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Abstract: This study extends the investigation of quantum dissipative effects of a cosmological scalar field by taking

into account cosmic expansion and contraction. Cheung, Drewes, Kang, and Kim calculated the effective action and

quantum dissipative effects of a cosmological scalar field in a recent work, where analytical expressions for the ef-

fective potential and damping coefficient were presented using a simple scalar model with quartic interactions, and

the work was conducted using Minkowski-space propagators in loop diagrams. In this work, we incorporate the

Hubble expansion and contraction of the cosmic background and focus on the thermal dynamics of a scalar field in a

regime where the effective potential changes slowly. Given that the Hubble parameter, H, attains a small but non-zero

value, we carry out calculations to the first order in H. If we set H = 0, all results match those in flat spacetime. Inter-

estingly, we must integrate over the resonances, which in turn leads to an amplification of the effects of a non-zero H.

This is an intriguing phenomenon, which cannot be uncovered in flat spacetime. The implications on particle cre-

ations in the early universe will be studied in a forthcoming study.
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1 Introduction

It is widely believed that our universe started with a
hot big bang, which is considered as the beginning of the
radiation-dominated era in cosmic history. Numerous
properties of the cosmos that we observe today can be un-
derstood as consequences of quantum processes, which
are typically out of equilibrium in the hot and dense
plasma [1, 2] that filled the universe after the big bang.
Prior to the radiation dominated era, there was a period of
accelerated cosmic expansion known as inflation [3—5].
At the end of inflation, the universe was cold and empty;
all energy was stored in the zero mode of the inflaton
field. One mechanism for setting up the initial conditions
of a "hot big bang" of the radiation-dominated universe is
"reheating" [6—8], where the universe is "reheated" from
a complete vacuum by energy transfer from the inflaton

to other degrees of freedom, e.g., dark matter particles
and elementary particles that made up the standard mod-
el (SM) of particle physics. The study of the quantum dis-
sipative effects in the early universe, therefore, has pro-
found implications on the studies of matter production
and thus on the thermal history of our universe.

The thermal history of the early universe is an import-
ant theoretical basis to determine the abundance of
thermal relics. It thus plays an important role in distin-
guishing or excluding cosmological models. Studies of
the particle dynamics in the early universe uncover cru-
cial details within and beyond the SM. We are interested
in the thermal production of particles from plasma [9,
10], dissipation effects of fields in medium [11, 12], cos-
mological freeze-out processes [13, 14], and their im-
prints on early universe physics.

As mentioned above, matter production occurs
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through the relaxation of inflaton into scalar, gauge, and
fermionic quantum fields in a large thermal bath [9,
15—17]. Inflaton, in the SM of cosmology, is a scalar and
responsible for an epoch of exponential expansion to pro-
duce a flat, homogeneous, and isotropic universe free of
topologically stable relics, such as monopoles and cos-
mic strings. Therefore, scalar fields, despite their simpli-
city, play important roles within or beyond the SMs of
particle physics and modern cosmology. The existence of
scalar fields in the SM of Particle physics has been firmly
established by high precision experiments conducted at
the large hadron collider (LHC) in 2012, where the Higgs
boson [18, 19] plays a pivotal role of providing mass to
elementary particles in the SM. Furthermore, scalar fields
can be candidates for dark energy [20—22] or dark matter
[23—25]. Scalar fields also play important roles in the
bounce universe, which is an alternative approach to ad-
dress how our current universe came about. In this model,
a contraction phase exists prior to the "birth" of our
presently observed universe, and further detail is
provided in recent reviews in Refs. [26, 27] . Our study
focuses on the scalar field dynamics in hot medium: it
thus founds the basis to follow up on the particle produc-
tions in these bounce models [28—34], where the Hubble
parameter can be set to positive or negative values, and
the bounce process is driven by two or more scalar fields.

This study builds on an earlier study of the finite-tem-
perature effects in a thermal bath, carried out by Y. K. E.
Cheung, M. Drewes, J. U Kang, and J. C. Kim , to fur-
ther establish the rigorous theoretical framework to pre-
cisely study the evolution and interactions of elementary
fields in the inflationary cosmology background or in a
bounce universe. In Ref. [35], the authors made progress
towards a quantitative understanding of the non-equilibri-
um dynamics of scalar fields in the non-trivial back-
ground of the early universe with a high temperature,
large energy density, and a rapid cosmic expansion. They
calculated the effective action and quantum dissipative
effects of a cosmological scalar field in this background.
The analytic expressions for the effective potential and
damping coefficient are presented using a simple scalar
model with quartic interaction. In this paper, we extend
their efforts on building this theoretical framework by in-
corporating a non-zero Hubble parameter in the analysis
and obtain a temperature-dependent expression of the
damping coefficient to the first order in AH. In this man-
ner, one can properly address the questions of how the
hot primordial plasma may have been created after infla-
tion [36] and whether there are observable features in the
reheating process [37, 38].

Our study of the non-equilibrium process in an early
universe starts from the action of scalar fields ¢ and .
The non-equilibrium process is non-Markovian. That is,
the evolution of the fields in late times depends on all

previous states, and the non-Markovian effects are con-
tained in a "memory integral" in the Kadanoff-Baym
equations. We shall use the closed-time-path (CTP) form-
alism [39, 40], i.e., the so-called "in-in formalism". The
"in-in formalism" is made to deal with such finite temper-
ature problems in out-of-thermal-equilibrium processes.
The non-equilibrium nature renders the usual "in-out
formalism" ineffective.

Unlike the usual zero-temperature quantum field the-
ory, this study considers both the thermal and quantum
corrections. To be more specific, we first derive the equa-
tion of motion, up to the first order in A, from the effect-
ive action of ¢. The effective potential and the dissipa-
tion coefficient (characterizing the dissipation of the en-
ergy from ¢ to the plasma) rely on the self-energy and the
corrections to the quartic coupling constant. The calcula-
tions of these quantities using Feynman diagrams make
up a major part of work reported in this article. If we set
H to 0, our results match up with those obtained in Ref. ,
using a Minkowski-space propagator in loops. Further-
more, we observe non-trivial features that are not re-
vealed in flat spacetime.

Exposing scalar fields to a high temperature and a
rapid cosmic expansion is an important setup for under-
standing the non-equilibrium dynamics of scalar fields in
cosmology. Under the condition of cosmic expansion at
high temperatures, the matter production process is out of
equilibrium. If there is an effective potential that is not
steep, the matter fields take a long time to reach equilibri-
um. Our focus is the back reaction [41, 42] on the
primary particles from their decay products. Based on the
previous work done using Minkowski-space propagators
in loop diagrams, we further their studies of scalar field
dynamics in the early universe evolution by incorporat-
ing the effect of cosmic expansion. There are infinitely
many back reactions, and thus it is important to general-
ize the leading-order re-summation results to higher or-
ders.

Although elementary particles in our universe com-
prise fermions and gauge bosons, we still expect our toy
model with two scalar fields to serve as a good play-
ground for studying early universe physics. The earliest
decay process involves only scalars, because the creation
of fermions can be assumed to occur in the subsequent
decay chain or inelastic scatterings, as the transition to
bosonic states is usually Bose-enhanced [8]. When the
background temperature is higher than the oscillation fre-
quency, the dissipation rate arising from the interactions
with fermions is suppressed due to Pauli blocking, where-
as it is enhanced for interactions with bosons due to the
induced effect. In a future study, we will consider the dir-
ect coupling of scalars to fermions and gauge bosons.

The study of thermal dynamics of fields in curved
spacetime is technically very difficult. For the first order
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in the Hubble parameter, the calculation of scalar dynam-
ics might shed light on the effects of the expansion of the
universe on its history. More specifically, this is a step
further into the investigation of the microscopical pro-
cess that happened during reheating, preheating, and
warm inflation, where the dissipative process including
effective friction and potentials should be described.

The results presented in this study represent another
step in a systematic study of scalar dynamics in the early
universe, as initiated in . The analytic expressions we find
are derived more systematically and consistently than any
comparable results in the literature that we are aware of.
The current paper adds to this program by including the
expansion of the background spacetime to the analytic es-
timates for effective potentials and dissipation coeffi-
cients. Moreover, in the course of the derivation, we find
analytic estimates for various integrals in finite-temperat-
ure field theory that will be very useful for calculations in
more realistic models, in spite of the limitations of the toy
model we employed to set up our calculations. This pa-
per is organized as follows: in Section 2, we explain our
working assumptions. We sketch the prerequisites for
field theory calculations at finite temperature to establish
notations, which is followed by the derivation of the EoM
in Section 3. We demonstrate the calculations of self-en-
ergy and obtain the correction to the quartic coupling
constant in Section 4. Section 5 briefly summarizes the
main results obtained in this paper and concludes with a
short discussion. The detailed calculations of the Feyn-
man diagrams and the relevant formulae needed in the
calculations are presented in the appendices.

2 Assumptions and prerequisites

We study a scalar field, denoted by ¢, in a de Sitter
space with the Hubble parameter H assumed to be
nonzero. The scalar field ¢ interacts with other signific-
antly lighter scalar fields, collectively denoted by y,
which play the role of the hot cosmic bath in our model.
(The typical picture for this setting is the decay of in-
flaton (@) at the end of inflation to the array of element-
ary particles of the Standard Model, a process called "re-
heating".)

