , with coeffi-
cients  being  rational  functions  of  momenta.  The  latter
form has already appeared in [33]; to distinguish the two
different  bases,  we  call  gauge invariant  build-
ing blocks 1).

3    Building up  expansion  basis  in  gauge  in-
variant vector space

cgauge−inv
bgauge−inv

As mentioned earlier, in the expansion of EYM amp-
litudes,  the  gauge invariant  coefficients  as  well
as expansion basis  are crucial. They are polyno-
mial  functions  of  polarization  vectors  that  vanish  under
conditions of gauge invariance. In this section, we would
like to start from the most general vector space and local-
ize a gauge invariant subspace of it. The expansion basis
we are looking for is living in this exact subspace.

3.1    Gauge invariant vector space and its dimension

h

k1,k2, . . . ,kn ϵ1, . . . , ϵm m ⩽ n
ϵi

Let us start from the most general polynomial , con-
structed  by  Lorentz  contractions  of n momenta

 and m polarizations  with .  By
Lorentz invariance and the multi-linearity of , this poly-
nomial must be formed schematically as

hn,m(k1, . . . ,kn, ϵ1, . . . , ϵm) =α0(ϵ · k)m+α1(ϵ · ϵ)(ϵ · k)m−2+ · · ·
+α⌊ m

2
⌋(ϵ · ϵ)⌊

m
2
⌋(ϵ · k)m−⌊ m

2
⌋ ,

(3.1)
ϵ

ϵi, i = 1, . . . ,m
α

B[V] := {(ϵ · ϵ) j

(ϵ · k)m−2 j , 0 ⩽ j ⩽ ⌊m
2 ⌋}

where for each monomial, the degree of  is m, and each
 appears once and only once, while the coef-

ficients  are rational functions of Mandelstam variables
of  momenta.  If  we  take  all  monomials 

 as  a  generating  set,2) then  we can

Vn,{ϵ1,...,ϵm}

hn,m

build up a vector space  over the field of ration-
al functions of Mandelstam variables, such that any poly-
nomial  belongs to this vector space.

Vn,{ϵ1,...,ϵm}
hn,m

Gi

To  carve  out  the  gauge  invariant  vector  space  from
,  let  us  impose  gauge  invariant  conditions  on

. This can be achieved by applying differential  oper-
ators  to (3.1), i.e.,

Gi hn,m := hn,m−1(ϵi→ ki) for each i = 1, ...,m .

This operator  establishes  a  linear  mapping  between  dif-
ferent vector spaces as

Vn,{ϵ1,...,ϵm}
Gt−→Vn,{ϵ1,...,ϵt−1 ,̂ϵt ,ϵt+1,...,ϵm} , (3.2)

ϵt
kt ϵ̂t

B[V]

where  in  the  resulting  vector  space,  the  polarization 
does appear and is replaced by , denoted . This linear
map is surjective3) by noticing the reduction of , i.e.,

Im Gt[Vn,{ϵ1,...,ϵm}] =Vn,{ϵ1,...,ϵt−1 ,̂ϵt ,ϵt+1,...,ϵm} . (3.3)

Gi i = 1, . . . ,m
Gi

We can successively apply different gauge invariant oper-
ators ,  with ,  and establish a mapping chain
of vector spaces. Because all  are commutative, the res-
ult does not depend on the ordering of successive applica-
tion, and we can denote the mapping chain as

Vn,m
Gi1 i2 ...is−−−−→V(i1i2...is)

n,m−s . (3.4)

ϵi

Gi

The superscripts label the removed polarization vectors 
in the  vector  space.  Note  that  different  orderings  of  ap-
plying  produce different mapping chains, which even-
tually lead to the same vector space, so (3.4) in fact rep-
resents a collection of mapping chains.

Gi : Vn,s→V(i)
n,s−1The  kernel  of  the  linear  map  is

defined by

Ker Gi[Vn,s] = { v ∈ Vn,s | Gi[Vn,s] = 0 } . (3.5)
Physically, this means that the vectors of kernel are gauge
invariant  for  the i-th particle.  Using the fact  that  the lin-
ear map is surjective (4.3), by the fundamental theorem of
linear mapping [43], we have

dimVn,s+1 =dimKer Gi[Vn,s+1]+dimIm Gi[Vn,s+1]
=dimKer Gi[Vn,s+1]+dimVn,s . (3.6)

Then, the dimension of the kernel can be computed using
the difference in the dimensions of vector space as

dimKer Gi[Vn,s+1] = dimVn,s+1−dimVn,s . (3.7)
GiWhen  applying  more  than  one ,  this  relation  can  be

generalized to

dimKer Gi1i2..it
[Vn,s] = dimVn,s−dimVn,s−t . (3.8)

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

1) Although we already know the formulation (2.9) is more suitable for applying differential operators, in the previous work we are not able to push the discussion
further since the discussion of building blocks are too difficult at that time. ∑

i ki = 0
ϵi · ki = 0 ϵµ1 ...µD

2) These  monomials  are  not  linearly  independent.  There  are  relations  between  them  generating  by  momentum  conservation  and  transverse  condition
. Furthermore, we consider only the parity even case, i.e., without total antisymmetric tensor .

(ϵ · k)m3) The property of surjectivity is the cornerstone in our discussion. For the vector space of polynomials without term  surjectivity of the map no longer holds.
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s = 1For example, let us consider the simplest case ,

dimKer G1[Vn,1] = dimVn,1−dimVn,0 . (3.9)

Vn,0

1
dimVn,0 = 1

Ker G1[Vn,1]

Wn,1

Vn,1

Vector  space  is  the  field  of  rational  functions  of
Mandelstam  variables,  so  the  basis  is  simply ,  and

. For  a  vector  space  with  only  one  polariza-
tion,  the  kernel  consists of  all  vectors  van-
ishing  under  the  gauge  invariant  operator.  This  is  the
gauge invariant  vector  sub-space  in  a  vector  space

. Thus, we have

dimWn,1 := dimKer G1[Vn,1] = dimVn,1−1 . (3.10)

Vn,m

Gi

For a general vector space  with m polarizations,
we can define the gauge invariant vector sub-space as the
intersection of kernels of all possible linear maps  as

Wn,m :=
m∩

i=1

Ker Gi[Vn,m]

={ v ∈ Vn,m | Gi(v) = 0 ∀i = 1,2, . . . ,m } . (3.11)

Wn,m

Gi

cgauge−inv

bgauge−inv

This means that a vector in  would vanish under any
linear  map .  This  is  exactly  the  sub-space  where  all
gauge invariant coefficients  of (2.8) and the ex-
pansion basis  of (2.9) live.

Wn,m

m = 2
U1,U2

Let us attempt to compute the dimension of  and
start  with  the  case .  Generally,  for  any  two  linear
spaces , we have the following relation for the di-
mension1),

dimU1+dimU2 = dim(U1+U2)−dim(U1

∩
U2) . (3.12)

Ui = Ker Gi[Vn,m]
Applying this relation to the vector spaces of kernels, i.e.,

, we get

dimWn,2 :=dim(Ker G1∩Ker G2) = dimKer G1+dimKer G2

−dim(Ker G1+Ker G2) .
(3.13)

The  first  two  terms  in  the  RHS  can  be  computed  using
(3.7),  and to  compute the third term,  we need to  use the
following proposition 2),

GiPROPOSITION  1: any  two  kernels  of  linear  maps 
satisfy the splitting formula,

Ker G1+Ker G2 = Ker G12 , (3.14)
and its generalization,

Gi

PROPOSITION  1  EXTENDED: the  kernels  of  linear
maps  satisfy the generalized splitting formula,

Ker G1+Ker G2+ · · ·+Ker Gm = Ker G12...m . (3.15)
Together with (3.8), we can rewrite (3.13) as

dimWn,2 =2(dimVn,2−dimVn,1)− (dimVn,2−dimVn,0)
=dimVn,2−2dimVn,1+dimVn,0 .

(3.16)

Ui := Ker Gi m = 3

Recursively  using  (3.12),  we  need  to  generalize  the
above  result  to  arbitrary m.  For  simplicity,  let  us  denote

, and when , we have

dim(U1+U2+U3) = dim(U1+U2)+dimU3

−dim((U1+U2)∩U3) = dimU1

+dimU2+dimU3−dim(U1∩U2)
−dim((U1+U2)∩U3) . (3.17)

In the second line, the first three terms have already been
computed, while to compute the fourth term, we need to
use the following proposition. 3)

GiPROPOSITION 2: three kernels of linear maps sat-
isfy the distribution formula,

(Ker G1+Ker G2)∩Ker G3 =Ker G1∩Ker G3

+Ker G2∩Ker G3 , (3.18)

and its generalization,

Gi

PROPOSITION  2  EXTENDED: the  kernels  of  linear
maps  satisfy the generalized distribution formula,m−1∑

i=1

Ker Gi

∩Ker Gm =

m−1∑
i=1

Ker Gi∩Ker Gm . (3.19)

Together with (3.12), we can rewrite (3.17) as

dim(Ker G1+Ker G2+Ker G3) = dimKer G1+dimKer G2

+dimKer G3−dim(KerG1∩KerG2)−dim(KerG1∩KerG3)
−dim(Ker G2∩Ker G3)+dim(Ker G1∩Ker G2∩Ker G3).

(3.20)

dimWn,3 := dim(Ker G1∩Ker G2∩Ker G3)
dim(Ker G1+Ker G2+Ker G3)

dimKer G123

In  equation  (3.20),  to  compute  the  dimension
,  we  need  the

result of , which by propos-
ition  1  extended  (3.15)  is  equal  to .  Using
(3.8), we get

dimKer Gi =Vn,3−Vn,2, dimKer Gi j =Vn,3−Vn,1 ,

dimKer Gi jk =Vn,3−Vn,0 . (3.21)
Then,

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

U1, · · · ,Um U1, · · · ,Um U1, · · · ,Um
U1 + · · ·+Um = {u1 + · · ·+um : u1 ∈ U1, · · · ,um ∈ Um} U1 +U2 U1 ⊕U2

U1 ∩U2 = {0} dim(U1 ⊕U2) = dimU1 +dimU2

1) Suppose  are  subspaces  of V,  then  the sum of  is  defined  as  the  set  of  all  possible  sums  of  elements  of ,  explicitly
. We should note that the definition of sum is different of direct sum, a sum  is a direct sum  if

and only if , and for direct sum .
2) Proof of proposition 1 and proposition 2 can be found in Appendix A.

(U1 +U2)∩U3 = U1 ∩U3 +U2 ∩U3 U1,U2,U3 y = 0 x = 0
x = y U1 +U2 (U1 +U2)∩U3 x = y U1 ∩U3 U2 ∩U3 (0,0)

3) In general  is  not  true.  For example,  in  a  two-dimension space U,  let  us  choose  to  be line ,  and
 respectively. Then  is the whole XY-plane, and  is the line . While in the RHS,  and  are just the origin . So

the RHS is a point.
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dimWn,3 = dimVn,3−3dimVn,2+3dimVn,1−dimVn,0 .
(3.22)

1,3,3,1(
3
i

)
i = 0,1,2,3

Notice that the numerical factors  are nothing but
 for .
Let  us  proceed  further  to  arbitrary m. With  proposi-

tion  1  extended  and  proposition  2  extended,  equations
(3.13) and (3.20) are exactly the same as the principle of
inclusion-exclusion. By  the  well-known  principle  of  in-
clusion-exclusion, we obtain

dim

 m∑
i=1

Ker Gi

 = m∑
s=1

(−)s−1
∑

all s−subsets

dim

 s∩
j=1

Ker Gi j

 ,
(3.23)

where the second summation is over all subsets with s in-
dices. It  is  also  well-known  that  starting  from  the  prin-
ciple of inclusion-exclusion, we can arrive at

dim

 m∩
i=1

Ker Gi

 = m∑
s=1

(−)s−1
∑

all s−subsets

dim

 s∑
j=1

Ker Gi j

 .
(3.24)

By proposition 1 extended, we can write

dim

 s∑
j=1

Ker Gi j

= dimKerGi1i2···is
= dimVn,m−dimVn,m−s .

(3.25)
Substituting (3.25) back into (3.24), we get

dimWn,m := dim

 m∩
i=1

Ker Gi

 = m∑
s=1

∑
i1<···<is

(−1)s−1(dim Vn,m−dim V(i1···is)
n,m−s )

=

m∑
s=1

(−1)s−1
(
m
s

)
dim Vn,m+

m∑
s=1

(−1)s
(
m
s

)
dim Vn,m−s

=

m∑
s=0

(−1)s
(
m
s

)
dim Vn,m−s , (3.26)

Vn,mwhere  the  dimension  of  vector  space  can be  com-
puted via1)

dimVn,m =

⌊ m
2
⌋∑

i=0

(
m
2i

)
(2i)!
2i (i!)

(n−2)m−2i . (3.27)

Wn,m

Hence, the dimension of arbitrary gauge invariant vector
space  can be computed using equations (3.26) and
(3.27).

m = n
dimWn,n

Let  us  present  a  few  examples  demonstrating  the
computation  of  dimensions.  For  the  special  case ,

 values for the first few n values are listed as fol-
lows.

n = 7

dimWn,m dimWn+m,m

In  [37],  the  same result  has  been  provided  up  to 2).
Compared  with  that  result,  our  calculation  shows  more
efficiency than that shown by solving linear equations of
gauge invariance directly. Furthermore, several examples
of  and  with  arbitrary n but defin-
ite values of m are listed below.

3.2    Gauge invariant vectors

f µνi = kµi ϵ
ν
i − ϵ

µ
i kνi

fi

The dimension of  gauge invariant  vector  space  char-
acterizes the  minimal  number  of  vectors  required  to  ex-
pand  an  arbitrary  vector,  while  the  explicit  form  of  the
vector  is  not  constrained.  From the  working  experiences
of  EYM  amplitude  expansion  with  one,  two,  and  three
gravitons [33], we get the insight that the coefficients ap-
pearing therein could be recast in a manifestly gauge in-
variant  form  as  linear  combinations  of  multiplication  of
fundamental f-terms. Here, the fundamental f-terms stand
for  two  types  of  Lorentz  contractions  of  field  strength

 and external momenta, with at most two
,

Fundamental f−terms : ki · fa · k j and ki · fa · fb · k j .
(3.28)

m = 3This  observation  can  be  generalized  beyond  and
can be stated as follows. For any vector in gauge invari-

n 4 5 6 7 8 9 10

dimWn,n 10 142 2364 45028 969980 23372550 623805784

m 1 2 3 4

dimWn,m n−3 (n−3)2 +1 (n−3)3 +3(n−3) (n−3)4 +6(n−3)2 +3

dimWn+m,m n−2 (n−1)2 +1 n3 +3n (n+1)4 +6(n+1)2 +3

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

ϵ
(

m
2i

)
ϵ (n−2)

(ϵ · kn) 2i ϵ (2i)!
2i (i!)

1) The counting of (3.27) can be carried out as follows. Firstly we select i pairs of , and there are  choices, while each left  can be contracted with  mo-

menta after  by momentum conservation. For  's, the number of different contractions is .

(ϵ · k)m (n−3)!
2) In this paper, there are two types of spaces being considered. The another one is the space with at least one contraction between polarization vectors in polynomi-

als, i.e., polynomials without monomial , which is exactly the vector space that Yang-Mills amplitudes live in. Its dimension is .
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Wn,m m < nant vector space  with 1),
Wn,mevery  vector  in  can  be  recast  in  a  manifestly

gauge invariant form, as a linear combination of the mul-
tiplications of fundamental f-terms with the total number
of field strength f in every monomial being m.

m = 1,2,3

s < m

We shall prove this statement by induction. The cases
with  have  already  been  shown  to  be  true  in
[33]. Following the idea of induction, we assume that this
statement  is  true  for  all  and  prove  that  it  must  be
true for m.

hn,m ∈Wn,m
ϵ1, ϵ2, . . . , ϵm

A  polynomial  with m polarizations
 can be generally written as

hn,m =

m∑
i=2

(ϵ1 · ϵi)T1i+

m∑
i=2

(ϵ1 · ki)(ϵi ·T ′1i)+
n−1∑

i=m+1

(ϵ1 · ki)T ′′1i ,

(3.29)

ϵ1 · kn (ϵ1 · ϵi), (ϵ1 · ki) hn,m
T1i ∈ Vn,m−2

ϵi ·T ′1i , T ′′1i ∈ Vn,m−1 hn,m ∈Wn,m

where momentum conservation has been applied to elim-
inate , so that all  appearing in  are
linearly  independent.  Polynomials  and

.  Because ,  by  definition,
we have

Ga hn,m = 0 , ∀(1 ⩽ a ⩽ m) . (3.30)

[Ta1n,Ga] = Ta1 a = 2, · · · ,m hn,m

From  the  operator  equation  (2.7),  we  explicitly  have
 with .  Applying  this  to 

generates a set of equations as follows:

[Ta1n,Ga]hn,m =Ta1hn,m → −Ga(∂ϵ1·ka
−∂ϵ1·kn

)hn,m
=∂ϵ1·ϵahn,m → −(ka ·T ′1a) = T1a , (3.31)

hn,m
(ϵ1 · kn) hn,m

where we have considered the fact that  does not con-
tain . With the above result, we can rewrite  as

hn,m =

m∑
i1=2

(ϵ1 · fi1
·T ′1i1

)+
n−1∑

i1=m+1

(ϵ1 · ki1
)T ′′1i1

. (3.32)

hn,m
ϵ1

We  also  need  to  consider  the  gauge  invariance  of 
with respect to the polarization vector ,

hn,m(ϵ1→ k1) =
m∑

i1=2

(k1 · fi1
·T ′1i1

)+
n−1∑

i1=m+1

(k1 · ki1
)T ′′1i1

= 0 .

(3.33)
Then, we get

T ′′1(n−1) = −
m∑

i1=2

(k1 · fi1
·T ′1i1

)

(k1 · kn−1)
−

n−2∑
i1=m+1

(k1 · ki1
)

(k1 · kn−1)
T ′′1i1
. (3.34)

hn,mAfter substituting the above results back into , we get

hn,m =

m∑
i1=2

(kn−1 · f1 · fi1
·T ′1i1

)

(k1 · kn−1)
+

n−2∑
i1=m+1

(kn−1 · f1 · ki1
)

(k1 · kn−1)
T ′′1i1
.

(3.35)

hn,m

ϵ1

hn,m

Therefore,  is  already  manifestly  gauge  invariant  for
polarization  vector .  In  fact,  we  can  also  choose  to
eliminate other coefficients in (3.34) and introduce differ-
ent poles in the denominator of .