Let ¢ be decomposed into its thermal average, ¢, and
its fluctuations, denoted by #:

p=¢+n.

The fields # and y are initially assumed to be in
thermal equilibrium. We further assume that the interac-
tions between ¢ and other degrees of freedom are suffi-
ciently weak to allow for the application of perturbation

theory and the neglecting of back reaction of ¢ on the 7
and y fields. The approximately adiabatic evolution of ¢
can be assumed. In this way, # and y can assume thermal
equilibrium in the evolution of ¢.

To expand the equation of motion to the first order in
H and simplify the calculations, we further assume that
H <M, M, < T, where M,, and M, are, respectively, the
effective masses of # and y, and the temperature 7 is in-
versely proportional to the scale factor.

The field ¢ is to decay to y, and hence M, >2M,.

However, in the ensuing calculations, we cannot obtain
analytical results unless M, > M,. We will thus take
M, > M, as an assumption instead”. For the same pur-
pose, we assume that A,A",h < M,y, where A,A’,h are
coupling constants and y is essentially the inverse temper-
ature that will be introduced soon in the following con-
tent. There is a sufficiently long period of time in our uni-
verse, in which these conditions are satisfied, and matter
creation due to the decay of inflaton, ¢, to other fields y;
can be studied in this systematic approach.
Methodology: We use the closed-time-path formalism to
perform the calculations. The readers are referred to
[43—45] for systematic introductions to field theory at fi-
nite temperature. The time ordering and integration path
C in the complex time plane starts from #; on the real axis
and runs to real f7, then back to 1 and ends at ,— i@, as
depicted in Fig. 1.

t, p

Imz=0

1Y

&

|

t,—ip
Fig. 1.

Path of integration in complex-time plane.

We take 7; » —c0 and t; — o and denote the upper
section of C, which runs forward in time by C; and the
lower section, which runs backward in time by C,. A
general scalar field &£(x) that lies on C,/C; is labelled as
& (0)/Ex(x).

To obtain the dynamical information of such a scalar
field & we need to know the two-point correlation func-
tions that are defined as follows,

Aap(x,y) =(Tcéa()Ep(y))  (a,b=1,2),
A7 (x,y) =EXED)),  AT(x,y) = (EGEX)),
A_(x,y) =i [A>()C,y) - A<()C,y)] 5

1
A+(X,y) =§[A>(x,y)+A<(x,y)], (1)

where T¢ indicates time ordering along the path C in

1) Our strategy is to calculate with the assumption that M, /M), < 1, to obtain analytical results of the integrals. We then compare the analytic results obtained under
the approximation with the results obtained by numerical integrations. The comparison and errors are tabulated in Table 1, for several pairs of (M), M;) and at two dif-

ferent temperatures. The approximation fares well to be within 5% errors.
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Fig. 1. For a real scalar field £, we see that A”(x,y) =
(A<(x,y))" and that
A11(x,y) =0 =y)A” (x5, 3) +60° = x)A<(x, ),
An(x,y) =0(x" = YA (x,3) + 60 = x)A” (x,),
Apa(x,y) =A(x,y),
A1 (x,y) =N (x,). 2
The one-loop propagators of a scalar field & with ef-
fective mass Mg in a de-Sitter space,
guv = diag(1,—a(0)?, —a(t)*, ~a(1)?), 3)
where a(f) = ef!, were obtained by solving the Kadanoff-

Baym equations [43]. The result in Ref. [43] is expressed
in terms of conformal time, with a time-dependent mass

1 1
sin ( f dt'Qg(t’)) exp (_ Z
L 2

m(t). To obtain the corresponding result in terms of cos-
mic time, we first carry out the usual replacement:

> e ()

The following two replacements can be inferred by
comparing the free spectral function in de Sitter space-
time (whose detailed calculation is presented in Ap-
pendix A) with the corresponding flat-spacetime propag-
ator [43]:

£(x) = E)/a(t),  m(t) > (Mz-2H)a(t)* . (5)

We thus start our calculations with the following
propagators in de Sitter spacetime:

1)
f dr'Te(t)
53

~—

A (p,t1,1) =

At (p.t1,0) = [1+2f(tp)]-

a(t)*2a(t2)3? Qe (11)Q¢ (1)

1 1
cos (f dt'Qg(t’)) exp (— 3
h

(6)

T
f df'Te(t)
53

)

where T'; is the decay rate of £, Q; is given by

(7

with 7z = min(z1,1,), and f(¢) satisfies a Markovian equa-
tion [43].

Q) = [P fa(t? + M2 =2H?,

7 1
sin (f dt/Qg(l’)) exp (__
I ’ 2

1)
f dr'Te()
2]

- 1,1) = O
(1 ! ) 0(11)3/20(12) / Qé( 1) f( 2)

A ( 1 12) 3/2 2 Q. (11)Q 2 (
Pt _Za(ll) / a(12)3/ §( 1) ‘f(t ) 2

il's (tp)

g
+exp (i f dt’Qf(t’))
[}

where f becomes the Bose distribution function:

1
3 +f(Q.f(lB) -

1
ST ©)

Here, the inverse temperature S(¢) is proportional to the
scale factor by our assumptions: B(¢) = (By/ag)a(t) with By
being the inverse temperature when the scale factor is aq.
For simplicity, we denote By/ap by y in the following cal-
culations:

fx) =

Po a(t) = ya(p).

Bt =— (10)
ao

0531

1 d
f dr'Te(t)
53

2a(t1)32a(ty)*1? \JQe(11)Qe(t2)

If we assume that a scalar field £ is in (approximate)
thermal equilibrium as the universe expands, and that it
can be characterized by an effective temperature 1/8(z),
which depends on time, then by imposing the Kubo-Mar-
tin-Schwinger (KMS) relations, the propagators become

il'¢ (tp)

){exp(—ifth dt’Qg(t')) !
t

E +f(Q§(tB)+

J
i§

3 Derivation of EoM

As mentioned in the Introduction, our system con-
sists of a scalar field ¢ and the background plasma col-
lectively denoted by y. We employ the model to study the
early universe dynamics: it provides us with clues on how
the fields behave in an expanding or contracting universe.
In particular, we wish to capture how their behaviour dif-
fers as one goes beyond using the Minkowski propagator
in computing the quantum and thermal corrections. A
general renormalizable action for such a system in a de-
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Sitter space, whose potential energy is bounded from be- where R = 6(id/a+ a?/a?) is the curvature scalar, and Z is a
low, is of the form:

fd“x\/_{ [vl_g (\/_g*“’a)+m¢+ZR

parameter. The action is furthermore invariant under dif-

1) feomorphism and ¢(x) — —@(x).

The effective action for ¢ (which can be used to ob-

1 1

- V=gg"”

X = \—g ( 880 )+ m+ ZR1x tain the equation of motion of ¢) has the same linear sym-

A 4y A metries as the original action [46], it can be written in the
+Z¢ 4,)( + ¢X (11) form

1 1
r=- 5 fcd4x1 V=gp(x1) [\/—__gam ( \/__gg'uvalv) +mé +ZR
1
- f V=g(x1) V=g(x2)d*x;1d* xaT1(x1, x2)p(x1 )p(x2)

f VgD Vogtd xid [ ‘”XIT/T;Z))+ﬁ<x1,x2>
- 1

up to the fourth power of ¢. In doing so, we have only propagators, we will denote T1(xy,x;) as I1,,(x1,x;) when
considered terms up to one-loop in the quartic part, and  x{ lies on C, and xJ lies on C, (a,b=1or2). Different
the time integration is along the path C, shown in Fig. 1. from the situation in flat spacetime, here we do not have
IT is the self-energy, and IT the correction to the quartic time translation symmetry: IT(x, x;),I1(x;, x;) depend not
coupling constant, the computation of which will be only on t; —1,, but on ¢, + 1, as well.

@(x1)

e(x1) p(x2)?, (12)

presented in the following section. Similar to the case of From Eq. (12) we obtain the equation of motion for ¢,
|
ol
—— =3 (ag +3Hdy—e "V +m] +ZR)¢(x1) + f dx OB (xp, x0)p(x2)
6p(x1) c
A 1 ~
+ gyetn)’e + () f dxoe T, () = 0. (13)
. . C
[
We restrict ourselves to the case in which the only non- make progress, the Hubble parameter / is assumed to be
vanishing Fourier mode of ¢(x) is ¢(g = 0), then in (spa- small and the system is in pseudo-equilibrium during the
tial) momentum space, EoM simplifies to process. This is a valid hypothesis for most of the physic-
al applications we have in mind. In particular, we are in-
0 =(8§ +3Hd, +m§> +ZR) o)+ f dne e 111, 1)e(ts) terested in the matter productions from vacuum after in-
flation ends. We can hence simplify the equation by neg-
+ L A <p(t1) " —tp(tl)fdl263HtZH(t1,lz)(p(t2)2 lecting the curvature scalar term (since R « H?) and ex-
panding e3> ~ 1+ 3Ht, to the first order in H; while the
(14) adiabatic assumption is realized as

This non-local equation remains difficult to solve. To o(ty) =p(t1) + (2 )(t2 — 11). Altogether,

(5 +3Hd +m3) p(t1) + f diy(1+3HO)TR (1, 12) [p(t1) + @(01) (02 = 11)]

—00

A
+—so(t1)3+—so(t1) f dix(1+3HO)TT (11, 0) [ @(11)? + 20111 ) (02 = 11)] = 0 (15)
Let ITR(¢1,1,) denote the retarded self-energy: R (11, 12) = i1 (11, 12) + 1o (t1,12) - (17)
1%(t1, 1) =TIy (11, 1) + 1o (11, 12), (16) The Fourier transformations of ITR(z;,1,) and TIR(1y,1)
and likewise, IT(#1,1,) denotes the "retarded" correction (with respect to r=1 —1) are denoted by «(¢;,w) and
to self-coupling, k(t1, w):
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k(t,w) = f de IR (¢, 1 — D)e'”,
_ ‘ (18)
(h,w) = f dr (11,1 — D' .

9,V(p.11) =

L]
6

I'lp,t1))=-(1 +3H[1)(—i iK(l‘l,—a))
ow

Ll
3

From this equation of motion, we see that the "potential",
which is time-dependent for ¢, is determined by
K(t,0=0), Kt,w=0), Lt;,-w)| _,» Z&t.-w)|, _:
whereas the dissipation coefficient (terms in the second
curly bracket) relies on %K(Z‘],—w)L):O, %?(tl,—w)lwzo,
Lkt —w)|,_y 2Kt -w)|, _, We will obtain these ex-
pressions in the following section.

4 Computation of potential and dissipation
coefficient

In this section, we shall calculate the self-energy and
the correction to the self-coupling constant of ¢, along
with their first and second derivatives.

4.1 Computation of x(#;)

The leading order contribution to TII%(¢;,2,) and
k(t)) = k(t;,w = 0), is given by the tadpole diagram, shown
in Fig. 2, with # or y running in the loop.

t, =t

Fig. 2. Tadpole diagram corresponding to RellX.

We observe that I1j; =0 because #; and 7, must be
identical. Using Eq. (2), we obtain

miy +(1+3Ht)k(ty,w = 0) - 3H(—i ix(n, -w)
ow
_ .0
A+(1+3Ht)k(t;,w=0)— 3H(—1 a—K(ll, —w)
w

5%
w:O) -3H WK(“ , —(U)

—(1+ 3Ht1)(—i i7(t1,—a))
ow

The equation of motion for ¢ thus takes this form,
(t1) +0,V(p, 1))+ BH + (g, 11)¢(11) = 0 19)

where the potential V(yp,7;) and the dissipation coeffi-
cient I'(p, 1) are defined as follows,

)] o(t1)
w=0

)] o),
w=0

w=0

& _
w_o) -3H WK(ZI . —a))

]9001)2-

w=0

1*(t1, 1) =111 (11, 12)

1 d?
=§5(I1 - lz)fzn])( [g.f f #(Af)n(n fl,tz)]

1 d?
=§5(t1 —-1) Z [g.ffﬁRe(Agb(P,ﬁ,tz)} ,
&=nx
(20)

with g, = 4,g, = h. The integral is computed in Appendix
C using the formulae in Appendix B.1,

D gehs [Msﬁ(tl)]} . @

&=nx

1
R - — P
(11, 1) = 6(1y IZ){Zn%B(tl 7

M, and M, denote the effective masses for # and y, re-
spectively, and &3 is given by

7wy [y 1\, y y
=— 2 _(Z£__ —Z log =
=155 (8 16) 8§ Cun
S (D) m =D ECm+1) 5,00
. (22
+mZ:1 23 (m+ 1) (2m)2m 22)

with yg depicting the Euler constant. Fourier transform-
ing Eq. (21) yields

1
K(t) =W€Z gehs [M.fﬁ(tl)]
=n.x
A+h
zW(1—2Hn), (23)

where the final approximation corresponds to keeping
only the first term of Eq. (22) and B(t)% =y %a(t)) 2 =
y2(1-2Hm).

As indicated in the Appendix C, the expansion in H
brings in an extra divergent part in the integrals for the
tadpole diagram. In this case, the C, integral can be re-
lated to C; in a linear manner and therefore also vanishes.
We can also use another scheme to perform the regulariz-
ation such as the dimensional regularization scheme,
which we employed when calculating ¥ in the next sub-
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section. In fact, Ref. [47] proves that renormalization on
curved backgrounds can be done in close analogy to
renormalization in the Minkowski space, and that the re-
moval of singularities follows the well-known power
counting rules. This result is as expected, since the ultra-
violet behaviour on smooth manifolds should be essen-
tially identical to that in the Minkowski space. However,
with two major obstacles, the infrared behavior and the
absence of translation invariance, the curvature effects on
the renormalization may be technically different and
more complicated than the renormalization in flat space-
time, whereas the principle and the method are in close
analogy.

4.2 Computation of x(71)

The leading order contribution to ﬁR(tl,tz) and
k(1)) =«(t;,w=0) is obtained from the "fish" diagram
shown in Fig. 3, with the internal lines corresponding to
two 7 or two y free propagators:

Fig. 3.

Fish diagram corresponding to I1%.

Tig(t1,12) = 1 (11, 12) = Mo (11, 12)

i S
:%S:Zn;xf(_‘gﬁ)z (27:)13 [(Ag)u(q,h,tz)(Ag)u(—q, t,12)
_(Af)lz(q,flJz)(Ag)lz(—q,tl,tz)]

d3
=0(t1 - 12) Z g;f(z—(;lm[(&s%(q, n.0)?.
&=y d

24

To perform the integral over the three-momentum and
carry out the Fourier transformation over ¢t =1 —#,, we

00

00

f [K<“’fq)] =$f

M,

Combining Eq. (25) and Eq. (29), we obtain,

44 - +ImK (wseq)[ 5+

1 2
Iie [K (w_{:q)] =m jil‘/lg dwggdnweg | /wéq - Mg {ReK (a),fq) = _a)
dwggdmweg - /wéq - Mg {ImK (a),fq) ﬁ

first expand the integrand in Eq. (24) to the first order in
H,

1 _ _
(Ao)-(g.11,12)° vy [(1-2Hty,y) + Hty,
&q

+2iHn 7, - iHEY, | (1+ f (w gq))Q o2t

1 ’ ’
+ (g = —wg) = 5 |1+ Hiryg) + Hry |

&q
X (1 + fweg)) flweg),
(25)
where wg; = /¢ + M} and
2 2 2
- YVe Wy~ M;
Yo(weq) = 3+ —— f(weg) = —5—
Weq Wy
_ yM? wé —M?
Vilweg) =3+2—= f(wgg) - —5—
Weq Wey
2 2
w: —M
= &q ¢
Fa(wg) = = 26)
(wes) = =
2 2 2
w: —M yM
, &
Yolweg) = =6 +2— 15 (142 f(w)) —
“eq “eq
, yM2 wg - M?
Yi(wep) =3+ —5 (142 f(wg)) - — L
Weq Wey
For a general function K, given by
K = Ko(weg) + 1K1 (wgq) + Ko (weg) (27)

with Ko(wgy), Ki(wgg), Ka(wg) being generic rational
functions of wg,, we obtain an explicit expression of its
Fourier transformation in Appendix B.2:

ReF‘”[G(t)Im f ﬁ[l( (weg) + 1K1 (weq)
) 0| Weq 1\ Weq

+2K, (wgq)] e~ 2iwal ]

2

dw " 0w?
where a;, which will be defined and used in the follow-
ing section, is related to the decay rate of a ¢ field.

=l [KO]lagzo + lim [Kl]lczfzo I [K2]|a/5=0 . (28)

Ie [K (w_gq)], and I, [K (w§q>] are given as follows,

¢ e

Qwe, (a)_zwqu}}’

(3

2

£q 2wgq ((u + 20)54)

¢

—ReK - & }} .
éq ) (wfq) : 2weq (a) + 2a)§q)2

29

[ 2weq ((u - 20)54)
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Zgé%ReF“’ [9(1‘)Imjv(2 7 (Ag)s>(g,11,12) ]

el

—2Ht1yy(weq)) (1 + f(wfq))
fq

—-(1- 2Ht170(—w§q))(1 +f (—wg:q))2
“eq

(9 H H
t o .m[ 22 (yl(wfq)+21zm(wgq))(1+ f(wfq)) 57 (—71(—w§q)+2it172(—w§q))(1+ f(—wfq))z}
Weq
02 1 1
ol 1H2 ) Falwe) (1+ flwe) HiH () (14 f(= ) (30)
Weq

Setting w = 0 and performing the integrals, we arrive at

) . &
K<r1>=2g§ReF [emlm f #(Agxq,n,mz wzo]

(31)
If we set H=0, we obtain the familiar results in flat
spacetime,

== > gl -4Hn)
E=my 32n Mf’y

AT W2T
327M, 327M,°

using the Minkowski-space propagators in loop diagrams.