[Ti1n,Ga]=0 i=m+1,
· · · ,n−2 a = 2, · · · ,m hn,m

We can also generate another set of equations by con-
sidering the operator relations  with 

 and . Applying them to  produces

[Ti1n,Ga]hn,m = 0→−Ga(∂ϵ1·ki
−∂ϵ1·kn

)hn,m = 0→GaT ′′1i = 0 ,
(3.36)

T ′′1i1
ϵ2, ϵ3, · · · , ϵm

T ′′1i1

hn,m T ′′1i1
ϵa

a = 2, · · · ,m (kn−1 f1 fi1
T ′1i1

)
T ′1i1

(A fi1
T ′1i1

)

(kn−1 · f1 · fi1
·T ′1i1

) T ′′1i1
hn,m

which means that  is gauge invariant for .
By assumption of induction,  can be written as a lin-
ear  combination  of  the  multiplication  of  fundamental f-
terms.  Because  and  are  gauge  invariant  for 
with , and  are linearly independ-
ent,  is also gauge invariant for all of its own polariza-
tion  vectors.  Again,  by  assumption  of  induction,  any

 can also be written in  a  manifest  gauge invari-
ant form where only f appears. Thus, as a linear function
of  and , the polynomial  can also
be  written  in  a  manifest  gauge  invariant  form,  and  we
have proven the first part of our statement.

(ϵi1
·T ′1i1

)
To  complete  our  proof,  we  need  to  apply  the  above

procedure to  in (3.29) and rewrite it as

(ϵi1
·T ′1i1

) =
m∑

i2=2,i2,i1

(ϵi1
· ϵi2

)T1i1i2
+

m∑
i2=2,i2,i1

(ϵi1
· ki2

)(ϵi2
·T ′1i1i2

)

+

n−1,1∑
i2=m+1

(ϵi1
· ki2

)T ′′1i1i2
,

(3.37)
i2 1

[Tai1n,Ga] = Tai1

a = 2, · · · ,m a , i1

where in the last summation,  can be equal to . Let us
again apply the operator equations ,  with

 and , which generates a set of equations,

(ϵi1
·T ′1i1

) =
m∑

i2=2,i2,i1

(ϵi1
· fi2
·T ′1i1i2

)+
n−1,1∑

i2=m+1

(ϵi1
· ki2

)T ′′1i1i2
.

(3.38)
hn,mTherefore,  becomes

hn,m =

m∑
i1=2

m∑
i2=2,i2,i1

(kn−1 f1 fi1
fi2

T ′1i1i2
)

(k1kn−1)

+

m∑
i1=2

n−1,1∑
i2=m+1

(kn−1 f1 fi1
ki2

)
(k1kn−1)

T ′′1i1i2
+

n−2∑
i1=m+1

(kn−1 f1ki1
)

(k1kn−1)
T ′′1i1
.

(3.39)
[T ji1n,Ga] = 0 j = m+1,m+2, · · · ,

n−1,1 a = 2, · · · , i1−1, i1+1, · · · ,m (ϵi1
·T ′1i1

)
GaT ′′1i1 j = 0 T ′′1i1i2

Then,  we  apply  with 
 and  to , which

leads  to .  It  says  that  is  gauge  invariant

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

m < n
m = n m = n

1) We should emphasize the condition , which is different from previous discussion where m could equal to n. Proof of the statement in this subsection can not
be trivially generalized to the  case, so if results in this subsection could be applied to the case  is still a question for us.
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T ′1i1i2

T ′

for  its  own  polarization  vectors  and  can  be  written  as  a
linear combination of the multiplication of fundamental f-
terms.  For  the  same  reason  as  before,  we  conclude  that

 is also gauge invariant for its own polarization vec-
tors. Continuously applying the same procedure to  un-
til the last polarization vector, we arrive at

hn,m =

m∑
s=2

h̃n,s+

n−2∑
i=m+1

kn−1 · f1 · ki

k1 · kn−1
T ′′1i , (3.40)

where

h̃n,s =

m∑
i1=2

m∑
i2=2
i2,i1

· · ·
m∑

is−1=2
is−1,i1,i2,...,is−2

n−1∑
is=m+1

is=1,i1,i2,...,is−2

× kn−1 · f1 · fi1
· · · fis−1

· kis

k1 · kn−1
T ′′(1i1···is−1)is

, (3.41)

T ′′(1i1···is−1)is
∈Wn,m−swith polynomial .

(k · f · · · f · k)To  further  reduce  the  expression  to  the
fundamental f-terms, we can get help from the following
identities,

(B · fp ·A)(C · kp) = (B · fp ·C)(A · kp)+ (C · fp ·A)(B · kp) ,
(3.42)

A,B,Cwhere  could be any string. More explicitly, apply-
ing the above identity to the expression with three f s, we
get

(ki · fa1
· fa2
· fa3
· k j)(kl · ka2

) =(ki · fa1
· ka2

)(kl · fa2
· fa3
· k j)

+ (ki · fa1
· fa2
· kl)(ka2

· fa3
· k j) .
(3.43)

fi

T ′′(1i1···is−1)is

Therefore,  any f-term  with  any  number  of  can be  re-
duced  to  fundamental f-terms,  while  at  the  same  time,

 has been reorganized as a linear combination of
multiplication  of  fundamental f-terms.  This  ends  the
proof of statement by induction.

Tr( fa1
fa2
· · · fak

) = f µνa1
fa2,νρ · · · fσak ,µ

Before ending this subsection, let us take a look at an-
other gauge invariant f-term that is mentioned in [33], i.e.,
the trace . It can be expan-
ded as

Tr( fa1
fa2
· · · fas

· · · fak
) =[(ϵa1

· fa2
· · · fas

· · · fak
· ka1

)− (ka1
· fa2
· · · fas

· · · fak
ϵa1

)]
(A · kas

)
(A · kas

)

=
(ϵa1

fa2
· · · fas

·A)(kas
· fas+1

· · · fak
· ka1

)+ (ϵa1
· fa2
· · · fas−1

· kas
)(A · fas

· · · fak
· ka1

)
(A · kas

)

− (ka1
· fa2
· · · fas

·A)(kas
· fas+1

· · · fak
· ϵa1

)+ (ka1
· fa2
· · · fas−1

· kas
)(A · fas

· · · fak
· ϵa1

)
(A · kas

)
,

where  identity  (3.42)  has  been  used  in  the  derivation.
Combining the first and third terms, as well as the second
and fourth terms, we obtain

Tr( fa1
fa2
· · · fas

· · · fak
) =

(kas
· fas+1

· · · fak
fa1

fa2
· · · fas

·A)
(A · kas

)

+
(A · fas

· · · fak
fa1

fa2
· · · fas−1

· kas
)

(A · kas
)

.

(3.44)
Tr( fa1

fa2
) = 2(ka2

· fa1
· fa2
·A)/

(A · ka2
)

(k f · · · f k)

A  simple  example  is 
.  Therefore,  this  type  of  gauge  invariant f-term,

which  is  originally  viewed  as  a  new type  different  from
, is also composed of the fundamental f-term.

3.3    Gauge invariant basis

Wn,m

bgauge−inv

Wn,m

Any gauge invariant vector in  could be an ele-
ment  to  form  a  gauge  invariant  basis  in  the
EYM amplitude expansion (2.9). However, to turn a sub-
set of  to a complete basis,  we should choose a set
of vectors satisfying the following two properties:

1. all vectors in the set are linearly independent;
2. the number of vectors in the set is equal to the di-

mension of gauge invariant vector space.
Note that the fundamental f-terms are not completely

independent  from each  other.  For  instance,  using  (3.42),
it is easy to see that

(ki · fa · fb · k j)(k1 · ka) =(ki · fa · k1)(ka · fb · k j)
+ (k1 · fa · fb · k j)(ki · ka) . (3.45)

Therefore, one can always reduce any fundamental f-
terms to the following form,

k1 · fa · fb · k1 and k1 · fa · ki . (3.46)
f µνiFrom the definition of , it is easy to obtain

k1 · fa · fb ·k1 = k1 · fb · fa ·k1 , k1 · fa ·k1 = 0 , k1 · fa ·ka = 0 .
(3.47)

AEYM
n,m

{k1, . . . ,kn,kh1
, . . . ,khm

}
{ϵh1
, . . . , ϵhm

}
a,b ∈ {h1, . . . ,hm} i ∈ {1, . . . ,n,h1, . . . ,hm}

kn

In  the  case  of ,  the  momentum  list  is
,  while  the  polarization vector  list  is

,  so  by  default,  the  above  subscripts
 and .  After  using

momentum conservation  to  eliminate ,  we  can  restrict
the fundamental f-terms to be

k1 · fhi
· fh j
· k1 , 1 ⩽ i < j ⩽ m , (3.48)

k1 · fhi
· k j , i ∈ {1, . . . ,m} ,

j ∈ {2, . . . ,n−1,h1, . . . ,hm}/{hi} . (3.49)

Chinese Physics C    Vol. 44, No. 12 (2020) 123104
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Using the above fundamental f-terms, we can construct a
set of vectors as s∏

i=1

k1 · fhα2i−1
· fhα2i

· k1

 m∏
i=2s+1

k1 · fhβi · k j

 ,
s = 0,1, . . . , ⌊m

2
⌋ , (3.50)

with the convention

α2i−1 < α2i+1 ∀(1 ⩽ i ⩽ s−1) , α2i−1 < α2i ∀(1 ⩽ i ⩽ s) ,
βi < βi+1 ∀(2s+1 ⩽ i ⩽ m−1) . (3.51)

Wn+m,m
dimWn+m,m

The linear  independence  of  these  vectors  (3.50)  is  obvi-
ous.  To  demonstrate  that  they  form  a  real  basis  of

,  we  should  show  that  the  total  number  of  these
vectors  is  equal  to  according  to  property  2.
We  can  count  the  total  number  of  independent  vectors
with respect to specific s as

m!
s! 2s (m−2s)!

(n+m−3)m−2s → #(vectors) =
⌊ m

2
⌋∑

s=0

m!
s! 2s (m−2s)!

(n+m−3)m−2s . (3.52)

Wn+m,mAccording to (3.26) and (3.27), the dimension of  is

dim Wn+m,m =

m∑
s=0

⌊ m−s
2
⌋∑

i=0

(−)s
(
m
s

)(
m− s

2i

)
(2i)!
2i (i!)

(n+m−2)m−s−2i

=

⌊ m
2
⌋∑

i=0

m−2i∑
s=0

(−)s m!
(s!)((m− s−2i)!) 2i (i!)

(n+m−2)m−s−2i . (3.53)

Noting the relation
m−2i∑
s=0

(−)s (n+m−2)m−s−2i

(s!)((m− s−2i)!)
=

(n+m−2−1)m−2i

(m−2i)!
,

dimWn+m,m = #(vectors)

AEYM
n,m

we immediately have , as defined
in (3.50). Hence, the set of vectors defined in (3.50) satis-
fies  the  required  two  conditions  and  could  be  chosen  as
an  expansion  basis  for  in  (2.9).  In  practice,  we
would prefer  a  basis  with  minimal  dimensions;  then,  we
can define the fundamental f-terms as

Fhih j
:=

k1 · fhi
· fh j
· k1

(k1 · khi
)(k1 · kh j

)
, 1 ⩽ i < j ⩽ m , (3.54)

Fh j

hi
:=

k1 · fhi
· kh j

k1 · khi

, i ∈ {1, . . . ,m} , j ∈ {1, . . . ,m}/{i} ,

(3.55)

Fa
hi

:=
k1 · fhi

·Ka

k1 · khi

, i ∈ {1, . . . ,m} , a ∈ {2, . . . ,n−1} ,

(3.56)

Ka :=
∑a

i=2 kiwhere .  The  vectors  in  the  expansion  basis
can  be  constructed  from  the  above  fundamental f-terms
as

p∏
i=1

Fhα2i−1 hα2i

q∏
i=1

F
hβ′i
hβi

r∏
i=1

Faγi
hγi
, p,q,r ∈N and 2p+q+r=m ,

(3.57)
with the convention

α2i−1 < α2i+1 ∀(1 ⩽ i ⩽ p−1) , α2i−1 < α2i ∀(1 ⩽ i ⩽ p)
βi < βi+1 ∀(1 ⩽ i ⩽ q−1) , γi < γi+1 ∀(1 ⩽ i ⩽ r−1) .

(3.58)
They  contribute  to  a  complete  set  of  the  expansion

basis, and a general EYM amplitude can be expanded in-
to this basis as

AEYM
n;m (k1,k2, . . . ,kn;H) =

∑
hβ′1∈H/{hβ1 }

· · ·
∑

hβ′q∈H/{hβq }

n−1∑
aγ1=2

· · ·
n−1∑

aγr=2

∑
a∪b∪c=H

′ C[Fhα1 hα2
· · ·Fhα2p−1 hα2p

F
hβ′1
hβ1
· · ·Fhβ′q

hβq
Faγ1

hγ1
· · ·Faγr

hγr
]

×B[Fhα1 hα2
· · ·Fhα2p−1 hα2p

F
hβ′1
hβ1
· · ·Fhβ′q

hβq
Faγ1

hγ1
· · ·Faγr

hγr
] , (3.59)

H/hi hi

a = {hα1
, . . . ,hα2p

} b = {hβ1
, . . . ,hβq

}
c = {hγ1

, . . . , hγr
} 2p+q+ r = m

B[· · · ]
B C[· · · ]

where  is  the  set  of  gravitons  excluding ,  and  the
three  sets , ,  and

  with  are  a  splitting  of  all
gravitons.  represents  a  particular  vector  in  the
expansion  basis ,  represents  the  coefficient  of
the  corresponding  vector,  and  the  reduced  summation

∑′
a∪ b∪ c =H

ϵhκ B

 runs  over  all  possible  splittings ,
where the prime denotes that terms with the index circle
should be excluded. The more discussion of index circle
can be found in [33]. We can see that all the information
regarding polarization vectors  is encoded in , as ex-
pected.
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4    Determining expansion  coefficients  via  dif-
ferential operators

We have defined the gauge invariant expansion basis,
and the  next  step  is  to  determine  the  expansion  coeffi-
cients.  As mentioned earlier,  the EYM amplitude can be
expanded schematically in the form,

AEYM
n,m (1,2, . . . ,n;H) =( Coefficients )

⊗ ( Gauge Invariant Basis ) , (4.1)

AYM
n+m

(ϵ · ϵ)p(ϵ · k)q (ϵ · ϵ) (ϵ · k)

or more  explicitly,  as  in  (3.59).  The  expansion  coeffi-
cients  are  linear  combinations  of  Yang-Mills  amplitudes

. To use (4.1) efficiently, a crucial point is to find a
way  to  distinguish  vectors  in  the  gauge  invariant  basis
from each other. Inspired by the explicit  form of vectors
in (3.1), we note that the signature of vectors is the struc-
ture ,  where  and  could be  lin-
early  independent.  This  motivates  us  to  consider  two
kinds of differential operators:

Tahib :=
∂

∂(ϵhi
· ka)
− ∂

∂(ϵhi
· kb)

, Tab :=
∂

∂(ϵa · ϵb)
. (4.2)

(ϵ · ϵ) (ϵ · k)

Tab

Tahib

Tahib
hi hi

a,b

Applying  these  operators  to  the  RHS  of  (4.1),  all
terms  will  vanish  except  those  containing  corresponding

 and .  While  applying  these  operators  to  the
LHS of (4.1), the physical meaning will be different. Ap-
plying  to  single-trace  EYM  amplitudes  produces
multi-trace  EYM  amplitudes,  which  would  complicate
the  amplitude  expansion;  however,  applying  to  a
single-trace  EYM  amplitude  produces  another  single-
trace  EYM  amplitude  but  with  one  less  graviton. 
will transform the graviton  to a gluon  and insert the
gluon in the positions between gluons  respecting the
color-ordering. Therefore,  each  time an  insertion  operat-
or is applied to (4.1), the number of gravitons is reduced
by  one;  then,  a  multiplication  of m insertion  operators
would transform  the  LHS  of  (4.1)  to  Yang-Mills  amp-
litudes completely, as expected 1).

In fact, we can take one step further and define a dif-
ferential  operator as  a  multiplication  of m properly
chosen insertion  operators.  When  applying  the  differen-
tial  operator  to  (3.59),  in  addition  to  some  vectors  with

already known coefficients, there would be one and only
one  vector  with  unknown  coefficient  remaining  in  the
RHS of (3.59), and all other vectors vanish:

Differential Operator on AEYM
n,m = Coefficient

× ( Differential Operator on B ) . (4.3)

AYM
n+m

As  a  consequence,  we  have  a  linear  equation  with  only
one  unknown variable,  and  the  corresponding  expansion
coefficient  can  be  computed  directly  as  a  function  of

,  generated  by  a  differential  operator  applied  to  the
RHS of (3.59) 2). The problem of EYM amplitude expan-
sion is then translated to construction of properly defined
differential operators, which would be the major purpose
of this section. Surprisingly, we find it very helpful to use
quivers to represent the gauge invariant basis and differ-
ential operators for our purpose.

4.1    Gauge invariant basis and its quiver representation

(ϵh · k)
(k · k) (ϵ · ϵ)

(ϵh · k)

(ϵi · k j)

The  definition  of  insertion  operator  (4.2)  indicates
that a differential operator would only affect the Lorentz
contraction , so  all  other  types  of  Lorentz  contrac-
tions  and  can be treated as unrelated factors.
To characterize the structure of  in a gauge invari-
ant vector, we can assign a quiver, i.e., directed graph, to
it3).  Therefore,  in  this  subsection,  we  first  define  the
quiver  representation  of  atomic  factors  such  as ;
second, we give the quiver representations of fundament-
al f-terms;  finally,  we  consider  the  quiver  representation
of  gauge  invariant  vectors  and  discuss  the  properties  of
their quiver representation.

(ϵ · k)
(ϵk)

(ϵhi
· kh j

)
khi

(ϵhi
· k j)

k j

We  call  a  directed  graph  representing  all  of  a
vector the -quiver of the vector. In a quiver, we use a
directed  solid  line  to  represent  with  an  arrow
pointing  to  a  graviton  momentum  and  a  directed
dashed line to represent  with an arrow pointing to
a gluon momentum , as [45], [46] 4)

As  for  the  fundamental f-term (3.48),  which  can  be  ex-
panded as

k1 · fhi
· fh j
· k1 = (k1 · khi

)(ϵhi
· kh j

)(ϵh j
· k1)− (k1 · khi

)(ϵhi
· ϵh j

)(kh j
· k1)

− (k1 · ϵhi
)(khi
· kh j

)(ϵh j
· k1)+ (k1 · ϵhi

)(khi
· ϵh j

)(kh j
· k1) ,

(4.4)

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

1) Alternatively, we could also apply less insertion operators to generate a set of linear equations of single-trace EYM amplitudes, and recursively use the expansion
of single-trace EYM amplitude with less number of gravitons into Yang-Mills amplitudes.