() ~— (32)

4.3 Computation of K(ll, a))|

As mentioned in Ref. , the leading contribution to
a%?(tl,—w)|w=0 comes from the fish diagram, Fig. 3, but
with the one-loop corrected (— or y—) propagators. Such
propagators rely on the decay rates, which were calcu-
lated in Ref. in flat spacetime:

V24307« 2+302  «
szz_x,r,,:wz—”. (33)
Ywy, Wy TYytw,; Wy
In the present situation, as we assumed the system to be
in pseudo-equilibrium, and we do not consider higher or-
der corrections, we replace Eq. (33) by

Similar to Eq. (28), we have

W d3‘] 2 —y
F [G(t)lm f 2—)3(K0+tK1 +f Kz)e

+ImK| — ——
2.2, 72 2002
Wy 3wa§+w 7

| Wy g wwy
(2 )3 2

9 w,a
—ImKy —— 4%

2
Ow? az + wzwq] f (2n)? ( ? + wzwé

2
0 9% g, 2 A ]

2 22 2, 2
awa§+w a)q > 0w @ tw a)q

—-ImK 17—

(35)

and

ImF“’{H(t)Im f @ 3 Ko (weg)

+1K; (wgq) +t K2 <w§q)] e Ziﬂ)sq[}
2
aMm sl Ko,

—Ilm [KO] (36)

where I, and I, are defined in Eq. (29), and the deriva-
tion of which is provided in Appendix B.2. By expand-
ing the propagator to the first order in A/ and making the
following peak approximation,

1 00 1/y
’f ﬁ f 9
waq m m

flweq) = (37

2 a2 2 a2
()= A7 +3h T,() = A"+ 3h ' and subsequently with the help of Eq. (35) and Eq. (36) to
« 2563612 Q, (1) " " 25673B(1)> (1) perform the Fourier transformations, to the first order in
(34 H and to the lowest orders in @, and a,, we obtain
|
32 32 M 2B74y?
i L —w)| === (14100 2 4 —— (549109 2 |- =Y
w=0 A2 +3h2 2 3(% +3h2) 2 (A2 +352)?
32 M 32 M 213
22 (1 p10g 2 )k e (549108 XY - : (38)
A2+ 342 2 3(A2+3h2) 2 (22 + 3h2)2

4.4 Computation of 2okt a))|

a%"(tl’_‘”)iwzo is determined by the imaginary part of

the self-energy , whose leading order contribution
for soft momenta comes from the sunset diagram in
Fig. 4.
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1 to

Fig. 4. Sunset diagram corresponding to ImITX.

d*k d3l
1) =6 1) [ S5
X(A)> (11, YAy (k+ 111,1)]

m[ (A (k, 1,12)

(39)
In Appendix D, we show that we can express the derivat-
ive of k(—w) in the following form, where the derivatives
of I, I.,Js,J. are given by equations (102), (103), (105),
(1006),

.0 h? d d &’
=i —«(t1,— =-— (1—9Ht1) Lyl +Ht —Lnl| -Ht —Ln]l -2HH —1|ys]
ow w=0 8 w=0 w w=0 Oow w=0 Ow w=0
9 1 0 0 0
2nZ iy S HZ -z . 40
SH a Js[yol T2 e [71]‘ o 355 ] Y awfc[%]wo} (40)

Here, the y; are the new ones defined in Appendix D.
This derivation is not significantly different from the cal-
culation of the imaginary part of the self-energy per-
formed in Ref. . However, the analogous integrals in de
Sitter spacetime are more complicated: we do not have
our disposal the delta functions, resulting from the mo-
mentum conservation, to simplify the calculations. Our
strategy is to calculate each term in the above equation,
with the assumption that M, /M,, < 1, to obtain analytical
results of the integrals.

Let us now calculate the first line in the curly bracket
in Eq. (40), which is dominated by regions where
Wyk, Wy < 1/, since in these regions the Bose distribu-
tion function contains a peak. In this subsection, we ex-
pand the Bose distribution function to O((1/y)"),
fx)=1/(yx)—1/2 (for x< 1/y), to simplify the integ-
rals, because the contributions from 1/(yx) to some of the
results (e.g., the second line in the curly bracket in Eq.
(40)) will vanish due to cancellations of terms with op-
posite signs. Because vyp,y1,y> (at least to the zeroth or-

02

[
der in M,y) do not change when all three arguments
change simultaneously, while y; changes sign, the tem-
perature-dependent part in 9/0wl[yo12]lu=0 and in
0% /9*wI [y3]lw=0 appears in the following forms:

(1+ f(@ng)) Fl@y) fl@y) = flwng) (1+ Flw) (1+ Flwy))

N i( 1 3 1 B 1 )

- Y\ 0wy ook o)’

(14 f(wng)) F@r) flw) + Flwng) (1+ Flwy0)(1+ Flwp)
2

V3 Wngwiwys
(41)
We thus conclude that d/d0wl[yo12]lw=0 1S considerably
smaller than &?/0°wI.[y3]lw-0, and the former can be

safely neglected.

2
Considering — aa—zlc [yi]‘ , it is the sum of the fol-
w

w=0
lowing three integrals Eq. (103),

) M, 1,,
_ ﬁ L dwxlf l deka [y,( W+ Wy + Wyl — Wy, —a)Xl)(l +f(<uXk + Wy —w))f(ka)f(wxl)

M, 1,

i (w—ka—wxl’ka’wxl)f@xk+wxl_“’)(1 +f(“’xk))(1 +f(‘”X’))]

1

—%(_‘ka—w)(zaka"”xl)f(ka“”XI)(I +f(‘“)r’<))(1 +f(“’*’))]

1 00
W f w)(lM (tlm)

—%i (_‘”Xk —wX;,ka,sz)f(ka +wX’)(1 +f(ka))(1 +f(w)(l))]

, (42)
w=0
[%(w)(k + Wyl —Wyk, (1))([) (1 + f(w,\/k + wxl))f(w/\/k)f(a),yl)

, (43)

wu—M, 1,

0 [% (Wyk + Wy, =Wyk, —Wy1) (1 +f (w)(k + w)(z))f (ka)f (w)(z)
Wyk
) (44)
wy—M, 1y,
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M, ty, grows rapidly with w,;: M, ty, ~ %wxl, while M, ty,,  M,t, is large. We can also neglect the second term, be-
decreases with w,,. Therefore, for the integral Eq. (43), cause M, 1, is significantly greater than 1 when w,, is

the rational-function approximation of the Bose distribu- ~ small, and we can make a rough estimate of the ratio of
tion function is inappropriate. The integrand will indeed  the contribution of M1y, to that of 1,

be negligible due to the large exponential in the denomin- M,

ator. In contrast, it is viable to use the rational-function jﬁ; My t1mdwy M,

approximation in the integral Eq. (44), which turns out to - M, ~ oM (45)
be significantly larger than Eq. (43). For the integral Eq. f dwy x

(42), we see that there. is no significant difference in the M,

order of magnitude if we replace the partial derivative  Eq. (42) is indeed significantly smaller than Eq. (44), and
0/0w by 0/dw,. After carrying out this replacement, it therefore we only keep Eq. (44).

can be written as [(43)/(M,t1,)* — (44)/ (M, t1,,)*]. The first Upon performing the approximations above, Eq.
term can be neglected, because Eq. (43) is small, and (103) can be integrated,

62 1 00 0 1
-yl = f dw M (tim)? — |73 (@yk + Oyt~ —wy1
St € o (2n)3 M, M A m Bor ( X X )y X ) 3 (w)(k 'HU)(Z) Wy | oM,
8 4 2 g2 42
N 73 M,] B M,7 B 4MXM,7T N 8MXT
2 2 2 ] 2 ] 2 204 2
AOMZ | (M2 +4M2T2)?  MA+4M2T? (M2 +4M2T2)?  M2(M2+4M2T?)
1 M
+10g(z)—1+log . (46)

M} M} +4M2T?

[
This analytic result is evaluated for a few pairs of  carried out perturbatively, 1,4’,h should be sufficiently
(M, M,), and their values are compared with results ob- small and in particular smaller than any dimensionless
tained by numerical integration for a few pairs of  quantity that can be constructed using dimensionful dy-
(M,,, M;). The accuracy of this approximation is found to namical quantities in the model. There are eight terms in
be within 5%, as shown in Table 1. /0wl [yillu=o, with different signs xg.xi.x: before
Next, we compute 0/0wJ [y31lw=0 and Wq, Wyk, Wy We first compute the terms in 6/0wJc[y3]lw=0
0/0wl[y0,12]lw=0, Where we assume that A, A',h < M,y. that  correspond to y,=LlLxx=-Lxy;=-1 and
As we mentioned in Section 2, for the calculations to be xg=—Lxk=lLxi =1

W2, —M? W — M (W — W — w !
1 o0 ! ke~ My | Wy — My \Wng — Wyl — Wyt
dwdw,, dw 773 (wqqa —Wyk, —w)(z)
M, -

6
Gy g (g~ o)+ 0 (120 + 100 |

X [(1+ flwng)(d + f(=wu)) (1 + f(=w) + (1 + f(=wpg))(1 + f(@u))(1 + fwu)] (47)

. . . k-1. . . o .
here, the integration variable w = 7 s the cosine of the These are the dominant contribution to the principle

angle between two momenta k and /. part of the sunset diagram. The second line in the above

Table 1.  Analytical result Eq. (46) obtained under approximation M,, > M, evaluated for a few pairs of (M, M;). The integral (first line in the curly
bracket in Eq. (40)) is performed by numerical integration, and final values are evaluated for same set of (M), M,). The accuracy of the approxima-

tion, M, > M,, is found to be within 5%.

T M, M, analytic result numerical result error
1x 10 500 1 7.01x 108 7.30x 108 —4%
1x10° 1000 1 2.03x 108 1.99x 108 2%
1x10* 100 1 1.20x 107 1.19x 107 0.9%
1x10* 100 0.5 1.45x 107 1.51x107 —3.8%

053103-10



Chinese Physics C Vol. 44, No. 5 (2020) 053103

formula has a peak when w,w, < 1/y, allowing us to
approximate it by
1

m X [w)z(k(wnq —wy)+ w)z(l(a),,q — W)
Whng — Wyk — Wyl
V2 WngWyk Wyl
and to cut down the upper limit of integration to 1/y. The
approximation is carried out to the order O(1/y°) since by
calculation, it turns out that the O(1/y") term has a great-
er order of contribution to the integral than the O(1/y?)
term. This is due to the fact that the O(1/y?) term is pro-
portional to wpy —wyx —w,, which is very small around
the peak. Let us now consider the following term in the

integral:

—w,ziq(a))(k +wyr) + 3kawX[a),7q] + , (43)

g(w)(k’ Wyl W)4

G(wy, Wy, W) =

214’
(Wyk> Wy, W) + a2 ! +L
§10xks Ol N2wp 2wy

(49)
where

g(ka, Wyl, W) = Wpg — Wyk — Wyl

2 _ a2 2 _ g2
2 2 W2~ M2+ M} —2M}

~ Wyk ~ Wyl (50)

_ 2 2 2 _ a2
—\/w)(k+a)l+2w w, M

Since @, /M} < 1/(2567%) = a, /M7 < 107*, one infers
that G has a peak (see Fig. 5 for the plot of the integrand
in Eq. (47)) around some points, where g(w,x,w,:,w) and
a,(1/wi+1/wy,) have the same order of magnitude.
Hence,

2

WykWyl 22(1—_nw) + 0<M§) + 0(“)()’
2
oty + 0| 2|4 o % 51
Wyk, Wyl = ( r])+ ﬁ + ﬁ ( )
n n

Furthermore, we note that if we vary g(wy, w,,w) by an
amount of order «,/M,, then o, (1/wu+1/w,) would
vary by an amount of order a; /M, i.e., the latter can be
regarded as a constant. Hence, to determine the local
maximum points of G(wyk,wy,w) to an order of
O(a, /M), we require that

! + ! ) . (52)

g(ka,w)(l,w) =y (m m
X X

Wyk,wy; are apparently symmetric in these formulae. To
simplify the calculations, we define a set of new vari-
ables: u=wu+wy,v=wuw,/M,. Then, Eq. (52) be-
comes

au
2M,y’

glu,v) = (53)

and to the lowest order in a,/M, and M}/M,, the solu-
tion to the above equation is

Wy
5 10 15 20
200
100
0
-100
-200
5
10
wy 15
20
Fig. 5. (color online) Plot of integrand in Eq. (47), where w
is taken as -1 and T = 1000, M,, = 20, M, = 1.
My,
Vmax = m . (54)

We expand G near vy,x, where G has a peak and thus the
integration region becomes a band that is narrow in the v
direction and runs along the u direction. From Eq. (51),
we see that the width of the band can be chosen to be
o, /M,, since a, /M, > a,/M,. First we expand the func-
tion g around vp,y:

0
8 (1, Viax (1) + A) = g (1, Vinax () + A - a_g
V1,V (1)
2

M M
H —7’7(1—w)A—2—#’;(1—w)2A2. (55)

% 2M nVmax (ﬂ)
where we expanded to the second order in A, because as
we later integrate over A, the integrand contains a term
that is an odd funtion of g, and it is necessary to include
the O(A?) contribution to obtain a non-vanishing result.
Inserting it into G, we have

G (1, vmax (1) +A)

4
_ 2t Vmax (1) + ) 56

22 4’
8 (1 Vinax () + 8)* 4 ————
" 4M12]Vmax(,u)2
where we made an approximation:
o/ {M] [Vmax () + AP} = 3t/ [ Mvman ] (57)
We note that the dominant contribution of Eq. (48) comes
from the O((1/y)°) term. Expanding this term to the

second order in (w4 —u), the integrand in Eq. (47) be-
comes

> 22 [ 2 _ap
1 Wk M)(\/w)(l My

G (1, Vmax(u) + A)

2n)* Wy
o[ @My 1 M
2wy 2 2M,v

[_ (@ —/J)2 3 /J2 = MpVvimax (1)
12/J2 12anmax(ﬂ),u
By expanding Eq. (48) into the second order in g and tak-

(wnyq _,U)} . (58)
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ing into consideration that in the narrow band we have Wyg = P+ g (U, Vimax () + A),

L M, N [ % ]+ 0( @ ) Eq. (47) is determined by the following contribution to
2(1-w) M, M, )’ equation (58):
6- 1 M'zl l _% +(1_W)M)%ﬂ g(ﬂsvmax(ll)+A)4
QCo*2(1-w)u| 2u M% a)z(ﬂz 4
» Ymax +A 2 Tt
Ig(u Vmax (1) +A) PYVE. (,1)2}
1 2 M max
H nVmax (14) (59)

2
X |8 )+ A 1 =g () + ) T

1242

Since outside of the band the integrand is negligible, the  Therefore, the measure becomes
integration region of A can be chosen to be (—oo0,00). We

also have restrictions on the range of # and w: in the band ! Ly 1y
we have j: . dw fM dwy jﬂ; dwy
202 g )
2 2 1 1-2% 2/ o0
H =(“’Xk+‘“xl) > dwyiwy ~ I_WZMT? =f " dwf ydyf dAL. (61)
2M} - M, o JuE—4Myy
=>Wu=>M)& wSl——z. (60)
K Hence, the integral Eq. (47) becomes
M? M?
- ia1- W)L'u
2u M%

1M M Mo
6-—4f d,uf dw . T~
emtJu, o a2 21 =w) p
p——
1-w

) [Zanmax(u)r Il 2= WMpvna) (= M) Azr

2 4
i U

y 1 f Oyl
1242 —co 2 4
g 21 =w)Myvmax() (=W Mivinas ()
1- — A- — A2| +1
XM YH
Mm@ P 20 =My () (1= W) M3y () T
[ n Y max ] ll _ n Ymax A n V'max Az]
_:u2 = Myvmax () [ d ayH a’,vﬂz a’,hu4
12M, o 2 4
TIVmaX(;u),u 2(] _ W)Mgvmax(ﬂ) (1 _ W)ZMT?;Vmax(,u) ,
1- — A- — A2| +1
M YH
2 M2
(1w
2u M2

1 M Mo
=6~—4f d,uf dw . T~
ot Ju, o a2 20-whp
w-—=1
1-w

w1 1 [zjuryvmax(/'l)}2 Sﬂa')(#2 _ ,uz = My Vimax (1) [ZManax(ﬂ)r 5m(1 - W)a')z(,uz
124 ay 16M3 12Myyma () ayp 16M;

nY

72(3h% + A2) > (62

4
2.2

where we kept only terms of the lowest order in a,. with signs x, xx.x1, the equation,
1 1

Now, let us turn our attention to the other six terms in XqWnq + XK@yt + X101 = ax(z +3 ) . (63)
the expression for 8/0wJ.[y3]ln=0. For any of these terms Wyk <yl
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has no solution. The integrands in these terms do not have of order M,3, / a/f( at the peak, and it is considerably smaller
a sharp peak, and they are significantly smaller than the than Eq. (49), which is of order M;‘i/a;.

two terms we have calculated, and can henceforth be neg- Combining Eqgs. (46) and (62), we obtain the derivat-
lected. Further, 6/0wJ;[yillu=0(i = 0,1,2) can be neglected ive of the self-energy:

as well. The corresponding G(wyg, wyk, w) in these terms is

4
M?y*|6log — -5
o)

d o1 M
-1 —«(ty,~w)| =- 1 +log —2 |+ 5HNK? 1
ow w=0 (47)® Myyy? M, 576(3h% + 22)
3 4 2174 /a2
—WH1, [ My _ My | AM My ]y
163 M3 | (My +4ME[y?? My +4ME[y2  (My+4M}/y?)?
8M; [y 1 M
e +10g(Z)—1+10g 4 ] (64)
My (Myy +4M [y*) M\ My +4M2 [y
[
Even if the Hubble parameter is very small, the second ined by the tadpole diagram:
term on the right-hand side may become larger than the
first term, if the coupling constants A’ and /4 are too small. 9? 52 00 .
o : ; : —k(t,-w)| === | ddf@, -0
This is attributed to a resonance effect, which amplifies g2 b o 10? ) 1H -
the curved-spacetime effects. The implication of this res- “= o “=
onance on matter creation in the early universe will be o f dts(* =0. (65)
explored in a forthcoming article. We note that this term -0
is negative, thus if it becomes too large, the absolute 5

, the calculation is similar to that
w=0

value of ¢ would increase so quickly that the assumption As for 6—2?(11,—a))
M,,M, < T would fail after a very short period of time. 0w

This marks the end of "reheating”. In this case, the peri- ~ Of k(f1,w = 0), and the result is
od for which our computations are valid would be very

short and therefore the value of ¢ would not increase in- > _
definitely, such that there is no instability problem. For ﬂK(tl’_w)
our computation to be valid for a sufficiently long period
of time, we only require that this term be smaller than the
O(H") term, such that the dissipation coefficient is positive.