2) The idea of selecting only one unknown variable at each step is similar with that of the OPP reduction method for one-loop amplitude.

ϵ · k
3) The idea of using arrows to represent Lorentz contractions has already been applied in previous literatures, where all types of Lorentz contractions are considered.

However, we are only interested in Lorentz contraction of the type  in this paper.
(ϵ · k)

(ab)
4) From now on, we will identify an directed line with its corresponding  term, and sometimes when we refer to a specific directed line connecting two nodes

from a to b, we will use the label  and b is called the head, a called the tail.
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(ϵk) (ϵk)its -quiver representation consists of three -directed graphs, as 1)

(4.5)

(ϵ · k)Because each graph denotes a multiplication of  terms, when applying the derivatives
∂

∂(ϵhi
· k1)

∂

∂(ϵh j
· k1)

,
∂

∂(ϵh j
· khi

)
∂

∂(ϵhi
· k1)

,
∂

∂(ϵhi
· kh j

)
∂

∂(ϵh j
· k1)

(4.6)

(k1 · fhi
· fh j
· k1) (k1 · fhi

· k) (ϵk)to , we will get non-vanishing results. Similarly, for , their -quivers are

(4.7)

kh j

h j k j

where we have distinguished two cases,  being the mome-
ntum of a graviton  and  being a momentum of a gluon.

(ϵhi
· k1)

(k1 · fhi
· fh j
· k1) (k1 · fhi

· k)
∂ϵhi ·k1

ϵhi
· k1

(ϵk)

Fhih j
Fh j

hi

Fhih j
Fh j

hi
Fa

hi

(ϵk)

Note  that  the  factor  exists  in  both
 and , so the action of the derivat-

ive  on  them  both  is  non-zero.  Consequently,  we
prefer to eliminate the dashed lines representing  in
the graphs of -quivers to obtain a simple presentation.
Furthermore, to represent one fundamental f-term by only
one graph and distinguish  from , we combine the
two solid arrows in (4.5)  into a loop.  Finally,  the funda-
mental f-terms , ,  defined in (3.54), (3.55), and
(3.56)  are  represented  by  quivers  in Fig.  1. To  distin-
guish  these  quivers  from -quivers,  we will  call  them
basis quivers or just quivers.

(ϵk)
(ϵhi
· k)

(ϵhi
· k1)

We  should  emphasize  that  from  a  basis  quiver,  it  is
easy  to  recover  all  corresponding -quivers by  repla-
cing any one solid or dashed arrow  in the graph by
a  dashed  arrow , i.e.,  from Fig.  1 to  (4.5),  (4.7).

(ϵk)

(ϵ · k1)
(ϵk)

(ϵk)

ϵhi

However,  given  an -quiver, it  is  difficult  to  determ-
ine  which  basis  quiver  it  comes  from,  especially  when
there are many  lines. The fact that there is no one-
to-one  correspondence  between  basis  quivers  and -
quivers causes some technical difficulties in the construc-
tion of differential operators. Fortunately, for a gauge in-
variant  vector,  its  basis  quiver  and -quivers do  pos-
sess  a  common  property:  they  all  contain m and  only m
lines (counting both dashed lines and solid lines), as each
line carries one .

Fhih j

(ϵk)

Fh2

h1
Fh1

h2

(ϵh1
kh2

)(ϵh2
kh1

) Fh2

h1
Fh3

h2
Fh1

h3
Fh3

h4

(ϵh1
kh2

)(ϵh2
kh3

)(ϵh3
kh1

)(ϵh4
kh3

)

Note that  the basis  quiver  for  is  a  colored loop,
where the  colors  are  to  remind  us  that  it  is  an  overlap-
ping of  three -quivers  after  eliminating dashed lines.
We  call  such  a  colored  loop  a pseudo-loop.  In  general,
there are also real loops. For example, the  contain-
ing  a  monomial  and  contain-
ing a monomial  can be repres-
ented as

However,  as explained in [33],  the terms with indices or
part of indices forming a closed circle will not be present
in  the  expansion  of  the  EYM  amplitude,  although  such
terms  do  appear  in  the  gauge  invariant  basis.  Therefore,
we will exclude basis quivers with real loops in practical
computation.

Next,  let  us  consider  the  quiver  representation  of  a

vector  in  the  gauge  invariant  basis.  As  shown  in  (3.57),
such a  vector  is  a  multiplication  of  fundamental f-terms,
expressed as p∏

i=1

Fhα2i−1 hα2i

 q∏
i=1

F
hβ′i
hβi

 r∏
i=1

Faγi
hγi

 . (4.8)

ϵhi
Because each  appears only once in a vector, only one

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

k1 · fhi · fh j · k1 ϵhi · ϵh j

ϵ · ϵ
1) Notice that there are four terms in the expansion of , while the  term is the most crucial signature to distinguish it from other fundamental f-

terms. However in this paper we only consider insertion operators so that  is out of our sight.
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(ϵhi
· k)

hi

Ka

Ka

p+ r

Kai
Fh j

hi

 exists;  therefore,  we can conclude that each point
labelled by  in the basis quiver of a gauge invariant vec-
tor has at most one out-going line but possibly several in-
coming lines. Consequently, all pseudo-loops are topolo-
gically  disconnected from each other.  The point  labelled
by  is  connected by only in-coming lines but  not  out-
going lines;  hence,  all  such points  are  also  topologically
disconnected from each other. Furthermore, pseudo-loops
cannot  be  connected  with  points  labelled  by  either.
Therefore, a quiver graph could have many disconnected
components, whose number is at least p and at most ,
as several dashed lines can be connected to the same node

, while a solid line for  can be connected to one and
only one disconnected component.

Faγi
hγi

Kaγi

F
hβ′i
hβi

hβ′i , hβi

With  the  above  analysis,  let  us  discuss  the  possible
structures appearing in a quiver representation for a vec-
tor  in  a  gauge  invariant  basis  (4.8).  First,  because  each

 is represented  by  a  dashed  directed  line  with  an  ar-
row pointing to , its head can never be connected with
a pseudo-loop or a solid line. Second, each  is repres-
ented  by  a  solid  line  with  an  arrow pointing  to ,

hβ′i ∈{hγ1
, . . . ,hγr

}
hβ′i ∈ {hα1

, . . . ,hα2p
}

hβ′i ∈ {hβ1
, . . . ,hβr

}/{hβi
}

hβ′i = hβ j

so  if ,  its  head  is  linked  with  a  dashed
line,  while  if ,  its  head  is  linked  with  a
pseudo-loop,  and  if ,  for  instance

, its head is linked with another solid line, and the
head of  the  latter  is  further  linked with a  pseudo-loop,  a
dashed  line,  or  a  solid  line.  A  succession  of  solid  lines
should finally stop at a dashed line or a pseudo loop; oth-
erwise, it would form a real loop that should be excluded.

To summarize, the quiver representation of a vector in
a  gauge  invariant  basis  could  contain  the  following sub-
structures:

1. only a single dashed line,
2. a dashed line linked with a tree consisting of solid

lines,
3. only a single pseudo-loop,
4. a pseudo-loop connected to a tree consisting of sol-

id lines on one side,
5. a pseudo-loop connected to two trees consisting of

solid lines on both sides,

AEYM
n,6

as  shown in Fig.  2. Two examples  of  quiver  representa-
tions for two vectors in the gauge invariant basis of 
are shown as follows:

(4.9)

F4
h3

F4
h6

The  two  examples  illustrate  our  previous  discussion
very  well.  There  are  three  disconnected  components  for
the  first  one  and  two  for  the  second  one.  In  the  second
graph, two dashed  lines  are  connected  to  one  node,  rep-
resenting  the  fundamental f-terms , .  All  directed
solid lines stop at pseudo-loops or dashed lines.

In fact, we can give a more precise description of the

Kai

Kai

Kai

structures of basis quivers using the concept of a rooted
tree [47].  The  quiver  of  a  vector  in  a  gauge  invariant
basis  consists  of  some  disconnected  components,  and
each component contains only one pseudo-loop or a node

. If we focus on a disconnected component with node
,  it  is  exactly  a  rooted  tree,  with  the  root  being  the

node . More precisely, it is a directed rooted tree with

Fig. 1.    (color online) Quiver representation of fundamental f-terms.
 

Ka

Fig. 2.    (color online) Possible structures that can appear in the quiver representation of a gauge invariant basis. The solid line without
a starting point denotes possible tree or line segments. The dashed lines could be connected at the same point .
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an orientation toward the root, i.e., all lines in the tree are
directed  to  the  root  from the  leaves,  as  illustrated  in  the
previous two examples. For the disconnected component
with  a  pseudo-loop,  we  could  split  the  pseudo-loop  into
two  colored  lines,  resulting  in  two  sub-graphs.  For  each
sub-graph, we take the node with only in-coming lines as
the root; thus, we obtain two rooted trees from a discon-
nected  component  with  a  pseudo-loop.  This  picture  of
rooted trees will help us to construct the differential oper-
ators  and  understand  many  properties  of  our  algorithm
later.

4.2    Constructing differential operators

(ϵ · k)
∂ϵhi ·k (ϵk)

ϵhi
· k

∂ϵhi ·k

Because  a  vector  in  the  gauge  invariant  basis  is  a
polynomial  of ,  it  will  be  non-vanishing  under  the
action of  a  derivative  only  if  its -quiver repres-
entation contains a solid or dashed line corresponding to

.  Hence,  by constructing a  differential  operator  as  a
proper  combination  of  some derivatives ,  we  expect
under  its  action  that  ideally  only  one  vector  is  non-van-
ishing,  so  it  can  select  a  particular  non-vanishing  vector

in a gauge invariant basis. Although in fact we cannot do
this, we  succeed  in  dividing  the  computation  of  coeffi-
cients  of  a  gauge invariant  basis  into many steps,  and in
each step, by applying an appropriate differential operat-
or,  only  one  new  vector  is  non-vanishing,  except  some
vectors  whose  coefficients  are  already  known.  The  goal
in this subsection is to construct such differential operat-
ors.

The expected  differential  operators  can  be  construc-
ted using three types of insertion operators (4.1). The first
type of insertion operator takes the form

Tahi(a+1) = ∂ϵhi ·ka
−∂ϵhi ·ka+1

, a = 2,3, . . . ,n−1 , (4.10)

ka

Tahi(a+1) (ϵk)
ϵhi
· ka ϵhi

· ka+1

where  is  the  momentum of  a  gluon.  A vector  is  non-
zero  under  if  its -quiver  contains  a  dashed
line corresponding to  or . Applying this in-
sertion operator to the fundamental f-terms, we have

Tahi(a+1) Fhα2 j−1 hα2 j
= 0 , Tahi(a+1) F

hβ′j
hβ j
= 0 , (4.11)

and

Tahi(a+1) Fb
h j
=

[
∂(ϵhi ·ka)−∂(ϵhi ·ka+1)

] b∑
l=2

(k1 · kh j
)(ϵh j
· kl)− (k1 · ϵh j

)(kh j
· kl)

k1 · kh j

= δi jδab . (4.12)

Fa
hγi Tahi(a+1)

The above results  tell  us  that  if  the  basis  quiver  of  a
vector  in  a  gauge  invariant  basis  contains  a  dashed  line
representing ,  then  a  differential  operator  containing
the  insertion  operator  will  select  out  this  vector
and  other  vectors  containing  the  same  dashed  line.  The
relation (4.12) can be graphically represented as,

(4.13)

Th jhin = ∂ϵhi ·kh j
−∂ϵhi ·kn

The  second  type  of  insertion  operator  takes  the  form
,  where  the  Lorentz  contraction  of  a

kn

Th jhin ∂ϵhi ·kh j

polarization  vector  with  a  graviton  momentum  has  been
included.  Because  by  definition  the  momentum  does
not  appear  in  the  fundamental f-terms,  when  applying

 to  them,  only  the  derivative  works. Expli-
citly, we have

Th jhin Fai′

h′i
= 0 , Th jhin Fh j′

hi′
= δii′δ j j′ ,

Th jhin Fhi′h j′ =
ϵh j
· k1

k1 · kh j

(
δii′δ j j′ +δi j′δ ji′

)
, (4.14)

represented in quivers as

Fhih j
Fh j

hi
Th jhin

(ϵhi
· k j)

Fhih j
Fh j

hi

Fhih j
Fh j

hi

Fhih j

hi h j

Because both  and  are non-vanishing under ,
we may conclude that this insertion operator is not suffi-
cient  to  distinguish  these  two  terms.  However,  we  shall
note  that  the  insertion  operator  is  actually  a  differential
operator  that  works  through  the  smaller  pieces, i.e.,
Lorentz contractions , rather than the fundamental
f-terms  and . According to this view, it is easy to
accept  that  and  are non-vanishing under the ac-
tion  of ,  as  their  quivers  both  contain  a  solid  line
from  to .

Fhih j
Fh j

hi

To construct  a  differential  operator  that  can  distin-
guish  from ,  we need to consider a  third type of

Fhih j

Fh j

hi
(ϵk)

Fhih j

(hih j) (1hi) (1h j)
Th jhin

dϵh j ·k1
Fh j

hi

T1h j2Th jhin

Fhih j

composite insertion operator. The key difference in these
two terms is that  has two polarization vectors, while

 has  only  one.  In  other  words,  in  the -quiver  of
,  there  are  always  two  lines  linked  together,  a  solid

line  and  a  dashed  line  or ,  so  we  can
multiply  by an  additional  insertion  operator  con-
taining the derivative ; under such operators,  al-
ways  vanishes.  Then,  choosing  the  operator 
and applying it to , we have

(k1 · kh j
)T1h j2Th jhin Fhi′h j′ = δii′δ j j′ . (4.15)

It is  easy  to  see  that  the  operator  satisfies  our  require-
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Fhih j
Fh j

hi

Fhih j

T1h j2

ment  for  distinguishing  and , and  it  also  distin-
guishes  the  pseudo-loop  of  from  all  other  pseudo-
loops.  However  causes  some  additional  difficulty,
as  there  will  be  some  multiplication  of  fundamental f-
terms that do ont vanish, such as 1)

(k1 · kh j
)T1h j2Th jhinFh j

hi
Fat

h j
= −kh j

· (k1+Kat
) ,

(k1 · kh j
)T1h j2Th jhinFh j

hi
Fhp

h j
= −kh j

· khp
. (4.16)

T1h j2Th jhin

Fh j

hi
Fa j

h j
Fh j

hi
Fhp

h j

Ta jh j(a j+1)Th jhin Thph jnTh jhin
Fhih j

Th jhinT1h j2

Fhih j
Fh j

hi
Fa j

h j
Fh j

hi
Fhp

h j

This means that although  is able to distinguish
one pseudo-loop from the others,  it  would mix contribu-
tions from vectors without pseudo-loops. However, this is
not a  problem  at  all,  if  we  attempt  to  solve  the  coeffi-
cients of  the  basis  in  multiple  steps.  We  can  first  com-
pute the coefficients of  and  using the differ-
ential  operators  and  respect-
ively, under which  has no contribution at all.  Then,
we  can  apply  to  compute  the  coefficient  of

,  and  we  treat  the  coefficients  of ,  as
known input.

(ϵk)

(ϵk)

(ϵk)
(ϵhi
·Ka) (hih j)

After  the  above  discussion,  we  can  roughly  give  a
general  picture  of  constructing  a  differential  operator  to
select  a  particular  vector  in  the  gauge  invariant  basis
through  the  quiver  representation.  The  major  idea  is  to
construct  a  new special -quiver  from a vector's  basis
quiver, which can be used to  construct  the  expected dif-
ferential operators. A reasonable method for determining
these new -quivers is as follows: a dashed line in the
basis  quiver  of  a  vector  suggests  that  there  is  also  a
dashed  line  in  the  new -quiver,  but  representing

 and  a  solid  line  in  the  basis  quiver  also

(ϵk)
(ϵhi
· kh j

)

(ϵhi
· kh j

) (ϵh j
· k1)

(ϵh j
· khi

) (ϵhi
· k1)

(ϵk)

(ϵk)

suggests  that  there  is  a  solid  line  in  the  new -quiver
representing , while for a pseudo-loop in the basis
quiver,  we  can  choose  to  construct  either  a  solid  line

 connected to a dashed line  or a solid line
 connected  to  a  dashed  line  in  the  new

-quiver.  We  are  free  to  take  any  one  of  the  two
choices when meeting a pseudo-loop. Finally, we obtain a
new -quiver,  which  is  used  to  construct  differential
operators.

(ϵk)

k1

{root : leaf 1; ...; leaf m}

As we discussed at the end of the previous subsection,
the -quiver is a collection of rooted trees. The discon-
nected component of a pseudo-loop in the basis quiver of
a  vector  has  been  split  into  two  branches,  where  each
branch is a rooted tree with the root being  and is suit-
able according to our choice, and the components without
pseudo-loops directly give us rooted trees. Furthermore, a
collection of  rooted  trees  can  be  algebraically  represen-
ted  as  an  embedded  structure,  where  at  each  level,  we
write .2)

(ϵk)Second, having obtained the desired -quivers, we
can construct the corresponding differential operators us-
ing the following rules:

Tahi(a+1)
(hiKa) (ϵk)

1.  assign  an  operator  to  each  dashed  line
 in  the  new -quiver,  which  uniquely  picks  up

the corresponding dashed line in a vector's basis quiver;
Th jhin (hih j)

(ϵk)
2. assign an operator  to each solid line  in

the new -quiver, which uniquely picks up the corres-
ponding solid line in a vector's basis quiver;

(k1 · khi
)T1hi2

(hik1) (ϵk)
3. assign an operator  to each dashed line

 in the new -quiver.
These rules can be represented graphically as

(4.18)

(ϵk)
(ϵk)

Therefore,  the  corresponding  differential  operator  for  a
vector in  a  gauge invariant  basis  is  defined by multiply-
ing all assigned operators in the new -quiver together;
then, we call the -quivers constructed according to the
above  rules D-quivers. We  want  to  emphasize  the  fol-
lowing: (1) there is a one-to-one map between D-quivers

(ϵk)
and differential operators, so one quiver defines a unique
differential  operator;  (2)  a D-quiver  is  a  special -
quiver, which can be associated with a given basis quiver.

Finally,  the  above  discussion  can  be  summarized  as
the  following  map,  stating  that  from a  given  vector  to  a
corresponding differential operator,

Bi =

 p∏
i=1

Fhα2i−1 hα2i

 q∏
i=1

F
hβ′i
hβi

 r∏
i=1

Faγi
hγi

→ Di =

 p∏
i=1

(k1 · khα2i
)Thα2i hα2i−1 nT1hα2i 2

 q∏
i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)

 , (4.19)

Bi ∈ Bwhere . There are several technical points we wish
to explain. First, the mapping rule is defined such that

Di[Bi] = 1 . (4.20)

Second, although  insertion  operators  are  commutat-
ive, when acting on EYM amplitudes, we need to choose

Tahγa′ ,T1hα2
Thαh′αn Thβh′βn

a  proper  order  to  make  the  physical  meaning  clear.  We
shall  apply  insertion  operators  of  the  type 
first; then, we apply the types  and . More ex-
plicitly,  the  ordering  of  applying  insertion  operators  is
from  the  roots  to  the  leaves  in  the D-quiver  opposite  to
the direction of the arrows.
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(ϵk) Fat
hk

ϵ · k2 T1h j21) Note that in the -quiver of  there is also the contraction , which would produce non-vanishing result under operator .
{K6 : h5} , {K4 : h6; {h3,h4 : h1;h2}} .2) For example, the second quiver in (4.9) can be represented as 
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Di AEYM
n,m Di

In  fact,  we  can  make  the  result  more  concrete  when
acting  on . As mentioned, each  can be repres-
ented  by  a D-quiver  as  a  collection  of  rooted  trees.  For
example, the D-quiver for a differential operator is

　

Then, the rooted trees can be written as
{k1 : {h1 : {h2,h4};h3}; {h5,h6}},
{K4 : h8; {h9,h10 : h11;h12}}, {K6 : h7}. (4.21)

AEYM
n,12Applying this to  leads to

AYM
n+12

(
1, {h1, {h2,h4}⊔⊔h3} ⊔⊔ {h5,h6}

⊔⊔ {2,3,4, h8 ⊔⊔ {h9,h10,h11⊔⊔h12}
⊔⊔ {5,6, h7 ⊔⊔ {7, ...,n−1}R }R }R, n

)
, (4.22)

(k1 · kh1
)(k1 · kh5

)multiplied  by .  This  example  contains  all
crucial points we wish to clarify, so let us give more ex-
planation,  especially  about  the  similarity  between  the
shuffle structure in (4.22) and the rooted tree structure in
(4.21).

k1
{h1 : {h2,h4};h3} {h5,h6}

T1h12 T1h52

● First, let us consider the tree with root . It is con-
nected to two branches,  and . Ap-
plying  and  will produce the structure

A(1, {h1}⊔⊔{h5}⊔⊔{2,3, ...,n−1}R,n) , (4.23)

Th5h6n {h5,h6}

where  the  subscript R denotes  a  "restricted  shuffle,"
meaning  that  when  making  a  shuffle  permutation  for
three  sets,  the  first  element  of  the  third  set  should  be
placed after the first element of the other two sets. Apply-
ing  from the first branch will give us , as

A(1, {h1}⊔⊔{h5,h6}⊔⊔{2,3, ...,n−1}R,n) , (4.24)

{h1, {h2,h4}⊔⊔ h3}
while  applying  insertion  operators  from  the  second
branch will give , as

AYM
n+12 (1, {h1, {h2,h4}⊔⊔h3}⊔⊔{h5,h6}⊔⊔ {2,3, ...,n−1}R, n) .

(4.25)
K4● Second, let us consider the rooted tree with root ,

T4h85

T4h95 {2,3, ...,n−1}R
which  also  contains  two  branches.  Applying  and

 on the sub-structure  in (4.25) results in
AYM

n+12
(
1, {h1, {h2,h4}⊔⊔h3} ⊔⊔ {h5,h6}

⊔⊔ {2,3,4,h8⊔⊔{h9,h10,h11⊔⊔h12}
⊔⊔{5,6, ...,n−1}R }R, n

)
. (4.26)

{K6 : h7} K6 T6h77
{5,6, ...,n−1}R {5,6,h7⊔⊔

{7, ...,n−1}R }R

● Finally, let us consider the remaining tree structure
 with  root .  Applying  on  the  sub-struc-

ture  in  (4.26)  will  give  us 
, just as shown in (4.22).

4.3    Applications of differential operators

Di

Bi

Di[B j] , 0
j , i

Having defined the corresponding differential operat-
or  for a vector in a gauge invariant basis as in (4.19),
we can apply it to equation (4.1) and obtain a linear equa-
tion  for  the  expansion  coefficient  of  a  particular ,  as
well  as  other  coefficients.  However,  for  a  vector  with
pseudo-loops,  in  general,  we  will  meet  for
some . In this case, we have a set of linear equations.
For an EYM amplitude with a large number of gravitons
and  gluons,  the  number  of  linear  equations  will  become
too  large  to  be  easily  solved.  Thus,  it  is  better  to  find  a
way to avoid solving a large number of linear equations.

B j Di
Di[B j] , 0 B j Di

To find a such method, we need to analyze the beha-
viors  of  different  under  the  action  of , i.e., equa-
tions  with different  under the same . By
inspecting D-quivers  and  corresponding  operators,  we
find that there are two types of problems that cause diffi-
culties in solving linear equations.

Tahi(a+1) Th jhin

(k1 · khi
)T1hi2

Bi

The first problem comes from a key observation that,
while operator  or  is able to select a particu-
lar dashed line or solid line uniquely in the basis quiver,
the operator  fails to do so. As a consequence,
the contributions  of  different  basis  quivers  will  mix  to-
gether  when  they  can  produce  the  same D-quivers.  The
reason  for  this  is  that  each  pseudo-loop  of  the  vectors'
basis  quiver  has  two  possible  ways  of  generating D-
quivers,  so  it  is  possible  that  two  basis  quivers  with
pseudo-loops  generate  the  same D-quiver.  For  example,
let us consider the following four basis quivers , which
generate five D-quivers in total.

(4.27)
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D2

B1

D2 B2

B1 B1,B2

D2

Hence,  if  we choose  as the  corresponding  differ-
ential operator of the basis quiver , then after applying

 to these five vectors,  is also non-zero, in addition
to ,  which  means  that  the  coefficients  of  are
mixed together in the linear equation given by .

Fhα2i−1 hα2i

F
hα2i

hβ
(k1 · khα2i

)Thα2i hα2i−1 nT1hα2i 2

Fhβhα2i
F

hα2i

hα2i−1

κi

The  above  phenomenon  is  a  general  one.  Assuming
the  basis  quiver  of  a  vector  in  the  gauge  invariant  basis
has  a  pseudo-loop  connected  with  a  solid  line

,  and  the  corresponding  differential  operator  of  the
pseudo-loop  is , then  we  can  al-
most always find a new vector in the basis having a factor

1), which  is  non-zero  under  the  same  differen-
tial operator. We can do this operation independently for
each  pseudo-loop  in  a  vector.  If  there  are  solid  lines

hα2i (∏p
i=1(κi+1)−1

)
Di[B j] = 1 B j

Di

connected  to  the  node ,  the  total  number  of  vectors
that is non-zero under the corresponding differential oper-
ator of the pseudo-loop will be . The res-
ults  of  these  vectors  under  the  action  of  the  differential
operator  are  for  being  a  vector  of  the  set;
this fact will be important in the subsequent construction
of a linear combination of .

(ϵk)
(ϵ ·Ka) (ϵ · kh j

) (ϵ · k1)
D1

Now,  let  us  consider  the  second  problem originating
from identity (4.16).  Although the basis quivers of some
vectors will  not  produce the same D-quiver2),  they could
give  the  same -quiver  by  replacing  a  dashed  line

 or a solid line  by . For example, ap-
plying  to the following two basis quivers yields non-
zero results,

(4.28)

B̃2

B̃1

Fhα2i−1 hα2i

(k1 · khα2i
)Thα2i hα2i−1 nT1hα2i 2

Fhα2i−1 hα2i

F
hα2i

hα2i−1
FKa

hα2i
∀a = 2, ...,n−1 F

hα2i

hα2i−1
Fhp

hα2i

p , α2i

(2p−1)(n−2+m−1)
Di

(−khα2i
· (k1+Ka)) (−khα2i

· khp
)

Note that  can be a rooted tree by itself or a rooted tree
obtained by splitting a pseudo-loop, while  can only be
a rooted tree obtained by splitting a pseudo-loop. Thus, in
this  case,  a  branch  of  a  disconnected  component  with  a
pseudo-loop  is  mixed  with  a  disconnected  component
without  a  pseudo-loop.  Explicitly,  for  a  vector  with  a
pseudo-loop  and  the  corresponding  operator  for
the  pseudo-loop ,  we  can  always
find  some  new  vectors  by  replacing  with

,  or  with  arbitrary
3).  Because  the  replacement  for  each  pseudo-loop

is  independent,  there  are  a  total  of 
new vectors, and applying  to these new vectors would
produce  or , respectively,  ac-
cording to (4.16). This is consistent with the counting of
mass  dimension.  However,  these  new vectors  have  their
corresponding  differential  operators  (4.28)  under  which
the original vector with a pseudo-loop vanishes. Thus, the
second problem is easy to deal with if we solve the linear
equations of unknown coefficients in the proper order.

We  have  discussed  two  types  of  problems  in  detail,
and the second type is easily solved, so let us continue to
discuss  how  to  deal  with  the  first  one.  The  first  type  of
problem originates from the fact that under the action of a
differential operator, several vectors with pseudo-loops in
the gauge invariant basis do not vanish at the same time,
so their coefficients are mixed together in the linear equa-
tions. Our solution is to construct a linear combination of

differential operators such that under its action, only one
vector is  non-vanishing. Let us start  from the simple ex-
ample (4.27), where it is easy to get

D2(b1B1+b2B2+b3B3+b4B4) =b1+b2,

D3(b1B1+b2B2+b3B3+b4B4) =b2+b3,

D4(b1B1+b2B2+b3B3+b4B4) =b3+b4,

D5(b1B1+b2B2+b3B3+b4B4) =b4. (4.29)

Di :=
∑4

a=i(−1)a−1Da+1

If  we  define  some  new  differential  operators  as
, then

Di[B j] = (−)i−1δi j , i, j = 1,2,3,4 . (4.30)

DiThis  means  selects a  unique  vector  from  the  en-
tangled vectors,  and  the  linear  equations  of  the  coeffi-
cients of these vectors are easily solved. Generalizing this
example, we can construct the linear combination of dif-
ferential operators as follows.

Bi●  For  a  given  vector ,  we  can  obtain  many D-
quivers  in  general,  but  we  choose  only  one D-quiver
freely. For example,

k1

k1 ha
hb

●  For  the D-quiver  whose  root  is ,  there  are  two
nodes coming from the original pseudo-loop. If the node
connected to  by a dashed line is  denoted , then an-
other  node  is  denoted  by .  We  can  separate  this D-
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hα2i−1 hβ1) The new basis is gotten by the operation of exchanging two subscripts  and .
(ϵk)2) Please recall that the collection of D-quivers is a subset of all -quivers.

3) When such replacement produces a real loop it should be excluded.
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ha
ha hb hb

Ha,Hb

quiver  into  two parts  in  the  node  while  assigning the
line  connecting  and  to ,  and  denote  these  two
parts by . For example,

Ha k1 ha k1
k1

●  In  graph ,  is  connected  to ,  and  is  the
root  with  all  lines'  directions  toward . We  can  con-

k1

ha

DHa, j j = 1, ...,k
ha

Ha

struct some new rooted trees by moving  to other nodes
and keeping  as the root; then, it is necessary to change
the directions of lines. Each new rooted tree defines a dif-
ferential operator denoted by  with , where
k is the total number of nodes excluding  in the rooted
tree . Then, we define a new differential operator by

DHa
=

k∑
j=1

(−)s( j)DHa, j , (4.31)

s( j) k1

ha h j

where  is the number of steps for moving  from the
node  to the node . For example,

DHa

Hb

● Multiplying  by the differential operator corres-
ponding to  gives us the expected operator, which will
select  only  one  particular  vector  from  the  set  of  vectors

entangled  with  the  original  vector.  For  example,  we  get
the linear combination
 

D

D

Bi

● A basis quiver of a vector would have many discon-
nected components,  and  for  each  disconnected  compon-
ent with a pseudo-loop, we can apply the same procedure
and  similarly  construct  a  corresponding  operator  as  a
linear  combination  of  some  operators D.  Multiplying  all
these  operators  with the  operators  obtained  from dis-
connected  components  without  pseudo-loops,  we  obtain
the final differential operator, which will select a particu-
lar  vector  in  a  gauge  invariant  basis  without  the  first
type of problem.

We should  emphasize  that,  after  obtaining  these  dif-
ferential  operators  using  the  above  method,  if  we  apply
them to  the  expansion,  there  are  still  some issues  result-
ing  from the  second type  of  problem.  This  suggests  that
we  should  solve  coefficients  of  vectors  with  fewer
pseudo-loops  first.  We  also  remark  that,  although  we
have provided  the  method  to  solve  the  problem  of  mix-
ing  of  some  vectors  in  solving  the  linear  equations  of
coefficients, when the size of linear equations is small, it
is quite favorable to solve them directly using the origin-

al  differential  operators  defined  in  (4.19).  The  reason  is
that,  while it  is  much simpler for computing coefficients
of the mixed vectors by using differential  operators con-
structed by the above method, it may be complicated for
the  cases  we  meet  in  the  second  type  of  problems  since
some  vectors  with  less  pseudo-loops  are  non-vanishing
under the action of these operators for the second type of
problems.

4.4    Algorithm for evaluation of expansion coefficients

p = 0
r = 0

p = 0

After clarifying the structure of differential operators,
the next  step  is  to  apply  them for  computing  the  expan-
sion  coefficients  for  the  generic  expansion  formula
(3.59). For vectors of the gauge invariant basis defined in
(3.57), the algorithm is implemented order by order, start-
ing  from  to  the  largest  value p.  For  a  given p,  we
start from the largest r and proceed to . The value of
p denotes the number of pseudo-loops in a vector; hence,
when ,  the  basis  quiver  contains  only  solid  and
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dashed  lines,  without  any  pseudo-loops.  Such  a  vector
can be mapped to a unique D-quiver representing the fol-
lowing differential operator, q∏

i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)

 , q,r ∈N , q+r =m . (4.32)

B j

D j

Recalling identities (4.11), (4.13), and (4.14), a vector 
is  non-vanishing only when its -quiver  is  the  same as
that given by (4.32). Thus, the differential operator (4.32)
uniquely  selects  one  vector  in  the  gauge  invariant  basis
while all others vanish, and the expansion coefficient can
be solved  using  an  univariate  linear  equation.  Further-
more, the differential operator is normalized to one, q∏

i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)

   q∏
i=1

F
hβ′i
hβi

 r∏
i=1

Faγi
hγi

  = 1 ,

(4.33)
and hence, the expansion coefficient can be directly com-
puted  by  applying  differential  operator  (4.32)  on  the
EYM amplitude, leading to

C[F
hβ′1
hβ1
· · ·Fhβ′q

hβq
Faγ1

hγ1
· · ·Faγr

hγr
] =

 q∏
i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)


×AEYM

n,m (1,2, . . . ,n;h1, . . . ,hm) .
(4.34)

Taγi hγi (aγi+1) hγi
aγi

aγi
+1

Thβ′i hβi n
hβi

hβ′i
hi

2
1,2,n

Note that  inserts  between  and  rel-
ative  to  the  color-ordering,  while  inserts 
between n and another graviton . Hence, in the result-
ing Yang-Mills  amplitudes,  the  legs  can never  appear
in  the  positions  before  or  after n,  and  all  Yang-Mills
amplitudes are in the BCJ basis with legs  fixed. An
example  of  evaluating  (4.34)  has  been  discussed  in
(4.22).

p = 1For the  case, the differential operator for a vec-
tor with one pseudo-loop is defined as 1),

(
(k1 · kα2

)Thα2 hα1 nT1hα2 2
) q∏

i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)

 ,
q,r ∈ N , q+ r = m−2 ,

(4.35)
with  indices  following  convention  (3.58),  and  the  total
number of differential operators is

m!
2(m−2)!

(n+m−3)m−2 .

T1hα2 2 ∂ϵhα2
·k1

k1

k1

k1

In  differential  operators  (4.35),  the  insertion  operator
 will  contribute  a  derivative  relating to  mo-

mentum .  In  its  quiver,  there  is  only  one  branch  with
root , and as we have analyzed, applying these differen-
tial  operators  on  vectors  will  produce  non-zero  results
only  if  the D-quiver  of  vector  contains  only  one  or  no
branch  with  root .  Therefore,  all  vectors  with  two  or
more pseudo-loops  will  vanish  under  (4.35).  Further-
more, when applying (4.35) on vectors without a pseudo-
loop, there could be a non-zero contribution. However, it
is  not  an  issue  because  all  coefficients  of  such  vectors
have been solved a priori by differential operators (4.32),
and they  enter  into  the  linear  equations  as  known  para-
meters.

For vectors with one pseudo-loop, there are in gener-
al more than one vector that is non-vanishing under a spe-
cific  differential  operator  (4.35),  as  shown  in  (4.29).
Therefore, we need to apply a complete set of differential
operators to generate an algebraic system of linear equa-
tions and  solve  the  expansion  coefficients  from  this  al-
gebraic system. Alternatively,  we can also apply the dif-
ferential  operator  constructed  by  rule  (4.31), i.e., a  spe-
cial linear combination of differential operators in (4.35).
Then, an expansion coefficient can be determined by a uni-
variate linear equation again.  Nevertheless,  we can com-
pute the coefficient of a vector with one pseudo-loop as

C[Fhα1 hα2
F

hβ′1
hβ1
· · ·Fhβ′q

hβq
Faγ1

hγ1
· · ·Faγr

hγr
] =

∑(
(k1 · kα2

)Thα2 hα1 nT1hα2 2
) q∏

i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)


 AEYM

n,m (1,2, . . . ,n;h1, . . . ,hm)

+
(
Contributions from basis with no pseudo− loops

)
, (4.36)

T1hα2 2

hα2
1 2

1,2,n

where the  summation  in  curly  brackets  represents  a  lin-
ear combination of differential operators constructed fol-
lowing rule (4.31). Note that the insertion operator 
inserts  between  and , so the resulting Yang-Mills
amplitudes are no longer in the BCJ basis with legs 
fixed. The BCJ relations are required in this step to write
all  Yang-Mills  amplitudes  into  the  BCJ  basis,  while

Yang-Mills  amplitudes from the contributions of  vectors
with no pseudo-loops are still in the BCJ basis.