2
1 8

=—(1-4Ht — . 66

( 1)256MZ 5 (60)
E=nyx &

w=0

Summary: Inserting the results in this section into Eq.
(19), we obtain explicit expressions of the effective po-
4.5 Computation of 2«(1,-w)| _, and Z:k(t,-w)| _, tential and the dissipation coefficient for ¢, describing its

2 dynamics in an expanding or a contracting cosmic back-

o 0
The contribution to Wk(tl,—w) can be determ-
W

o ground:
|
A+h 3" M,
A, V(p,t)) =|m’+(1+Hn) -H (1+10 —”)] (1)
A4 ¢ 2472 2(4n) M2 &, )|?
A2 n? 2ayh? 32y’ My \]o(t)?
+|A-(1-Ht + —H( + )1+1 —
[ ( 1)(32nM,,y 327rMX7) V21312 2430 ( R )] 6
4
M?*y?*(6log — -5
2o M, . 2V ( og My ) 12
F(go,tl)=—3 3 1+10gﬁ —5Hh 3 2 + Ht YV
(47)3 M,y » 576(3h% + A2) 1673 M2y
IM M M8 M4 4M2M4/ 2 8M4/ 2
X[ n7(1+10g_n)+ ) 772 N2 gt n2 2T T y ’]2722"' 2 4)(72 2
8 M, (M,]+4MX/y ) M,]+4MX/7 (M,,+4MX/7 ) M,](M,,+4MX/7 )
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1 M Rayh?  R2ayA? My 4
+log(Z)—l+log 7 —[(/1127_?3}12 +AZZ§h2)(1+IOgTX7+§Hh)
M} M} +4M2 [y
2137T4,y2h2 2137.[4,}/2/12 3/12 3]’12 QO([] )2

“

The plots of the effective masses, effective potential,
and dissipation coefficient as functions of ¢ for different
values of the Hubble parameter are shown as follows.

5 Conclusions and discussions

We considered a model of two scalar fields ¢ and y
with quartic coupling Eq. (11). The mass of the ¢ field is
assumed to be significantly larger than the mass of the
background field, y, such that the ¢ particles can decay
into the y particles for the study of dissipation effects. In
a thermal bath made up of y particles, we studied the dy-
namics of the thermal average of the scalar field ¢ in an
expanding or contracting universe. We assumed the back-
ground to be de Sitter spacetime with Hubble parameter
H # 0. The Hubble parameter is taken to be a small con-
stant in our calculations, and our results are applicable to
other expanding or contracting cosmic backgrounds to the

Mn

600

3458
3456
3454
3452
345.0
3448

—

9090 899.5

500

1000.0 10005 1001.0

400

300+

200

+ — —_
(V2 +312)%  (A2+3h2)°  256myM;  256myM;

(67)

|

3

first order in H. The effective temperature is taken to be
extremely high in our analysis to have the most manage-
able configuration, yet retaining the interesting physics.

From the effective action of ¢, we obtained its equa-
tion of motion Eq. (19), which is determined by the
thermally and quantum-mechanically corrected self-en-
ergy and self-coupling, and their derivatives. The analyt-
ic expressions of these quantities given in Eq. (23), Eq.
(31), Eq. (38), Eq. (64), and Eq. (66) constitute the main
results of this paper. In the computation of these quantit-
ies, we expanded the propagator to the first order in H;
and our results match with those in flat space, using the
Minkowski-space propagators in loop diagrams , if we set
H to zero. Further, we developed some mathematical
techniques when calculating these relevant Feynman dia-
grams.

From Eq. (67), Fig. 6 and Fig. 7, we observe that the
effective masses and the potential grow with the Hubble
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(color online) Figures showing how effective masses vary with ¢ for different Hubble parameters at initial time. Parameters

are taken as my, = 1, my =50, 1/y =1000, A=A =h=0.2, H=0.001xn/4 (n=0,1,2,3,4). The color of the curve changes from blue to red
when H increases. A segment of the curves is magnified around ¢ = 1000 to distinguish different curves.
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(color online) The figure on the left shows how the effective potential varies with ¢ for different Hubble parameters, and the

one on the right is the plot of the dissipation coefficient. Parameters are same as in the above figures.
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parameter H while the dissipation coefficient decreases
with H. Thedissipation coefficientis more sensitive to Hthan
the effective potential, due to the contribution of the term

—H( 2BgAy 212 21322 )
(A2 +312)° (A2 +3h2)?
Because we assume pseudo-equilibrium in the evolution
of the scalar field, the Hubble parameter is required to be
smaller than the energy scale involved in the microscopic
interactions, which is characterized by the decay rates in
Eq. (34). Therefore, as an artifact of our assumptions, the
coupling constants are not allowed to tend to zero, which
explains the confusing fact that the dissipation coeffi-
cient in Eq. (67) seems to not vanish in the weak coup-
ling limit. This requirement also indicates that the contri-
butions to the dissipation coefficient from the O(H®) term
and the term of Eq. (68) satisfies
M,y
og T)

_( 2ryh? 2y’ )(1 o

A2 +30% A% +3h?
21374122
(2 + 3h2)2]

(68)

2137T472/’l2
(2 +312)

2 2 2
321y, 32 Mioe—2 _a). (69)
A2 +3h2 M,y

A2 +3h2
which is positive as the temperature is significantly great-
er than mass M,. Therefore, we conclude that although
Eq. (68) is negative, the dissipation coefficient stays pos-
itive.

In our calculations, we applied the assumption that
the Hubble parameter H is sufficiently small, such that
we can expand all terms of interest to the first order in H.
The background universe is, strictly speaking, not a
purely de Sitter spacetime, and the cosmic expansion is
not strictly exponential. However, in such a situation, we
can still obtain valuable information about the effects of
cosmic expansion/contraction on the scalar field dynam-
ics. For example, from Eq. (68), which contributes to the
dissipation coefficient, we find that a de Sitter space,
which is very close to a flat spacetime, has the chance of
showing curved-spacetime features comparable to the flat
spacetime features if the coupling constants 4 and A’ are
sufficiently small (while still ensuring that the decay rates
are greater than the Hubble parameter). This is because in
a de Sitter spacetime, we have to integrate over reson-
ances due to the lack of spacetime translation invariance.
Although the curved spacetime effects for the dissipation

-H

Appendix A: Free spectral function of a scalar field

In this appendix, we calculate the free spectral function of a

scalar field ¢ in de Sitter spacetime with action

coefficient can be larger than the flat spacetime effects,
which may render the dissipation coefficient negative, in
this case the period for which our computations are valid
would be very short, and therefore the value of ¢ would
not increase indefinitely and there's no instability prob-
lem. For our computation to be valid for a sufficiently
long period of time, we require that the curved spacetime
effects are smaller than the flat spacetime effects so that
the dissipation coefficient is positive.

Our assumptions require that the temperature is signi-
ficantly higher than the masses of the particles and the
scale of the Hubble parameter. The effective temperature
decreases as the universe expands, the corresponding ap-
proximation will fail when the temperature is of the same
order as the masses. This happens only near the end of re-
heating; and thus the working assumptions are valid for
the entire analysis if our results are to be applied to the
study of reheating dynamics. We stress that our results
also apply to a negative Hubble parameter H. We will be
using these results to study the quantum dissipative ef-
fects in the process of matter creation in the CST bounce
universe [33].

To discuss the quantum dissipative effects in the ex-
treme conditions in the early universe, a rigorous theoret-
ical framework of first-principle high temperature
thermal quantum field theory is needed. The result we
have obtained gives us a sense of the difference between
the behaviour of a scalar field in a flat spacetime and in a
de Sitter spacetime, which is helpful to the study of more
realistic and more complicated situations, e.g., the effects
of the expansion of the universe on the thermal damping
rates of particles in the early universe and the production
of matter within some specific inflationary or bounce
models.

In this study, we only calculated the results to the first
order in H. Theoretically, our approach can be extended
to arbitrarily high orders, however, such attempts are not
practical as the integrals become significantly more com-
plicated. Therefore, when H becomes sufficiently large,
reaching values for which the approximation we em-
ployed would fail, one needs to seek other methods to ex-
tract the interesting physics beside matter productions.