(p+1)

Now,  let  us  proceed  to  the  vectors  with p pseudo-
loops.  Using  the  same  argument  used  with  one  pseudo-
loop, by applying the corresponding differential operator,
all vectors with  or more pseudo-loops will vanish.
For  different  vectors  with p pseudo-loops, a  linear  com-
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1) As mentioned, using the simple rule (4.19) we might need to solve algebraic systems of linear equations. While using a more complicated combination of differen-
tial operators as (4.31), the algebraic system is decoupled to univariate linear equations.
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(p−1)

bination  of  differential  operators  constructed  using  rule
(4.31)  is  able  to  uniquely  select  a  vector  from  all  other
vectors  with p pseudo-loops.  However,  these differential
operators  still  produce  non-zero  results  when  applied  to
vectors  with  or  fewer  pseudo-loops.  To  solve
these  linear  equations,  all  coefficients  of  vectors  with

(p−1)

p = 0 p = ⌊m
2 ⌋

 or  fewer  pseudo-loops  should  be  solved a priori,
and these linear equations will be entered as known para-
meters. This inspires us to solve linear equations order by
order from vectors with  to  pseudo-loops.

The  differential  operators  relating  to  vectors  with p
pseudo-loops in the gauge invariant basis are given as

 p∏
i=1

(k1 · kα2i
)Thα2i hα2i−1 nT1hα2i 2

 q∏
i=1

Thβ′i hβi n

 r∏
i=1

Taγi hγi (aγi+1)

 , q,r ∈ N , q+ r = m−2p , (4.37)

with indices following convention (3.58), and the total number of differential operators is
m!

p! 2p (m−2p)!
(n+m−3)m−2p .

The expansion coefficients of vectors with p pseudo-loops reads

C[Fhα1 hα2
· · ·Fhα2p−1 hα2p

F
hβ′1
hβ1
· · ·Fhβ′q

hβq
Faγ1

hγ1
· · ·Faγr

hγr
] =

∑
 p∏

i=1

(k1 · khα2i
)Thα2i hα2i−1 nT1hα2i 2

 q∏
i=1

Thβ′i hβi n


×

 r∏
i=1

Taγi hγi (aγi+1)


 AEYM

n,m (1,2, . . . ,n;h1, . . . ,hm)

+
(
Contributions from basis with (p−1) or fewer pseudo− loops

)
. (4.38)

∏p
i=1T1hα2i 2 hα2i

1 2
Again,  the  insertion  operator  inserts 
between legs  and , and we need to rewrite the result-
ing  Yang-Mills  amplitudes  into  the  BCJ  basis  using  the
BCJ relations.

The algorithm  for  evaluation  of  expansion  coeffi-
cients can be summarized as follows,

- - Start of Algorithm - -

(m+n−3)m
STEP 0:  Apply differential  operators (4.32) to EYM

expansion  formula  (3.59)  to  generate  linear
equations and solve the expansion coefficients from these
equations 1). The result is directly given by (4.34).

STEP 1: Substitute solutions of Step-0 back in equa-
tion (3.59); then, apply differential operators (4.35) to the
resulting  formula  to  generate  linear  equations.  Solve  the
expansion  coefficients  from  these  equations  and  rewrite
the  Yang-Mills  amplitude  into  the  BCJ  basis  using  the
BCJ relations.

...

STEP p: Substitute the solutions of all previous steps
back into equation (3.59); then, apply differential operat-
ors  (4.37)  on  the  resulting  formula  to  generate  linear
equations.  Solve  the  expansion  coefficients  from  these
equations  and  rewrite  the  Yang-Mills  amplitude  into  the
BCJ basis using the BCJ relations.

...

⌊m
2 ⌋ p = ⌊m

2 ⌋STEP : Repeat the previous step but with 
differential operators.

- - End of Algorithm - -

AEYM
5,4 AEYM

15,4

AEYM
5,4 AEYM

5,8

p , 0

The  total  number  of  repeated  steps  in  the  algorithm
depends  on  the  number  of  gravitons  but  not  the  gluons,
while the total number of equations is much more sensit-
ive to m than to n. Table 1 lists the number of linear equa-
tions to  be  solved in  the  algorithm for  some EYM amp-
litudes.  Comparing  the  total  number  of  equations  for  a
fixed m,  for  example,  and ,  we  see  that  the
latter  is  approximately  44  times  larger  than  the  former
when the number of gluons increases by ten. While com-
paring the total number of equations for a fixed n, for ex-
ample,  and , we see that the latter is approx-
imately  85902  times  larger  than  the  former  when  the
number of gravitons increases by four. Hence, the size of
the algebraic system is significantly controlled by m. One
can also note that the number of equations decreases rap-
idly  while  moving  to  the  next  step  in  the  algorithm.  A
large amount of equations are solved in Step-0, where the
expansion coefficients are explicitly defined by applying
the differential operators to the EYM amplitudes. There-
fore, in some sense, it  is trivial.  For step  in the al-
gorithm, the number of  equations decreases significantly
compared  with  the  previous  step;  however,  non-trivial
contributions  from  previous  steps  and  BCJ  relations

Chinese Physics C    Vol. 44, No. 12 (2020) 123104
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n,m

1) In fact, solving equations is not necessary in this step. The expansion coefficients have been uniquely determined by (4.34), and the remaining thing to do is to ex-
plicitly work out the differential operators on  according to (4.34).
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would  make  the  results  complicated.  Nevertheless,  in
each step, the linear equation system is decoupled, and an
expansion  coefficient  is  trivially  solved  via  a  univariate
linear equation.

5    Demonstration of  EYM  amplitude  expan-
sion in gauge invariant vector space

To demonstrate the EYM amplitude expansion in the
gauge  invariant  basis  and  the  algorithm  for  determining
expansion coefficients, in this section, we present the ex-
pansion  of  EYM  amplitudes  with  up  to  four  gravitons.
Expansion  of  EYM amplitudes  with  one,  two,  and  three
gravitons to Yang-Mills amplitudes in the BCJ basis has
been discussed in [33], however, here, it receives a more
systematic  analysis  in  the  language  of  gauge  invariant
vector  space,  while  expansion  of  the  EYM  amplitude
with four gravitons to Yang-Mills amplitudes in the BCJ
basis is a new result.

5.1    Expansion  of  EYM  amplitude  with  one  and  two
gravitons

AEYM
n,1 (1, . . . ,n;h1)

Wn+1,1
(n−2)

AEYM
n,1

(n−2)

Let  us  start  with .  This  amplitude
lives in the gauge invariant vector space , and the
dimension  of  this  space  is ,  according  to  (3.26).
Hence,  can be expanded in a complete set of the ga-
uge invariant basis with  gauge invariant vectors, as

Fa1

h1
=

k1 · fh1
·Ka1

k1 · kh1

, a1 = 2, . . . ,n−1 . (5.1)

The expansion  coefficient  according  to  (4.34)  is  calcu-
lated as

C[Fa1

h1
] =Ta1h1(a1+1) AEYM

n,1 (1, . . . ,n;h1)

=AYM
n+1(1, . . . ,a1,h1,a1+1, . . . ,n) , (5.2)

h1

a1,a1+1 Ta1h1(a1+1)

where the graviton  is transformed to a gluon and inser-
ted between  by . Hence,

AEYM
n,1 (1, . . . ,n;h1) =

n−1∑
a1=2

C[Fa1

h1
]Fa1

h1
=

n−1∑
a1=2

k1 · fh1
·Ka1

k1 · kh1

×AYM
n+1(1, . . . ,a1,h1,a1+1, . . . ,n) . (5.3)

In comparison with the result in [33], we can reformulate
the above result as

AEYM
n,1 (1, . . . ,n;h1) =

∑
⊔⊔

k1 · fh1
·Yh1

k1 · kh1

×AYM
n+1(1,2, {3, . . . ,n−1}⊔⊔{h1},n) ,

(5.4)
⊔⊔ is

Yp Xp

where the shuffle permutation  defined in (B.2), and
 and  are defined in (B.4).

AEYM
n,2 (1, . . . ,n;h1,h2)

Wn+2,2 dim
Wn+2,2 = (n−1)2+1

Let us proceed to . The dimension
of  the  gauge  invariant  vector  space  is 

.  The  vectors  in  the  gauge  invariant
basis and their quiver representations are shown below as,

2 ⩽ a1,a2 ⩽ n−1 Fh2

h1
Fh1

h2
where .  is  a  real  loop  and  should
be excluded from the basis,  while there is  only one vec-
tor  with  a  pseudo-loop.  Following  the  algorithm,  Step-0
is to compute the coefficients of the expansion basis with

Fa1

h1
Fa2

h2
Fh1

h2
Fa1

h1
Fh2

h1
Fa2

h2

Ta1h1(a1+1)

Ta2h2(a2+1) Thσ2 hσ1 nTaσ2 hσ2 (aσ2+1) AEYM
n,2

no  pseudo-loops, i.e., , ,  and ,  using
equation (4.34). Applying differential operators 

 and  to  respectively
leads to

Table 1.    The number of linear equations in each step and in total for some EYM amplitudes.

AEYM
5,4 AEYM

10,4 AEYM
15,4 AEYM

5,6 AEYM
10,6 AEYM

15,6 AEYM
5,8 AEYM

10,8 AEYM
15,8

Step-0 1296 14641 65536 262144 4826809 34012224 100000000 2562890625 25600000000

Step-1 216 726 1536 61440 428415 1574640 28000000 318937500 1792000000

Step-2 3 3 3 2880 7605 14580 2100000 10631250 33600000

Step-3 0 0 0 15 15 15 42000 94500 168000

Step-4 0 0 0 0 0 0 105 105 105

Total 1515 15370 67075 326479 5262844 35601459 130142105 2892553980 27425768105
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C[Fa1

h1
Fa2

h2
] =


AYM

n+2(1, . . . ,aσ1
,hσ1
,aσ1
+1, . . . ,aσ2

,hσ2
,aσ2
+1, . . . ,n) , aσ1

< aσ2∑
σ∈S 2

AYM
n+2(1, . . . ,a1,hσ1

,hσ2
,a1+1, . . . ,n), a1 = a2, (5.5)

C[Fhσ2

hσ1
Faσ2

hσ2
] =

∑
⊔⊔

AYM
n+2(1,2, . . . ,aσ2

,hσ2
, {aσ2

+1, . . . ,n−1}⊔⊔{hσ1
},n) , (5.6)

σ = {σ1,σ2} {1,2}
S 2

where  is a permutation of , and the sum-
mation  is  over  all  elements  of . In  Step-1,  we  substi-
tute  the  above  solutions  back  to  the  expansion  formula
and get

AEYM
n,2 =

n−1∑
a1,a2=2

C[Fa1

h1
Fa2

h2
]Fa1

h1
Fa2

h2

+

n−1∑
a=2

(
C[Fh1

h2
Fa

h1
]Fh1

h2
Fa

h1

+C[Fh2

h1
Fa

h2
]Fh2

h1
Fa

h2

)
+C[Fh1h2

]Fh1h2
,

C[Fh1h2
]

(k1 · kh2
)Th2h1nT1h22

Fh2

h1
Fa

h2
Fh1h2

and there is only one unknown variable, . Apply-
ing  the  differential  operator  to  both
sides of the above equation, in the RHS, the non-vanish-
ing contribution comes from vectors  and , and
according to (4.16) and (4.17), we get

(k1 · kh2
)Th2h1nT1h22 Fh2

h1
Fa2

h2
= −kh2

· (k1+Ka2
) ,

(k1 · kh2
)Th2h1nT1h22 Fh1h2

= 1 . (5.7)

In the LHS, we get

Th2h1nT1h22 AEYM
n,2 =AYM

n+2(1, {h2,h1}⊔⊔{2, · · · ,n−1}R,n)

=AYM
n+2(1,h2, {h1}⊔⊔{2, · · · ,n−1},n) .

(5.8)

Then, we arrive at

C[Fh1h2
] =(kh2

· k1)AYM
n+2(1,h2, {h1}⊔⊔{2, · · · ,n−1},n)

−
n−1∑
a=2

C[Fh2

h1
Fa

h2
](−kh2

· (k1+Ka2
))

=(kh2
· k1)AYM

n+2(1, {h2,h1}⊔⊔{2, · · · ,n−1}R,n)

+ (kh2
·Yh2

)AYM
n+2(1,2, {3, · · · ,n−1}⊔⊔{h2,h1},n).

(5.9)

1,2,n
The  Yang-Mills  amplitudes  in  the  second  term  are
already  in  the  BCJ  basis,  with  legs  fixed,  while
those in the first  term are not.  Therefore,  we need to re-
write the first term in the BCJ basis, as

AYM
n+2(1,h2, {h1}⊔⊔{2, . . . ,n−1},n) =AYM

n+2(1,h2,h1,2, . . . ,n)+AYM
n+2(1,h2,2, {3, . . . .n−1}⊔⊔{h1},n)

=
∑
⊔⊔

(kh2
·Xh2
− k1 · kh2

)(kh1
·Xh1

)− (kh2
·Xh2

)K1h1h2

(k1 · kh2
)K1h1h2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{h2,h1},n)

+
∑
⊔⊔

(kh2
·Xh2

)(kh1
·Xh1
− k1 · kh1

)
(k1 · kh2

)K1h1h2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{h1,h2},n) ,

(5.10)

Ka1···am
=

∑
1⩽i< j⩽m

kai
· ka j

with . Combining the above results, we finally obtain

C[Fh1h2
] = (k1 · kh2

)(Th2h1nT1h22 AEYM
n,2 ) +

n−1∑
a2=2

(
kh2
· (k1+Ka2

)
)
C[Fh2

h1
Fa2

h2
]

=
∑

{σ1,σ2}∈S 2

∑
⊔⊔

(khσ1
·Xhσ1

− k1 · khσ1
)(khσ2

·Xhσ2
)

K1h1h2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{hσ1

,hσ2
},n) . (5.11)

Summing  over  the  total  expansion  basis  with  corresponding  coefficients  (5.5),  (5.6),  and  (5.11),  we  get  the  expected
EYM amplitude  expansion.  In  fact,  all  contributions  of  vectors  with  no  pseudo-loops  computed  in  Step-0  can  be  re-
arranged in a compact expression as follows:

n−1∑
a1=2

n−1∑
a2=2

C[Fa1

h1
Fa2

h2
]B[Fa1

h1
Fa2

h2
]+

n−1∑
a1=2

C[Fh1

h2
Fa1

h1
]B[Fh1

h2
Fa1

h1
]+

n−1∑
a2=2

C[Fh2

h1
Fa2

h2
]B[Fh2

h1
Fa2

h2
]

=
∑
⊔⊔

k1 · fh1
·Xh1

k1 · kh1

k1 · fh2
·Xh2

k1 · kh2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{h1}⊔⊔{h2},n) , (5.12)
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and  as  we  shall  see,  this  is  a  general  property  for  EYM  amplitudes  with  arbitrary  gravitons.  After  rearrangement  of
terms, we can rewrite the expansion of the EYM amplitude with two gravitons in a rather compact form:

AEYM
n,2 (1,2, . . . ,n;h1,h2) =

∑
⊔⊔

k1 · fh1
·Xh1

k1 · kh1

k1 · fh2
·Xh2

k1 · kh2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{h1}⊔⊔{h2},n)

+
∑

{σ1,σ2}∈S 2

∑
⊔⊔

Fh1h2

(khσ1
·Xhσ1

− k1 · khσ1
)(khσ2

·Xhσ2
)

K1h1h2

AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{hσ1

,hσ2
},n) .

5.2    Expansion of EYM amplitude with three gravitons

AEYM
n,3 (1, . . . ,n−1;h1,h2,h3)

Wn+3,3
dimWn+3,3 = n3+3n
(n3+3n)

3(n−2)+8

The  EYM  amplitude  lives
in  the  gauge  invariant  vector  space .  Because

, it is considered to be expanded into
 terms.  Among  these  gauge  invariant  vectors,

there  are  terms  containing  real  loops  that
should  be  excluded.  We  therefore  need  to  compute

(n3−2)

Ta1h1(a1+1)Ta2h2(a2+1)Ta3h3(a3+1)

AEYM
n,3

 expansion  coefficients.  The  expansion  basis  and
their quiver representations are shown in Fig. 3. Follow-
ing the  algorithm,  in  Step-0,  we  consider  the  gauge  in-
variant  vectors  with  no  pseudo-loops  using  equation
(4.34).  Applying  the  differential  operators

 to  the  expansion  formula  of
, we immediately obtain

C[Fa1

h1
Fa2

h2
Fa3

h3
] =



AYM
n+3(1,2, . . . ,aσ1

,hσ1
, . . . ,aσ2

,hσ2
, . . . ,aσ3

,hσ3
, . . . ,n) , aσ1

< aσ2
< aσ3∑

ρ{σ2,σ3}∈S 2

AYM
n+3(1,2, . . . ,aσ1

,hσ1
, . . . ,aσ2

,hρ2
,hρ3
,aσ2
+1, . . . ,n) , aσ1

< aσ2
= aσ3∑

ρ{σ1,σ2}∈S 2

AYM
n+3(1,2, . . . ,aσ1

,hρ1
,hρ2
,aσ1
+1, . . . ,aσ3

,hσ3
, . . . ,n) , aσ1

= aσ2
< aσ3∑

ρ{σ1,σ2,σ3}∈S 3

AYM
n+3(1,2, . . . ,aσ1

,hρ1
,hρ2
,hρ3
,aσ1
+1, . . . ,n) , aσ1

= aσ2
= aσ3

,

ρ{σ1, · · · ,σm} {σ1, · · · ,σm} S m

Thβ′1 hβ1 nTaγ1 hγ1 (aγ1+1)Taγ2 hγ2 (aγ2+1) AEYM
n,3

where  is  a  permutation  of ,  and  the  summation  is  over  all  elements  of .  Applying
 to , we get

C[F
hβ′1
hβ1

Faγ1
hγ1

Faγ2
hγ2

] =



∑
⊔⊔

AYM
n+3(1,2, . . . ,aγ1

,hγ1
, {aγ1

+1, . . . ,aγ2
,hγ2
, . . . ,n−1}⊔⊔{hβ1

},n) , aγ1
< aγ2

, β′1 = γ1∑
⊔⊔

AYM
n+3(1,2, . . . ,aγ1

,hγ1
, . . . ,aγ2

,hγ2
, {aγ2

+1, . . . ,n−1}⊔⊔{hβ1
},n) , aγ1

< aγ2
, β′1 = γ2∑

⊔⊔
AYM

n+3(1,2, . . . ,aγ1
,hγ1
, {hγ2
,aγ1
+1, . . . ,n−1}⊔⊔{hβ1

},n)

+
∑
⊔⊔

AYM
n+3(1,2, . . . ,aγ1

,hγ2
,hγ1
, {aγ1

+1, . . . ,n−1}⊔⊔{hβ1
},n) , aγ1

= aγ2
, β′1 = γ1

,

{β1}∪ {γ1,γ2} {1,2,3} Thβ′1 hβ1 nThβ′2 hβ2 nTaγ1 hγ1 (aγ1+1) AEYM
n,3where  is a splitting of . Applying  to , we get

C[F
hβ′1
hβ1

F
hβ′2
hβ2

Faγ1
hγ1

] =


∑
⊔⊔

AYM
n+3(1,2 . . . ,aγ1

,hγ1
, {aγ1

+1, . . . ,n−1}⊔⊔{hβ2
,hβ1
},n) , β′1 = β2 , β

′
2 = γ1∑

⊔⊔
AYM

n+3(1,2 . . . ,aγ1
,hγ1
, {aγ1

+1, . . . ,n−1}⊔⊔{hβ2
}⊔⊔{hβ1

},n) , β′1 = γ1 , β
′
2 = γ1

,

{β1,β2}∪ {γ1} = {1,2,3}with . As mentioned, after summing over all the results produced in Step-0, we get a compact ex-
pression,

[Step 0] =
∑
⊔⊔

k1 · fh1
·Xh1

k1 · kh1

k1 · fh2
·Xh2

k1 · kh2

k1 · fh3
·Xh3

k1 · kh3

AYM
n+3(1,2, {3, . . . ,n−1}⊔⊔{h1}⊔⊔{h2}⊔⊔{h3},n) . (5.13)

Recalling  the  compact  expression  (5.12)  for  the  EYM
amplitude with  two  gravitons,  we  confirm  that  is  it  al-
ways  possible  for  the  total  contribution  of  Step-0  to  be
written in a compact form.

Then, we  proceed  to  Step-1  and  compute  the  expan-
sion coefficients for vectors with one pseudo-loop. After
substituting the  solutions  in  Step-0  back  into  the  expan-
sion equation, we get

AEYM
n,3 − [Step 0] =

n−1∑
aγ1=2
{α1,α2,γ1}

C[Fhα1 hα2
Faγ1

hγ1
]Fhα1 hα2

Faγ1
hγ1

+
∑

{α1,α2,β1}
β′1,β1

C[Fhα1 hα2
F

hβ′1
hβ1

]Fhα1 hα2
F

hβ′1
hβ1
, (5.14)

{α1,α2,γ1} {1,2,3}
where the  first  summation  runs  over  all  possible  split-
tings  of ,  while  the  second  summation
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{α1,α2,β1}
β′1

Th3h2nT1h32
Ta1h1(a1+1)

runs  over  not  only  all  splittings  but  also  all
possible  values  of . Terms in  the first  summation cor-
respond to the first three quivers with one pseudo-loop in
Fig.  3,  while  terms in  the  second summation correspond
to  the  remaining  six  quivers.  As  mentioned,  for  a  fixed
value of p, we should start from terms with larger r, i.e.,
terms  in  the  first  summation.  As  argued  in  the  previous
section,  when  applying  a  defined  differential  operator,
only  the  corresponding  vector  survives,  and  all  others
vanish.  This  means  there  are  no  mixing  contributions
between different  pseudo-loops  of  the  first  type.  For  ex-
ample,  applying  the  differential  operator 

 to  equation  (5.14),  the  only  surviving  vector

Fh2h3
Fa1

h1

Fh3

h2
FKa

h3
Fa1

h1
Fh3

h2
Fh1

h3
Fa1

h1

with  one  pseudo-loop  is .  However,  vectors  with
no pseudo-loops  would  contribute,  and  from  our  previ-
ous general argument, we can determine the non-vanish-
ing vectors to be  and . Hence, we have

C[Fh2h3
Fa1

h1
] =

(
(k1 · kh3

)(Th3h2nT1h32Ta1h1(a1+1) AEYM
n,3 )

)
+

( n−1∑
a3=2

(kh3
·Xh3

)C[Fh3

h2
Fa1

h1
Fa3

h3
]
)

+
(

(kh3
· kh1

)C[Fh3

h2
Fh1

h3
Fa1

h1
]
)
, (5.15)

where the relation (4.16) has been used. Working this out
explicitly, we have

C[Fh2h3
Fa1

h1
] =(k1 · kh3

)A(1,h3, {h2}⊔⊔{2, ...,a1,h1,a1+1, ...,n−1},n)

+ (kh3
·Xh3

)A(1,2, {3, ...,a1,h1,a1+1, ...,n−1}⊔⊔{h3,h2},n)
+ (kh3

· kh1
)A(1,2, ...,a1,h1, {h3,h2}⊔⊔{a1+1, ...,n−1},n) . (5.16)

Terms in the first and second lines are similar to those given in (5.9); hence, we can use the result (5.11) here and imme-
diately work out the summation as

n−1∑
a1=2

C[Fh2h3
Fa1

h1
]Fh2h3

Fa1

h1
=Fh2h3

(k1 · fh1
·Yh1

)(kh3
· kh1

)
(k1 · kh1

)
AYM

n+2(1,2, {h1,h3,h2}⊔⊔{3, ...,n−1},n)+
∑

{σ1,σ2}∈S 2(h2,h3)

×Fh2h3

(k1 · fh1
·Yh1

)
(k1 · kh1

)

(khσ1
·Xhσ1

− k1 · khσ1
)(khσ2

·Xhσ2
)

K1h3h2

×AYM
n+2(1,2, {3, . . . ,n−1}⊔⊔{h1}⊔⊔{hσ1

,hσ2
},n) . (5.17)

AEYM
n,3 h1,h2 h3

Kai hi

2 ⩽ a1,a2,a3 ⩽ n−1

Fig. 3.    (color online) Quiver representation of gauge invariant basis for . For simplicity, , and  are denoted as blue, red,
and yellow dots, respectively. Arrows always flow from the starting points of the solid line toward pseudo-loops or the ending points
of the dashed line, so they are omitted unless they cause confusion. The ending point of the dashed line is  depending on the  it
connects, and . Quivers with real loops are excluded.
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r = 1The  other  two  terms  with  can be  obtained  by  per-
mutation of the above result.

p = 1,r = 0

Fh2h3
Fh2

h1

Th3h2nT1h32Th2h1n

Th2h3nT1h22Th2h1n Fh1h2
Fh2

h3

Fh2h3
Fh2

h1

Th3h2nT1h32Th2h1n

We  now  proceed  to  the  vectors  with .  As
discussed,  a  defined  differential  operator  (4.35)  would
possibly  mix  contributions  of  many  vectors  with  one
pseudo-loop, and in general, we should solve an algebra-
ic  system  of  linear  equations  to  compute  all  of  them.
However, in  the  current  simple  example,  we  can  inten-
tionally choose  a  differential  operator  to  avoid  the  mix-
ing of vectors. For instance, to compute the coefficient of
vector  we should choose the differential operator

. If  instead we choose the other differen-
tial  operator ,  both  vectors  and

 would  be  non-vanishing,  and  their  contributions
will  mix  together.  Hence,  we  apply  to
equation (5.14) and compute the coefficient as follows:

C[Fh2h3
Fh2

h1
] =

(
(k1 · kh3

)(Th2h1nTh3h2nT1h32 AEYM
n,3 )

)
+

( n−1∑
a3=2

(kh3
·Xh3

)C[Fh2

h1
Fh3

h2
Fa3

h3
]
)

=(k1 · kh3
)AYM

n+3(1, {h3,h2,h1}⊔⊔{2, ...,n−1}R,n)

+ (kh3
·Xh3

)AYM
n+3(1,2, {h3,h2,h1}

⊔⊔{3, ...,n−1},n) .
(5.18)

1,2,n
The  Yang-Mills  amplitudes  in  the  second  term  are
already  in  the  BCJ  basis,  with  legs  fixed,  while
those in the first term should be rewritten to the BCJ basis
by applying the BCJ relations.  Similar  computations can
be inferred from (5.3) and (5.18); consequently, all coef-

AEYM
n,3

ficients of  vectors  with  one  pseudo-loop  can  be  com-
puted. Summing  up  the  above  results,  we  get  the  com-
plete expansion of , which is consistent with the res-
ults given in [33].

5.3    Expansion of EYM amplitude with four gravitons

AEYM
n,4 (1, . . . ,n;h1,h2,h3,h4)

Wn+4,4

dimWn+4,4 = (n+1)4+

6(n+1)2+3

6× (n−2)2+44(n−2)+87

The  EYM  amplitude  lives
in the gauge invariant vector space , and it can be
expanded as a linear combination of 

 vectors.  All  vectors  in  the  gauge  invariant
basis and their quivers are shown in Fig. 4. Among them,
there  are  in  total  vectors  with
real  loops,  which  should  be  excluded.  We  can  compute
the expansion coefficients of the remaining vectors using
the algorithm.  Again,  in  Step-0,  we  compute  the  coeffi-
cients  of  vectors  with  no  pseudo-loops  using  equation
(4.34).  We  shall  not  write  down  the  explicit  coefficient
for  each  basis;  rather,  we  present  their  summation  in  a
compact expression as 1),

[Step 0] =
∑
⊔⊔

 4∏
i=1

k1 · fhi
·Xhi

k1 · khi

AYM
n+4(1,2, {3, . . . ,n−1}

⊔⊔{h1}⊔⊔{h2}⊔⊔{h3}⊔⊔{h4},n) . (5.19)
Then, let  us proceed with Step-1, to compute the ex-

pansion coefficients of vectors with one pseudo-loop. As
shown in Fig.  4, there  are  in  total  seven  distinct  topolo-
gies,  and  the  last  one  should  be  excluded.  For  the  other
six  topologies,  according to  rules  (4.19),  we assign each
of them to a respective differential operator, and we rep-
resent differential operators in quiver representation as

(ha1) (k1kha
)T1ha2

where  without  ambiguity,  we  have  ignored  the  dashed
line  corresponding to ,  which  is  always
linked to the ending point of the cyan line. The first two
quivers of differential  operators are consistent with rules
(4.18), and  they  are  sufficient  to  distinguish  the  corres-
ponding  vectors  uniquely.  For  the  third  and  fourth
quivers of differential operators, noting the choice of dir-
ection of the cyan line, we know that they are also able to
determine the expansion coefficients without mixing con-
tributions  from  other  vectors  with  one  pseudo-loop.
However,  the  last  two  types  of  vectors  do  mix  together
under the defined differential operators. The sixth quiver
of  differential  operators  is  able  to  distinguish  the  sixth
type of vectors. However, with the fifth quiver of differ-
ential operators, contributions from the fifth type of vec-
tors would be mixed up with those from the sixth type of

vectors. Although we can disentangle all vectors by con-
structing  linear  combinations  of  differential  operators  as
in  equation  (4.31),  in  the  current  simple  example,  we
have  an  alternative  way  of  solving  equations.  By  first
solving  the  coefficients  of  vectors  of  the  sixth  topology
and  then  solving  the  vectors  of  the  fifth  topology,  but
with the former solutions as known inputs, we are able to
compute all coefficients order by order. Furthermore, we
wish to emphasize that the differential operators also pick
up contributions from vectors with no pseudo-loops, and
we  should  compute  all  coefficients  of  vectors  with  no
pseudo-loops before computing those of vectors with one
pseudo-loop.

Let  us  analyze  these  six  topologies  one  by  one.  For
the first topology, the corresponding differential operator
also picks up the following contributions in Step-0,
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(k1 · kh4
)Th4h3nT1h42Ta1h1(a1+1)Ta2h2(a2+1)

B[Fh3h4
Fa1

h1
Fa2

h2
]

For  instance,  using  the  differential  operator ,  we  can  compute  the  coefficient  of
 as

C[Fh3h4
Fa1

h1
Fa2

h2
] =

(
(k1 · kh4

)(Th4h3nT1h42Ta1h1(a1+1)Ta2h2(a2+1) AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh4

h3
Fa1

h1
Fa2

h2
Fa4

h4
]
)
+

(
(kh1
· kh4

)C[Fh4

h3
Fh1

h4
Fa1

h1
Fa2

h2
]+ (kh2

· kh4
)C[Fh4

h3
Fh2

h4
Fa1

h1
Fa2

h2
]
)
.

AEYM
n,4Applying the differential operator on  produces Yang-Mills amplitudes

AYM
n+4(1,h4, {2, . . . ,a1,h1, . . . ,a2,h2, . . . ,n−1}⊔⊔{h3},n) ,

and using the BCJ relations, they can be rewritten into the BCJ basis.
For the second topology, the corresponding differential operator picks up the following contributions in Step-0,

　　　　　　　　　　　　　

(k1 · kh4
)Th4h3nT1h42Th1h2nTa1h1(a1+1)

B[Fh3h4
Fh1

h2
Fa1

h1
]

For  instance,  using  the  differential  operator ,  we  can  compute  the  coefficient  of
 as

C[Fh3h4
Fh1

h2
Fa1

h1
] =

(
(k1 · kh4

)(Th4h3nT1h42Th1h2nTa1h1(a1+1) AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh1

h2
Fh4

h3
Fa1

h1
Fa4

h4
]
)
+

(
(kh1
· kh4

)C[Fh1

h2
Fh4

h3
Fh1

h4
Fa1

h1
]
)
+

(
(kh2
· kh4

)C[Fh1

h2
Fh4

h3
Fh2

h4
Fa1

h1
]
)
.

AEYM
n,4Applying the differential operator on  produces Yang-Mills amplitudes

AEYM
n,4

(h1,h2,h3,h4)

Kai hi

2 ⩽ a1,a2,a3,a4 ⩽ n−1

Fig. 4.    (color online) Quiver representation of gauge invariant basis for .  For presentation purposes, we only show quivers of
distinct topologies, and a graph here denotes several graphs with black dots specifying any possible independent label .
Arrows always flow from the starting point of the solid line toward pseudo-loops or the ending point of the dashed line, and they are
omitted  unless  they  cause  confusion.  The  ending  point  of  the  dashed  line  is  depending  on  the  it  connects  to,  and

. Quiver graphs with real solid loops are excluded.
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AYM
n+4(1,h4, { 2, . . . ,a1,h1, {a1+1, . . . ,n−1}⊔⊔{h2} }⊔⊔{h3},n) .

For the third topology, the corresponding differential operator picks up the following contributions in Step-0,

　　　　　　　　　　　　　　　　　　

(k1 · kh4
)Th4h3nT1h42Th3h2nTa1h1(a1+1)

B[Fh3h4
Fh3

h2
Fa1

h1
]

For  instance,  using  the  differential  operator ,  we  can  compute  the  coefficient  of
 as

C[Fh3h4
Fh3

h2
Fa1

h1
] =

(
(k1 · kh4

)(Th4h3nT1h42Th3h2nTa1h1(a1+1) AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh3

h2
Fh4

h3
Fa1

h1
Fa4

h4
]
)
+

(
(kh1
· kh4

)C[Fh3

h2
Fh4

h3
Fh1

h4
Fa1

h1
]
)
. (5.20)

AEYM
n,4Applying  the  differential  operator  on  produces

Yang-Mills amplitudes

AYM
n+4(1,h4, {2, . . . ,a1,h1, . . . ,n−1}⊔⊔{h3,h2},n) .

For  the  fourth  topology,  the  corresponding  differential
operator picks up the following contributions in Step-0,

　　　　　　

(k1 · kh4
)Th4h3nT1h42Th3h1nTh3h2n

B[Fh3h4
Fh3

h1
Fh3

h2
]

For  instance,  using  the  differential  operator
, we can compute the coeffi-

cient of  as

C[Fh3h4
Fh3

h1
Fh3

h2
] =

(
(k1 · kh4

)(Th4h3nT1h42Th3h1nTh3h2n AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh3

h1
Fh3

h2
Fh4

h3
Fa4

h4
]
)
.

AEYM
n,4Applying  the  differential  operator  on  produces

Yang-Mills amplitudes∑
{σ1,σ2}∈S 2

AYM
n+4(1,h4, {2, . . . ,n−1}⊔⊔{h3,hσ1

,hσ2
},n) .

According to our discussion, we will consider the sixth
topology  before  the  fifth.  The  corresponding  differential
operator picks up the following contributions in Step-0,

　　　　　　

(k1 · kh4
)Th4h3nT1h42Th2h1nTh3h2n

B[Fh3h4
Fh2

h1
Fh3

h2
]

For  instance,  using  the  differential  operator
, we can compute the coeffi-

cient of  as

C[Fh3h4
Fh2

h1
Fh3

h2
] =

(
(k1 · kh4

)(Th4h3nT1h42Th2h1nTh3h2n AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh2

h1
Fh3

h2
Fh4

h3
Fa4

h4
]
)
.

AEYM
n,4Applying  the  differential  operator  on  produces

Yang-Mills amplitudes

AYM
n+4(1,h4, {2, . . . ,n−1}⊔⊔{h3,h2,h1},n) .

Then,  we come to the last  portion.  In addition to the
contribution from the sixth topology,  the differential  op-
erator  corresponding  to  the  fifth  topology  also  picks  up
following contributions in Step-0,

　　　　　　　

(k1 · kh4
)Th4h3nT1h42Th3h1nTh4h2n

B[Fh3h4
Fh3

h1
Fh4

h2
]

Let us consider an example, with the differential operator
.  We  can  use  it  to  compute

the coefficient of  as

C[Fh3h4
Fh3

h1
Fh4

h2
] =

(
(k1 · kh4

)(Th4h3nT1h42Th3h1nTh4h2n AEYM
n,4 )

)
+

( n−1∑
a4=2

(kh4
·Xh4

)C[Fh3

h1
Fh4

h2
Fh4

h3
Fa4

h4
]
)
−C[Fh2h4

Fh4

h3
Fh3

h1
] .

(5.21)

AEYM
n,4Applying  the  differential  operator  on  produces

Yang-Mills amplitudes

AYM
n+4(1,h4, {2, . . . ,n−1}⊔⊔{h3,h1}⊔⊔{h2},n) .

The  computations  above  provide  all  of  the  expansion
coefficients  for  the  gauge  invariant  basis  with  one

pseudo-loop based on the solutions in Step-0 and the BCJ
relations.