We would like to express our gratitude to Jin U Kang
and Marco Drewes for useful discussions and comments
on the manuscript. LM. and HX. thank Ella Yang for
useful suggestions on improving their drafft.
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where a = e,
If we set T = —e M /H, & = a()&(x), then the action becomes
- fdrfd%%é[a% -V +(m}—2H%)d?|E, (A2)
from which we obtain the equation of motion for &:
[— - V2 +(m; —2HYd” ]g(x,r) =0 (A3)
If we expand &(x,7) as
Ex,1) = f ¢ Ek,7)e** +h.c (A4)
SEUE ) ettt

To solve the equation of motion, we employ the Wentzel-
Kramers-Brillouin (WKB) method and obtain

exp [—ij:) w(r/)d‘r’]
V2w(T)

&k
2n)?

ik-x

Ex,7) =

A +he. b, (AS)
where 7( is a constant of integration, A, a momentum-dependent
operator, and

Appendix B: A few useful formulae

In this appendix we present the relevant formulae that we have used
in computing the integrals associated with the Feynman diagrams.

B.1 Integrals involving the Bose distribution function

When solving the integrals in Eq. (20), we encounter expres-
sions of the following form,

(neZ). (B1)

1 o0 1
hy(y) = —f dx———
n(y I'(n) Jo 1X2+y2 e\/xzﬂ,z_]
By expanding 1/{[exp(y/x2+y?)]—1} around +/x*2+y?=0 into a
Laurent series, integrating over x and then expanding the expres-
sion around y = 0, we obtain

T 1 Yy YE
() =5+ 5 log =+ 7
1) + Jlog -+
o (D" (2m 1)” "
e G 1)( ) (B2)
It is easy to verify that i, (y) satisfies
dhn+l — _yhnfl ) (BS)
dy n
Setting n = 2 and integrating the above equality, we have
2
h3(y) = fyhl()’)dy+ 2
2 ' 2
ooy (ye L yZ_Llogl
12 4 8 16 8 4r
w—2wy

W(T) = 4 /k2 + (m§ —2H?)a? . (A6)
The conjugate momentum is given by,
7(x,7) = (27r)3 ( —41(m2 2HYa w3 —iwl/ZJ
T .
XA €xXp (—if w(‘r’)d‘r’)e'k"' +h.c.. (A7)
70

From the commutation relation [E(x,‘r),fr(x’,‘r)] =i83(x—x’), we ob-
tain [Ak,AT,] = §°(k—k’). With this commutation relation of A; and
A;, we can calculate the free spectral function using Eq. (74):

8

AN (k,t;,0) = 1<|: a(ty)’ a(tr)

1 . f L ]
= sin Q. (t")dr' |, (A8
a(t1)32a(12)3 \JQe (1) Qe (12) [ n ¢ )
where
Qe(t) = ,/kz/a(z)2+(m§—2H2). (A9)
o (=1 Qm— D! @m+1) 510
), e Qnn ' B4

m=1

B.2 Fourier transformation of a general form

In this subsection, we calculate the real and imaginary parts of
the following expressions:

F@ [ ) —21w1,t—(rt/w1,:| ,

) ﬂrr/mq] ,

where Fe denotes a Fourier transformation w.r.t. ¢ and Ky, K1, K, are

@1 9(r)Im (BS)

rational functions of ¢>. We use K to denote any of Ko, K;,K, and

calculate the following integral:
d3q —iwgt— 5=t
F¢ [B(t)lm f an K (wg)e " %
d3q 672iwqt _ eZimqr _o,
= —iReK(wy)F@|6(H) ————— ¢ @
[ s s (o5
—2iwg +621wqt

ot .
€ e_“’%lt
2

Carrying out the Fourier transformation in the integrand and chan-
ging the variable of integration to w, = v/¢*>+m?, the integral be-

comes

+ImK (wy)F (9(t)

(B6)

w+2w, a/Quwg)

@) f

{ReK(wq )[ (

/T P ( (20,7 + (@],

w+2wy w=2wy

T W20 + (@wy R ) - ( (@— 20,2 +(@]wg)?

a/2wg)

a/Quwy) )]

(W +2wy)? + () wy)?

(B7)

ImK (w,) [% (

(w+2wy)* + (a/wq)2

(w—2wy)* + (a/wy)? ) ((w +2wq)? + (@) wy)?

N a/QQwg) )]}
(w=2wy)* +(@/Quy)? || )

Because we only calculate to the lowest order in a, the above expression can be further simplified to
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1 o wy 52 o 2wy . @ a
— dwg——=x4 —m”)x{ReK: - -
@)’} fm i W (=) X Rek @) w? — 4w} \20,0-20,7 " 20 (w20,
q

w (07 [0
+ImK! i + + = I | K +ilin | K s B8
" (wq)[lwz -4 (qu(w—qu)2 2wg(w+2wq)? )]} re[ (wq)] ! lm[ (“"1)] (B8)
where
1 o 2wy a «
Ie [K(wq)] =— f dwgdnw, wlwé —m? {ReK (wq) - +lmK(w,1) 5+ 3 }
Q2nr) Jn w2 — 4wy 2wy (w + qu) 2wy (w — qu)
(B9)
1 o w 1% a
Iim K(wq = —f dwgdnwy Ajw] —mz{ImK wq) _ —ReK(wq) - }
[ )] @ry I ( w? - 4“’2 2wy (w - 2wq)2 2wy (w + qu)z
We arrive at
—diwgr- 1| _ “Diwgt- Lt 4 o dat= gt
ImF“’{G(t)Imf K0+tK1+t K) 4w w ImF“’[H(t)Imf o )3 4w +Im{( 16—)F“’{9(t)lmf E )? 4 g H
3 ) N 2
etmd (-2 ) o yim f O | NS 8 o b [K1 ]~ 5 o lim K2] - (B10)
ow? 2n)3
In a similar way, we obtain
) 2
ReF? [B(I)lm 2Ka)e ] Ko+ Ay (K1)~ A F o] (B11)
dq e dq wya §  wo »* wga
Fe o1 Ko+1tKi +12Ky)e 4 :f ImKy———— +ImK| — ———— —ImK) — ————
[ ()mf(2”)3( 0 ! 2)e (2n)? m Oaz+w2w¢21 " G0 az+w2w§ 2 502 a2+w2w§
2 v) 2
0  wga o wwy
-ImK| — ——— - ImK) — —— | . B12
f(Z ) ( Oa/2+w2a)5 "ow a? + W] ? 0? a2+w2w§] ®12

Appendix C: Calculation of tadpole diagram

In this appendix, we present the detailed calculation of the the tadpole diagram. Inserting the propagator Eq. (8) into Eq. (20), we have

MR(11,12) =501 ~1) Z f

1 1
+
2 o NP a2 M P _

8¢
@0 a0 Jp? fa0)? + M2

X2 1

1 1 x?
h)——— fdng - +
471'2,8(1‘1)2 f;)( 2 \/XZ +M§ﬁ(l‘1)2 \/x2 +M§,3(l‘1)2 e\/x2+M§ﬁ(71)2 _1

=0(t1 -

(&)

We replace the divergent integrals that are independent of time by

the constants C; and C»: |

1R (11,12) = 6(t1=1) | Cr+ ) | f L.
Ci = + counter terms, @n)% 5 / 2, M2 2 02
2 Zf(zﬂ) N F+M £=nx p ,30\/1175 ~

exp

ao
geM; (&)
" 2 Z f (@) /pZ+M2 2(17 +M2)3/2 we can conclude that C; =0 at zero temperature in flat spacetime.
+ counterterms. (C2) Furthermore, the propagator of ¢ has a pole at the physical mass:
yielding I1”(1;,12) in the following form, the first term and the second term in the C, integral are proportion-
Rty 12) = (11 - 12) al to C; or to the derivative of C| with respect to M, we deduce that

C; = 0. The renormalized 118 (z1, 1) is finally given by
x {cl —CHN + o ﬁ( o7, > gehs [Msﬂ(tl)J} (C3)

I (t1,1) = 6001 =)} 52— ﬁ(t : Z gehs|Mepa)|t . (CS)

Comparing with the case of H =0,
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Appendix D: Intermediate results in calculation of sunset diagram

Let us now turn to the contribution of the sunset diagram to the self-energy,

: . Pk
—i[MR@m)| = =00 =) f B0 B Im[(A)s (k. 1,12) X(A)> (L1, ) (Ap)s (k+L11,1)] - (D1)

By expanding the propagators to the first order in A and inserting them into the above equation, we obtain the following expression of
the imaginary part of x,

2 3 3 M2 MZ M2
Im(f, w) = " e e(z)f LS S (1 —9H + 2Hz)+(hm - th) 3ot __X__X
8 Q2n) 2r)} wpgwkwyi 2 2 2

2 2 2 >

M M k2 2
—H(1 - ( f(u),,q) Ty f(ka)7 + f(le)y—l]+1H(2t1t ‘ )(q— e —)]
Wyk Wy

2wy 2wy 2wy

< (1+ flwng) (14 f(@y)) (1+ Fl@y) exp| =i (wng + Wy + wy1) 1 = D@t/ 2= Ty (wy)t/2] }