B[Fh1h2
Fh3h4

] B[Fh1h3
Fh2h4

]
B[Fh1h4

Fh2h3
]

Let  us  proceed  to  Step-2,  where  there  are  only  three
different  vectors: , ,  and

. According  to  the  rule,  we  define  differen-
tial operators for them respectively as
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Th2h1nTh4h3nT1h22T1h42 , Th3h1nTh4h2nT1h32T1h44 , Th4h1nTh3h2nT1h32T1h42 . (5.22)
It can be checked directly that each differential operator picks up only one vector with two pseudo-loops, while it also
picks up the respective contributions from Step-0 and Step-1,

Th2h1nTh4h3nT1h22T1h42 B[Fh1h2
Fh3h4

]For instance, using the differential operator  we can compute the coefficient of  as

C[Fh1h2
Fh3h4

] =
(
(k1 · kh2

)(k1 · kh4
)(Th2h1nTh4h3nT1h22T1h42 AEYM

n,4 )
)
+

(
[Step−0]+ [Step−1]

)∣∣∣∣
Fh1 h2 Fh3 h4

,

where

[Step−0]
∣∣∣∣
Fh1h2 Fh3 h4

=
( n−1∑

a2=2

n−1∑
a4=2

(kh2
·Xh2

)(kh4
·Xh4

)C[Fh2

h1
Fh4

h3
Fa2

h2
Fa4

h4
]
)

+
( n−1∑

a2=2

∑
i=1,2

(kh2
·Xh2

)(kh4
· khi

)C[Fh2

h1
Fh4

h3
Fhi

h4
Fa2

h2
]
)
+

( n−1∑
a4=2

∑
i=3,4

(kh4
·Xh4

)(kh2
· khi

)C[Fh2

h1
Fhi

h2
Fh4

h3
Fa4

h4
]
)
, (5.23)

is the contribution from expansion in Step-0, and

[Step−1]
∣∣∣∣
Fh1h2 Fh3h4

=
( n−1∑

a2=2

(kh2
·Xh2

)C[Fh3h4
Fh2

h1
Fa2

h2
]+

∑
i=3,4

(kh2
· khi

)C[Fh3h4
Fh2

h1
Fhi

h2
]
)

+
( n−1∑

a4=2

(kh4
·Xh4

)C[Fh1h2
Fh4

h3
Fa4

h4
]+

∑
i=1,2

(kh4
· khi

)C[Fh1h2
Fh4

h3
Fhi

h4
]
)
+

(
(kh2
· kh4

)C[Fh2h4
Fh2

h1
Fh4

h3
]
)
, (5.24)

AEYM
n,4is the contribution from expansion in Step-1. Applying the differential operator on  produces Yang-Mills amplitudes∑

{σ2,σ4}∈S 2

AYM
n+4(1,hσ2

,hσ4
, {2, . . . ,n−1}⊔⊔{h1}⊔⊔{h3},n)

+AYM
n+4(1,h2,h1,h4, {2, . . . ,n−1}⊔⊔{h3},n)+AYM

n+4(1,h4,h3,h2, {2, . . . ,n−1}⊔⊔{h1},n) . (5.25)

AYM(1,α1,2, . . . ,n)
AYM(1,α1,α2,2, . . . ,n) AYM(1,α1,α2,α3,2, . . . ,n)
AYM(1,α1,α2,α3,α4,2, . . . ,n)

1,2,n

AEYM
n,4 (1, · · · ,n;h1,h2,h3,h4)

AEYM
6,4

Then,  using  the  BCJ  relations  for ,
, ,  and

 we  can  rewrite  all  of  the
Yang-Mills amplitudes into the BCJ basis with legs 
fixed. Collecting  the  above  results,  we  obtain  the  re-
quired EYM amplitude expansion. Because the final res-
ult is complicated, we do not present the explicit expres-
sion  for .  However,  we  have
numerically checked the algorithm up to  and found
agreement with CHY formalism.

6    Conclusion

There are already quite a few well-formulated results
for expansion  of  EYM  amplitudes  to  Yang-Mills  amp-
litudes  in  the  KK  basis;  however,  a  compact  expression
or even a recursive formula for expansion to Yang-Mills
amplitudes in the BCJ basis is still required. The latter ex-
pansion is  generally  much  more  complicated  than  con-
ventionally  expected.  In  the  KK  basis,  the  expansion
coefficients of Yang-Mills amplitudes are only polynomi-

als of  polarizations  and  momenta,  and  they  are  con-
strained to explicit compact expressions by gauge invari-
ance.  In  the  BCJ  basis,  the  expansion  coefficients  of
Yang-Mills  amplitudes  are  instead  rational  functions,
whose explicit form is much more difficult to determine.
This is why we considered using differential operators to
determine expansion coefficients in [33].

This paper is motivated by the problem of expanding
EYM  amplitudes  to  Yang-Mills  amplitudes  in  the  BCJ
basis  using  differential  operators.  We have  implemented
an algorithm to systematically perform the expansion and
compute  the  expansion  coefficients.  However,  the  EYM
amplitude  is  not  directly  expanded  to  the  BCJ  basis  but
rather  to  a  basis  in  gauge  invariant  vector  space,  as
schematically shown in equation (4.1). After determining
the  expansion  coefficients,  we  transform  Yang-Mills
amplitudes to the BCJ basis using the BCJ relations. Ex-
panding  EYM  amplitude  in  a  manifest  gauge  invariant
form for both the expansion basis and its coefficients is a
very  interesting  point  of  view,  and  differential  operators
can be  naturally  introduced  into  the  problem.  This  con-
tributes to our major results.
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m ≤ n

Gi

Gi
Wn,m Vn,m

Wn,m

The  first  major  part  of  this  paper  is  devoted  to  the
construction of  a  gauge  invariant  basis  and  the  corres-
ponding differential  operators.  A systematic algorithm is
built upon  the  properties  of  applying  differential  operat-
ors  on  different  bases.  To  construct  a  complete  set  of
manifestly gauge invariant polynomials as the expansion
basis,  we  start  from the  most  general  vector  space 
with ,  where  all  possible  polynomials  of  Lorentz
contractions  among  polarizations  and  momenta  live  in
this space, obeying some additional conditions. Then, we
define  a  linear  mapping ,  which  is  a  realization  of
gauge invariant  condition for  polarization.  By taking the
interaction of kernels of all possible , we construct the
gauge invariant sub-space  from , which is the
vector  space  containing  all  gauge  invariant  polynomials.
This is also the space where the expansion basis of EYM
amplitude  lives.  We  present  the  formula  for  computing
the  dimension  of ,  which  indicates  the  number  of
gauge  invariant  vectors  to  which  an  EYM  amplitude
would be  expanded.  We  also  find  that  the  gauge  invari-
ant vectors can be realized by linear combinations of mul-
tiplications  of  fundamental f-terms.  These  results  finally
help  us  construct  a  linearly  independent  and  complete
basis combinatorially for EYM amplitude expansion.

After  clarifying  the  structure  of  the  gauge  invariant
expansion basis,  we further  construct  differential  operat-
ors from multiplication of insertion operators. The differ-
ential operators are constructed such that when applying a
differential operator  on  an  expression,  only  one  particu-
lar  vector  in  the  gauge  invariant  basis  is  non-vanishing,
while  all  others  vanish.  To  do  so,  we  start  by  analyzing
the structures of the gauge invariant basis and finding the
quiver  representation  for  them.  With  the  help  of  the
quiver representation,  we  summarize  all  possible  com-
ponents  appearing  in  the  gauge  invariant  vectors  and
provide  mapping rules  for  writing a  differential  operator
directly  from  a  gauge  invariant  vector,  as  multiplication
of  three  basic  types  of  insertion  operators.  Based  on  the
above results,  an  algorithm for  expansion of  EYM amp-
litudes is implemented, with the idea of solving algebraic
systems of  linear  equations  order  by  order.  To  demon-
strate  the  algorithm,  we  present  the  expansions  of  EYM
amplitudes  with  up  to  four  gravitons  in  the  language  of

the  gauge  invariant  basis,  which  are  all  consistent  with
CHY formalism numerically.

Tϵiϵ j

Although  the  algorithm  for  expanding  the  tree-level
single-trace EYM  amplitude  to  the  Yang-Mills  amp-
litudes in the BCJ basis has been thoroughly provided in
this  paper,  it  still  inspires  further  work  for  the  future.
First, the expansion coefficients of the BCJ basis demand
an  explicit  and  possibly  compact  formulation.  It  is  a
rather difficult problem, but we have found some clues in
results (5.9) and (5.18) already and hope they can help to
determine  the  general  picture.  Second,  in  this  paper,  we
only deal  with  single-trace  EYM  amplitudes,  while  dis-
cussions can  be  generalized  to  multi-trace  EYM  amp-
litudes using the trace operator . We think this gener-
alization should be straightforward.

Vn,m

m < n m = n

F3

Wn,m m = n

kn

(ϵ · ϵ)
W̃n,m

W̃n,m

Third, in this paper, we focus on EYM amplitudes, so
the  parameters  of  vector  space  are  constrained  to

. However, the case  is also very interesting in
physics because Yang-Mills amplitudes live in this space.
Another interesting example is the deformed Yang-Mills
theory  with  the  term  [48, 49]. Although  the  dimen-
sion  of  still  holds  for ,  the  explicit  form  of
vectors in  the  gauge  invariant  basis  should  be  recon-
sidered because  we are  not  able  to  trivially  exclude  mo-
mentum  in all  expressions  by  momentum  conserva-
tion. Furthermore, for the Yang-Mills amplitude, an addi-
tional  constraint  should  be  applied  to  the  vector  space,
i.e., there should be at least one  contraction, and we
can  denote  the  vector  space  by .  The  new  vector
space  can  help  us  to  understand  the  implication  of
gauge invariance in Yang-Mills amplitudes more deeply,
along the lines of previous studies in [8, 37, 38]. It is also
a  curious  problem  to  write  Yang-Mills  amplitudes  in  a
manifestly gauge invariant form. Perhaps, it can also help
us to understand more about the Pfaffian in the integrand
of the CHY formula and provide a new point of view for
the BCJ relations.
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Appendix A: Proof of propositions about the gauge invariant vector space

G1,G2

Proof of proposition 1: We wish to prove the following split-
ting formula of linear maps ,

Ker G1 +Ker G2 = Ker G1G2 . (A1)

To do so, it is sufficient to show

Ker G1 +Ker G2 ⊆ Ker G1G2 and Ker G1 +Ker G2 ⊇ Ker G1G2 . (A2)

Ker G1 +Ker G2 ⊆ Ker G1G2The  proof  of  is  trivial.  Each

v ∈ Ker G1 +Ker G2  can always be written as
v = v1 + v2 , vi ∈ Ker Gi and Givi = 0 .

G1G2Thus, the action of  on v is
G1G2v = G1G2v1 +G1G2v2 = G2(G1v1)+G1(G2v2) = 0 , (A3)

Gi G1G2 = G2G1

v ∈ Ker G1G2 Ker G1 +Ker G2 ⊆ Ker G1G2

where  we  have  used  the  commutative  of , i.e., .
Hence, , and consequently, .

Ker G1 +Ker G2 ⊇ Ker G1G2The proof of  is  not easy, so we will

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

123104-28



Vn,2

ϵ1, ϵ2 hn,2 Vn,2

prove it by induction. Let us start from the vector space , i.e.,
containing only two polarizations .  A polynomial  in 
can be written as

hn,2 = α1(ϵ1 · ϵ2)+
n−1∑
i, j=1

α
i j
2 (ϵ1 · ki)(ϵ2 · k j) , (A4)

kn hn,2 ∈ Ker G1G2 G1G2hn,2 = 0

where momentum conservation has been used to eliminate the ap-
pearance  of .  For ,  by  imposing ,  we
get

G1G2hn,2 = hn,2 | ϵ1→k1
ϵ2→k2

= α1(k1 · k2)+
n−1∑
i, j=1

α
i j
2 (k1 · ki)(k2 · k j) = 0 . (A5)

α1

hn,2

From the above equation, we can solve  and substitute it back in-
to . After reorganization of terms, we get

hn,2 =

n−1∑
i, j=1

α
i j
2
ϵ2 · f1 · ki

k1 · k2
(k2 · k j)+

n−1∑
i, j=1

α
i j
2

k1 · f2 · k j

k1 · k2
(ϵ1 · ki) := v1 + v2 . (A6)

fi Givi = 0

v1 ∈ Ker G1 v2 ∈ Ker G2

hn,2 ∈ Ker G1G2 hn,2 ∈ Ker G1 +Ker G2

Because  of  the  appearance  of ,  it  is  easy  to  see  that .
Hence,  and .  This  shows  that  if

, there is also .
Vn,s, s < m

hn,s ∈ Ker G1G2

Ker G1

Ker G2 hn,m Vn,m

Now,  let  us  assume  that  for  all  vector  spaces ,  if  a
polynomial , then it can always be separated into two
parts,  one  part  belonging  to  and  the  other  belonging  to

.  A  polynomial  in  the  vector  space can be  expan-
ded to

hn,m =

m−1∑
i=1

(ϵm · ϵi)Tmi +

m−1∑
i=1

(ϵm · ki)(ϵi ·T ′mi)+
n−1∑

i=m+1

(ϵm · ki)T ′′mi , (A7)

Tmi ∈ Vn,m−2 ϵi ·T ′mi , T ′′mi ∈ Vn,m−1 hn,m ∈ Ker G1G2where  and . For , by
definition we have

0 =hn,m | ϵ1→k1
ϵ2→k2

= (ϵm · k1)T (2)
m1 + (ϵm · k2)T (1)

m2 +

m−1∑
i=3

(ϵm · ϵi)T (12)
mi

+ (ϵm · k1)(k1 ·T
′(2)
m1 )+ (ϵm · k2)(k2 ·T

′(1)
m2 )+

m−1∑
i=3

(ϵm · ki)(ϵi ·T
′(12)
mi )

+

n−1∑
i=m+1

(ϵm · ki)T
′′(12)
mi , (A8)

T,T ′ T ′′

ϵm · ki i = 1,2, . . . ,m−1,m+1, . . . ,n−1 ϵm · ϵi
i = 3,4, . . . ,m−1

hn,m | ϵ1→k1
ϵ2→k2

= 0

where  the  superscript  in  and  denotes  the  corresponding
polarizations to be replaced by their momenta. In (A8), the Lorentz
invariants ,  and ,

 are  all  independent;  hence,  all  of  their  coefficients
should be zero if , and we get

T (2)
m1 + k1 ·T

′(2)
m1 = 0 , T (1)

m2 + k2 ·T
′(1)
m2 = 0 , (A9)

T (12)
mi = 0 , ϵi ·T

′(12)
mi = 0 ∀(i = 3, . . . ,m−1) ,

T
′′(12)
mi = 0 ∀(i = m+1, . . . ,n−1) . (A10)

Tmi,T ′mi, i = 3, . . . ,m−1

T ′′mi, i = m+1, . . . ,n−1 Ker G1G2

Ker G1 +Ker G2

Result  (A.10)  tells  us  that  all  and
 belong to , and by induction, they be-

long to . For the remaining terms in (A.7),

h
′
n,m =(ϵm · ϵ1)Tm1 + (ϵm · ϵ2)Tm2 + (ϵm · k1)(ϵ1 ·T ′m1)

+ (ϵm · k2)(ϵ2 ·T ′m2) . (A11)

0 = (ϵm · ϵ1)(k1 ·T ′m1)− (ϵm · ϵ1)(k1 ·T ′m1)+ (ϵm · ϵ2) (k2 ·T ′m2)−
(ϵm · ϵ2)(k2 ·T ′m2)

h′n,m

After  adding 
 to the RHS of the above equation, we can reorgan-

ize  to be

h
′
n,m =

(
(ϵm · ϵ2)(Tm2 + k2 ·T ′m2)+ (ϵm · f1 ·T ′m1)

)
+

(
(ϵm · ϵ1)(Tm1 + k1 ·T ′m1)+ (ϵm · f2 ·T ′m2)

)
. (A12)

Using result (A9), we get
Gi(ϵm · fi ·T ′mi) =Gi

(
(ϵm · ki)(ϵi ·T ′mi)− (ϵm · ϵi)(ki ·T ′mi)

)
=(ϵm · ki)(ki ·T ′mi)− (ϵm · ki)(ki ·T ′mi) = 0 . (A13)

h′n,m Ker G1 +Ker G2

Ker G1 +Ker G2 ⊇ Ker G1G2

Vn,m

Thus,  belongs  to .  Therefore,  finally,  we  have
proven that  is  valid in any vector space

, and proposition 1 is proven.

G1,G2,G3

Proof of proposition 2: We wish to prove the following distri-
bution formula of linear maps ,

(Ker G1 +Ker G2)∩Ker G3 = Ker G1 ∩Ker G3 +Ker G2 ∩Ker G3 . (A14)

To do so, it is sufficient to show

(Ker G1 +Ker G2)∩Ker G3 ⊇ Ker G1 ∩Ker G3 +Ker G2 ∩Ker G3 ,
(A15)

and

(Ker G1 +Ker G2)∩Ker G3 ⊆ Ker G1 ∩Ker G3 +Ker G2 ∩Ker G3 .
(A16)

v ∈ Ker G1 ∩Ker G3+

Ker G2 ∩Ker G3

To  show  (A15),  we  note  that  any  vector 
 can always be written as

v = v1 + v2 , v1 ∈ Ker G1 ∩Ker G3 , v2 ∈ Ker G2 ∩Ker G3 . (A17)

Thus, we can check that
G3v = G3v1 +G3v2 = 0 , (A18)

G1G2v = G2G1v1 +G1G2v2 = 0 . (A19)

v ∈ (Ker G1 +Ker G2)∩Ker G3

Referring  to  proposition  1  (A1),  the  above  result  shows  that
. Hence, (A15) is derived.

Vn,3 hn,3 ∈ Vn,3

To show (A16), we again use the induction method. Let us start
with the vector space . A polynomial  has the gener-
ic form

hn,3 =

n−1∑
i, j,l=1

i,1, j,2,l,3

αi jl(ϵ1 · ki)(ϵ2 · k j)(ϵ3 · kl)+
n−1∑
i=1
i,1

βi
1(ϵ1 · ki)(ϵ2 · ϵ3)

+

n−1∑
j=1
j,2

β
j
2(ϵ2 · k j)(ϵ1 · ϵ3)+

n−1∑
l=1
l,3

βl
3(ϵ3 · kl)(ϵ1 · ϵ2) , (A20)

kn

hn,3 ∈ (Ker G1 +Ker G2)∩Ker G3

G3hn,3 = 0 hn,3 |ϵ3→k3 = 0 ϵ3

k3 hn,3 ϵ1, ϵ2 (ϵ1 · ϵ2)

(ϵ1 · ki)(ϵ2 · k j)

hn,3 |ϵ3→k3 = 0

where  has been eliminated using momentum conservation. Now,
we  impose  the  condition  that . Im-
posing ,  we  obtain  the  equation .  After  is
replaced by ,  becomes a polynomial of . Because 
and  are  all  independent  in  (A20),  their  coefficients
should  be  zero  because  of  the  condition .  Thus,
we get

n−1∑
l=1
l,3

αi jl(k3 · kl) = 0 ∀(i , 3, j , 3) ,

n−1∑
l=1
l,3

αi3l(k3 · kl)+βi
1 = 0 ∀(i , 3) , (A21)
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n−1∑
l=1
l,3

α3 jl(k3 · kl)+β
j
2 = 0 ∀( j , 3) ,

n−1∑
l=1
l,3

α33l(k3 · kl)+β3
1 +β

3
2 = 0 ,

n−1∑
l=1
l,3

βl
3(k3 · kl) = 0 . (A22)

βn−1
3 αi j(n−1) ∀(i, j)From the above equations, we solve  and . Substi-

tuting the solutions back into (A20), we get

hn,3 =

n−1∑
i, j=1

i,1, j,2

n−2∑
l=1
l,3

αi jl(ϵ1 · ki)(ϵ2 · k j)
kn−1 · f3 · kl

k3 · kn−1
+

n−1∑
i=1
i,1

βi
1(ϵ1 · ki)

kn−1 · f3 · ϵ2
k3 · kn−1

+

n−1∑
j=1
j,2

β
j
2(ϵ2 · k j)

kn−1 · f3 · ϵ1
k3 · kn−1

+

n−2∑
l=1
l,3

βl
3(ϵ1 · ϵ2)

kn−1 · f3 · kl

k3 · kn−1
.

(A23)

hn,3 ∈ Ker G1 +Ker G2 = Ker G1G2

G1G2 hn,3 | ϵ1→k1
ϵ2→k2

= 0 ϵ1, ϵ2

ϵ3 (kn−1 · f3 · kl) ∀(l , 3,n−1,n)

hn,3 | ϵ1→k1
ϵ2→k2

= 0

Now,  we  impose  the  condition  by
acting  on  (A23)  to  get .  After  is  replaced,

the remaining polarization  appears as 
in  the  resulting  expression,  and  all  of  them  are  independent.  The
condition  indicates  that  their  coefficients  should  be

zero, resulting in the following equations

n−1∑
i, j=1

i,1, j,2

αi j1(k1 · ki)(k2 · k j)+
n−1∑
j=1
j,2

β
j
2(k2 · k j)+β1

3(k1 · k2) = 0 , (A24)

n−1∑
i, j=1

i,1, j,2

αi j2(k1 · ki)(k2 · k j)+
n−1∑
i=1
i,1

βi
1(k1 · ki)+β2

3(k1 · k2) = 0 , (A25)

n−1∑
i, j=1

i,1, j,2

αi jl(k1 · ki)(k2 · k j)+βl
3(k1 · k2) = 0 ∀(l = 4, . . . ,n−2) . (A26)

βl
3, l , 3,n−1,nUsing  the  above  equations,  we  can  solve  all .  After

substituting the  solutions  back into  (A23)  and reorganizing terms,
we get

hn,3 = v1 + v2 , (A27)

where

v1 =

n−1∑
i, j=1

i,1, j,2

n−2∑
l=1
l,3

αi jl (k2 · k j)
(k3 · kn−1)(k1 · k2)

(ϵ2 · f1 · ki)(kn−1 · f3 · kl)

+

n−1∑
i=1
i,1

βi
1

(ϵ2 · f1 · ki)(kn−1 · f3 · k2)
(k3 · kn−1)(k1 · k2)

−
n−1∑
j=1
j,2

β
j
2

(ϵ2 · k j)
(k3 · kn−1)(k1 · k2)

(kn−1 · f3 · f1 · k2) , (A28)

and

v2 =

n−1∑
i, j=1

i,1, j,2

n−2∑
l=1
l,3

αi jl (ϵ1 · ki)
(k3 · kn−1)(k1 · k2)

(k1 · f2 · k j)(kn−1 · f3 · kl)

−
n−1∑
i=1
i,1

βi
1

(ϵ1 · ki)
(k3 · kn−1)(k1 · k2)

(kn−1 · f3 · f2 · k1)

+

n−1∑
j=1
j,2

β
j
2

(ϵ1 · f2 · k j)(kn−1 · f3 · k1)
(k3 · kn−1)(k1 · k2)

. (A29)

fi Gi

G1v1 = G3v1 = 0 G2v2 = G3v2 = 0 v1 ∈ Ker G1 ∩Ker G3

v2 ∈ Ker G2 ∩Ker G3 m = 3

Because  is  gauge  invariant  under ,  it  is  simple  to  see  that
 and ; hence,  and

. Thus, for , we have shown relation (A16).
Vn,s, s < m

hn,m ∈ Vn,m

G3hn,m = 0 G12hn,m = 0

Now,  let  us  assume  that  for  all  vector  spaces , rela-
tion (A16) is always true. For a generic vector  with the
form (A7), we impose the condition  and ,

hn,m |ϵ3→k3 = 0 , hn,m | ϵ1→k1
ϵ2→k2

= 0 . (A30)

Considering the independent Lorentz invariant product of polariza-
tions and momenta, we have the following identities,

T (3)
mi = 0 , T (12)

mi = 0 ∀(i = 4, . . . ,m−1) , (A31)

ϵi ·T
′(3)
mi = 0 , ϵi ·T

′(12)
mi = 0 ∀(i = 4, . . . ,m−1) , (A32)

T
′′(3)
mi = 0 , T

′′(12)
mi = 0 ∀(i = m+1, . . . ,n−1) , (A33)

as well as

T (3)
m1 = 0 , T (3)

m2 = 0 , ϵ1 ·T
′(3)
m1 = 0 , ϵ2 ·T

′(3)
m2 = 0 , Tm3+k3 ·T ′m3 = 0 , (A34)

T (2)
m1 +k1 ·T

′(2)
m1 = 0 , T (1)

m2 +k2 ·T
′(1)
m2 = 0 , T (12)

m3 = 0 , ϵ3 ·T
′(12)
m3 = 0 . (A35)

From  results  (A31),  (A32),  and  (A33),  we  immediately  know
that

Tmi , ϵi ·T ′mi ∀(i = 4, . . . ,m−1) ,

T ′′mi ∀(i = m+1, . . . ,n−1) ∈ (Ker G1 +Ker G2)∩Ker G3 .

Tmi ∈ Vn,m−2 ϵi ·T ′mi , T ′′mi ∈ Vn,m−1Because , , by assumption, they sat-
isfy (A16). Now, we consider the remaining terms in (A7); after re-
organization of the terms, we get 1)

h
′
n,m =

∑
i=1,2,3

(h1i
n,m + h

2i
n,m)

where h1i
n,m := (ϵm · ϵi)(Tmi + ki ·T ′mi) ,

h
2i
n,m := ϵm · fi ·T ′mi . (A36)

i = 1,2 ϵi ·T
′(3)
mi = 0

(T
′(3)
mi )µ = 0 (T

′(3)
mi )µ ∼ kµi

ki ·T
′(3)
mi = 0 i = 1,2

k3 ·T
′(12)
m3 = 0

From  (A34),  we  see  that  for ,  we  have ,  which
means  either  the  Lorentz  vector2)  or .
However,  in  either  case,  we  could  infer  for  for
massless  particles.  Similarly, .  Combined  with  results
(A34) and (A35), we can directly check that

G2 h
11
n,m = G3 h

11
n,m = 0 , G1 h

12
n,m = G3 h

12
n,m = 0 , h13

n,m = 0 , (A37)

G1 h
21
n,m =G3 h

21
n,m = 0 , G2 h

22
n,m =G3 h

22
n,m = 0 , G1 h

23
n,m =G2 h

23
n,m =G3 h

23
n,m = 0.
(A38)

h′n,mHence, if we reorganize  as

Chinese Physics C    Vol. 44, No. 12 (2020) 123104

1↔ 21) In the reorganization, there is some freedom to put certain term in either part, so the manifest symmetry between  is lost.
(T
′(3)
mi ) ϵi,ki ϵµ1 ...µD2) The Lorentz index of  can only be carried by  in the construction, especially when the total symmetric tensor  does not appear.
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h
′
n,m =

(
h

12
n,m + h

21
n,m +

1
2
h

23
n,m

)
+

(
h

11
n,m + h

22
n,m +

1
2
h

23
n,m

)
, (A39)

Ker G1 ∩Ker G3

Ker G2 ∩Ker G3 hn,m

the  expression  in  the  first  pair  of  brackets  belongs  to
 and  that  in  the  second  pair  of  brackets  belongs  to
. Thus, we have successfully separated  into two

Vn,mparts  satisfying  (A16)  in  general  vector  space , and  proposi-

tion 2 is proven.

For completeness, let us present the proof of (3.23) and (3.24)

as follows:

dim(U1 + · · ·+Um) =dim(U1 + · · ·+Um−1)+dimUm −dim((U1 + · · ·+Um−1)∩Um)

=

m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 ∩ · · ·∩Uis )+dimUm −dim(U1 ∩Um + · · ·+Um−1 ∩Um)

=

m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 ∩ · · ·∩Uis )+dimUm −
m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim((Ui1 ∩Um)∩ · · ·∩ (Uis ∩Um))

=

m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 ∩ · · ·∩Uis )+dimUm +

m−1∑
s=1

∑
i1<···<is

(−1)s dim(Ui1 ∩ · · ·∩Uis ∩Um)

=

m∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 ∩ · · ·∩Uis ) ,

and
dim(U1 ∩ · · ·∩Um) =dim(U1 ∩ · · ·∩Um−1)+dimUm −dim(U1 ∩ · · ·∩Um−1 +Um)

=

m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 + · · ·+Uis )+dimUm −dim((U1 +Um)∩ · · ·∩ (Um−1 +Um))

=

m−1∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 + · · ·+Uis )+dimUm +

m−1∑
s=1

∑
i1<···<ih

(−1)s dim(Ui1 + · · ·+Uih +Um)

=

m∑
s=1

∑
i1<···<is

(−1)s−1 dim(Ui1 + · · ·+Uis ) .

Appendix B: Explicit BCJ coefficients

In this appendix, we provide some explanation for the notations
in (2.2). For convenience, we also collect some explicit BCJ coeffi-
cients that are used in the computation. In equation (2.2), we have

Fβk ({α}, {β}; {ξ}) =θ(ξβk − ξk−1)
{
kβk ·W

(R,R)
βk
+ θ(ξβk+1 − ξβk )K1β1 ...βk

}
+ θ(ξβk−1−ξk)

{
−kβk · (W

(L,R)
βk
−k1)−θ(ξβk−ξβk+1 )K1β1 ...βk

}
,

(B1)
θ(x) = 1 x > 0 θ(x) = 0

⊔⊔
with  when ,  and  otherwise, .  Some  notations
are defined as follows. The shuffle permutation  of two lists is a
summation of lists, which can be obtained recursively as

α⊔⊔∅ = α , ∅⊔⊔β = β ,
{α1, ...,αm}⊔⊔{β1, ...,βk} = {α1, {α2, ...,αm}⊔⊔β}+ {β1,α⊔⊔{β2, ...,βk}} .

(B2)
K  is defined as

Kα =
∑

i< j; i, j∈α
ki · k j . (B3)

Ξ = {ξ1, ξ2, ..., ξn} β = {β1, ...,βr} β Ξ

p ∈ Ξ Ξ ξK = p

The definition of W needs further  explanation.  Given two ordered
sets  and , where set  is a subset of ,
for a given element  with its position K in , i.e., ,  we
define

Xp =

K−1∑
i=1

kξi , Yp =

K−1∑
i=1, ξi<β

kξi . (B4)

β βL
p βR

pFurthermore, because p has split set  into two subsets  and ,
i.e., the collections of elements on the LHS and RHS of p, respect-
ively, we can define

W(L,L)
p =

K−1∑
i=1,ξ<βRp

kξi , W(L,R)
p =

K−1∑
i=1,ξ<βL

p

kξi ,

W(R,L)
p =

n∑
i=K+1,ξ<βRp

kξi , W(R,R)
p =

n∑
i=K+1,ξ<βL

p

kξi . (B5)

1,2

1,2

Next,  we  provide  some  examples.  We  consider  the  BCJ  basis
with legs  being fixed in the first two positions and leg n in the last
position in the color-ordering. For an arbitrary amplitude with one
or two gluons inserted between legs , we have the BCJ relations

AYM
n+1(1, p, {2, . . . ,n−1},n) =

−(kp ·Xp)
(kp · k1)

AYM
n+1(1,2, {3, . . . ,n−1}⊔⊔{p},n) ,

(B6)
and

AYM
n+2(1, p,q, {2, ...,n−1},n) =

(kp · k1 + kq · (Yq + kp))(kp · (Yp + kq))
K1pqK1p

AYM
n+1(1,2, {3, . . . ,n−1}⊔⊔{q, p},n)

+
(kp · (Yp − k1))(kq · (Yq + kp))

K1pqK1p
AYM

n+2(1,2, {3, ...,n−1}⊔⊔{p,q},n) . (B7)
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1,2For the amplitude with three gluons between legs , we have

AYM
n+2(1, p,q,r, {2, ...,n−1},n) =

∑
ρ∈S 3

C[{p,q,r};ρ{p,q,r}]AYM
n+3(1,2, {3, ...,n−1}⊔⊔{ρ{p,q,r}},n) , (B8)

where

C[{p,q,r}; {p,q,r}] =
−(kp · (Yp − k1))

K1p
×

(K1pq − kq ·Xq)
K1pq

× −(kr ·Xr)
K1pqr

,

C[{p,q,r}; {p,r,q}] =
−(kp · (Yp − k1))

K1p
×
−(kq ·Xq)
K1pq

×
−kr · (Yr − k1)−K1pqr

K1pqr
,

C[{p,q,r}; {q, p,r}] =
−kp ·Xp

K1p
×
−(kq · (Yq − k1))

K1pq
× −kr ·Xr

K1pqr
,

C[{p,q,r}; {q,r, p}] =
−kp ·Xp

K1p
×
−(kq · (Yq − k1))

K1pq
×
−kr · (Xr + kp)
K1pqr

,

C[{p,q,r}; {r, p,q}] =
−(kp · (Xp − k1))

K1p
×
−kq ·Xq

K1pq
×
−kr · (Yr − k1)−K1pqr

K1pqr
,

C[{p,q,r}; {r,q, p}] =
−kp ·Xp

K1p
×
−kq · (Xq − k1)−K1pq

K1pq
×
−kr · (Yr − k1)−K1pqr

K1pqr
. (B9)

1,2For the amplitude with four gluons between legs , we have

An+4(1,h1,h2,h3,h4,2, · · · ,n) =
∑
⊔⊔

∑
P
C⊔⊔({h1, · · · ,h4}|P{h1, · · · ,h4})An(1,2, {3, · · · ,n−1}⊔⊔P{h1, · · · ,h4},n) , (B10)

{h1, · · · ,h4} and ⊔⊔with coefficients (for simplicity, we ignore the first list  )

C({h1,h2,h3,h4}) =
[kh1 · (Xh1 − k1)]

K1h1

[(kh2 ·Xh2 )−K1h1h2 ]
K1h1h2

[(kh3 ·Xh3 )−K1h1h2h3 ]
K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h1,h2,h4,h3}) =
[kh1 · (Xh1 − k1)]

K1h1

[(kh2 ·Xh2 )−K1h1h2 ]
K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h1,h3,h2,h4}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Yh3 − k1)]
K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h1,h3,h4,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Yh3 − k1)
K1h1h2h3

[kh4 · (Xh4 + kh2 )]
K1h1h2h3h4

,

C({h1,h4,h2,h3}) =
[kh1 · (Xh1 − k1)]

K1h1

[(kh2 ·Xh2 )−K1h1h2 ]
K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h1,h4,h3,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − kh1 − k1)]+K1h1h2h3

K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

, (B11)

C({h2,h1,h3,h4}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

(kh3 ·Xh3 )−K1h1h2h3

K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h2,h1,h4,h3}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h2,h3,h1,h4}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

[kh3 · (Xh3 + kh1 )]−K1h1h2h3

K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h2,h3,h4,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

[kh3 · (Xh3 + kh1 )]−K1h1h2h3

K1h1h2h3

[kh4 · (Xh4 + kh1 )]
K1h1h2h3h4

,

C({h2,h4,h3,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

[kh3 · (Xh3 + kh1 )]
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h2,h4,h1,h3}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

, (B12)

C({h3,h1,h2,h4}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h3,h1,h4,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

[kh4 · (Xh4 + kh2 )]
K1h1h2h3h4

,
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C({h3,h2,h1,h4}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]+K1h1h2

K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

(kh4 ·Xh4 )
K1h1h2h3h4

,

C({h3,h2,h4,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]+K1h1h2

K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

[kh4 · (Xh4 + kh1 )]
K1h1h2h3h4

,

C({h3,h4,h1,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

[kh4 · (Xh4 + kh1 + kh2 )]
K1h1h2h3h4

,

C({h3,h4,h2,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]+K1h1h2

K1h1h2

[kh3 · (Xh3 − k1)]
K1h1h2h3

[kh4 · (Xh4 + kh1 + kh2 )]
K1h1h2h3h4

, (B13)

C({h4,h1,h2,h3}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )−K1h1h2

K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h4,h1,h3,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − kh1 − k1)]+K1h1h2h3

K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h4,h2,h1,h3}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

(kh3 ·Xh3 )
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h4,h2,h3,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]
K1h1h2

[kh3 · (Xh3 + kh1 )]
K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h4,h3,h1,h2}) =
[kh1 · (Xh1 − k1)]

K1h1

(kh2 ·Xh2 )
K1h1h2

[kh3 · (Xh3 − k1)]+K1h1h2h3

K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

,

C({h4,h3,h2,h1}) =
(kh1 ·Xh1 )

K1h1

[kh2 · (Xh2 − k1)]+K1h1h2

K1h1h2

[kh3 · (Xh3 − kh1 )]+K1h1h2h3

K1h1h2h3

[kh4 · (Yh4 − k1)]+K1h1h2h3h4

K1h1h2h3h4

. (B14)

Yhi XhiIn the above expressions, for simplicity, we have used  to replace  in some terms.
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