+ (‘”lzq > ~Wng, Wyk ™ ~Wyk, Wyl _w)(l) + (‘”nq > —Wyg, Wyk = ~Wyk, Wyl “’xl) + (‘Uuq = Wpgs Wyk = Wyks Wyl = _“J)fl)
+ (a),,q o —Wigs Wk = Wykey Wyl = —(uxl) + (w,,q = Wigs Wik = —Wyes Wyl = w)(z)

+ Wng = Wig, Wyk = —Wyk, Wyl = —w)(/) + (“an — —Wyg, Wyk = Wyk, Wyl = ‘U)(l)

» &k 1 .
—ImF { 0 f a3 w”qw)(kw)(l{—sm[(w,m+w)(k + Wyl ) 1] exp (T (@p)1/2 = Ty (wy)t/2)

X [(1 - 9Ht1)’y() (a),,q,a)xk, le) + Htl’yl (a),,q,w)(k,w)(l) - Htl)/g (w,,q,ka,wxl)]
+ 1005 | (wyg + Wyt + Wy ) 1] exp (T (@i)t/2 = Ty (wy)t/2) - 2H11y3 (Wngs Wy 1)

—tsin [(ww +wyk + a)XI) t] exp (—FX(a)Xk)t/Z - FX(le)t/Z)

1H)q (wnq, w)(k,w)([) +Hy, (w,,q,w)(k, w)(l)}

X 2H70 (w”q,ka,w)(/) 3

2

—cos [(wnq + Wy + le)t] exp (—FX(ka)t/Z - FX(wXI)t/Z) -Hys (w,,q,w)(k,wxl)}

(1+ flwng) (1+ flww)(1+ f(le))}Jr(w,,q > Wy, Wk = ~Wyks Wy — —wy1)

+ (a),,q = —Wngs Wyk = —Wyk, Wyl — le) + (“’nq = Wyg, Wyk = Wk, Wyl — —a)Xl)
+ (‘”rzq = ~Wng, Wyk = Wyk, Wyl = _‘U)(I) + (‘“nq — Wy, Wyk = ~Wyk, Wyl = ‘le)

+ (a),,q = Wygs Wyk = —Wyk, Wyl = —le) + (“’nq = —Wpg, Wyk = Wyk, Wyl = a))(l), (D2)

24312 24312

2567r3y2w)(k ,FX(Q)X[) = 2567r3y2w)(/ and

where I'y (wy) ~

Yo (wnqvw/ykswxl) =1,

X
71 (0ng @ wyr) =3 - 1= —£ = L
Wng w/yk w)(l
2 yMz M2 (D3)
72 (Vngs ks wyt) = f(‘”rzq) +f<ka>—k ot
)( /\/

q2 k2 . 12
2wy 2wy 2wy

73 (wﬂq’w)(k’ Wyt ) =

We note that in Eq. (97), there are four kinds of Fourier transformations, which involve sin(wyg+wyk +wy), 1€0s(wyq + Wk + Wyi),
18in(wyg + Wyk +wy1), and 12 cos(wy, + wyk +wy), respectively. For the first two, we carry out the Fourier transformations and perform the angle
integrals, expressing them in the following form:
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yi(wnq, Wyks w)(l) (
WygWykWyl

" Sk B
I[y]] =-ImF {e(z) f o wsm[(wnq+w)(/(+wX,)t]exp(—FX(ka)t/Z—FX(wX,)t/Z)

1+ flwng) (1+ flww)(1 +f(w)(/))}
+ (‘“nq ™ ~Wng, Wyk = ~Wyks Wyl = _“’Xl) + (‘U'zq ™ Wng, Wyk = ~Wyks, Wyl = “Jxl) + (‘“nq = Wig> Wyk = Wyk, Wyl = _wxl)

+ (a),]q = —Wyg, Wyk = Wyk, Wyl = —U.)Xl) + (a),,q = Wpg, Wyk = ~Wyk, Wyl = wxl)

+ (wnq = Wygs Wyk = —Wyk, Wy = —a))(l) + (w,]q = —Wpg, Wyk = Wyk, Wyl = a)XI)

00 M,
z74(2171')3 j;.:, d X’f i dwy[ 7, —W+ Wy +wX1,—ka,—wX,)(1 +f(w)(k + Wy _‘”))f(‘”xk)f(“’xl)
X

Myti—
- (w—w)(k - wX,,ka,wX[)f(ka +wy —w)(l +f(w)(k))(l +f(w)([))] —(w— -w), (D4)
&Sk dd i(Wyg, Wyk, Wy1)
1 clvil Ime{e( )f 23 (2703 l(‘”nq + Wyk +w)(l)tl exp(—l")((w)(k)t/z —FX(w)([)z/Z) % (1 +f(wﬂq))(1 "'f(ka))(] +f(‘0)(1))}

+ (‘“nq = ~Wng, Wyk = ~Wyk, Wyl = ‘“Xl) + (‘Uvq — ~Wngs Wyk = ~Wyk, Wyl = ‘”)(l) + (wnq = Wngs Wyk = Wyk, Wyl = _wxl)
+ (‘”nq > T Wng, Wyk > Wyk, Wyl — —le) (“’nq > Wyg, Wyk = ~Wyk, Wyl = ‘”)(l)

+ (wnq = Wygs Wk = —Wyk, Wyl = —w)(l) Wyg = —Wng, Wk = Wyl Wyl = ‘le)
My ti+
4(2ﬂ)3 f le " dw)(k[)’: —+ Wy + Wyl ~Wyks w)([)(l +f(w)(k Wy - w))f(ka)f(w)(,)
-

{0 oyt = syt 1) F (g + gt~ 0) (1 1 (w0g)) (14 F (032)) ]+ @ > _w)}, (D3)

where

t1e = W—1)s+ Juu—2)(s2 - 1)+—

1—u+Qu-1)s +s\/u(u 2)(s2 - 1)(2u ;)j

(D6)
M,% Wyt
u= 2M2 ,8= M,
We presently compute the derivatives of I, and I, and set w = 0:
6 M)(l(u Ds+ Vuw=2)(s2-1) J
3ok [l o =2 4(2ﬂ)3 L}( f [(u N ey ] dwyic o~ [%‘ (—w+ Wyk + Wyl, ~Wyk, —wX1)(1 +f((l)/\/k + Wy —w))f(ka)f(w)(z)
—yi (a) — Wy — le,a)Xk,le)f(ka + Wy — a)) (1 + f((u)(k)) (1 + f((u)(l)) ]m:
+2- 4(217 L}( dw)(I{M,\/tlp['Yi (U))(k + Wyl —Wyk, _U))(I) (1 + f(w)(k + le))f(ka)f(le)
~¥i(~0pk = 0 0k 0) f (Wi + 0 (1+ £ () (1+ £ (1)) :Iw/\(k:M/\/tUp
- M)(tlm[yi (w)(k + Wyl, —Wyk, _w)(l) (1 +f (w/\/k + w)(l))f(w)(k)f(w/yl)
—vi (—ka — Wy, Wyks w)(l)f(ka + w)(/) (1 +f (ka)) (1 +f (w)(/)) ]w)(k:M)(l()m } s (D7)
& 1 00 My top &
— ﬁl" [yi] » =— m L}( del{ »[MXto”, dwyk e [yi (—a) + Wyk + Wyl —Wyks —le) (1 + f(a))(k + Wy — w))f(w)(k)f(w)(l)
- (w_wx,{_wx,,ka,wx,) P+ on-) (1+ f(op)(1+ f(w)(l))]‘ 7
+ 1‘42(1‘113)2 [’y:(w)(k + Wyl, —Wyk, w)(l)(l + f(w)(k + (1),\/1)) f(ka)f(w)(l)
—Yi (—w)(k — Wy, Wyk, wXI)f (ka + w)(l) (1 + f (w)(k)) (1 + f (a))(/))] y
Wyk—MyTop
- M (tlm) [YI(ka +w/y1 —Wyk, _wxl)(l +f(ka +w)(l))f(w)(k)f(wxl)
(o _wX,,ka,wX,) fowrod)(i a0+ } (D)
Wyk =My lom
where

053103-19



Chinese Physics C Vol. 44, No. 5 (2020) 053103

2
_ Mr] = Wyl

ZMAZ,,l M)(’

top = (u—Ds+ Ju(u—2)(s* - 1),
tom = (u—1)s— Ju(u—2)(s2-1),
fip = ML}( [1 —u+Qu-— 1)s2+s u(u—2)(s% - 1)( uu__; )}

fm = M%[l —u+(2u—1)s2—s,/u(u—2)(s2—1)( u”__;)]

14+ =1top + Whp,

(D9)

[\

(]

- =tom + Wty -

We also calculate the derivatives of the Fourier transformations of sin(wyg + wy +wy) and 12 cos(wyg + wyx +wy) (which we denote by J; and

J., respectively). We then evaluate them at w = 0:
w2, — M2 [w? —Mz(w + Wk +w )3
xk X\ Yyt x \Wng T Wk T Wyl

1 00 1
2 ) j[‘; dwydwy, \[1 dw > =
* Wnq [(‘“riq +Wyk + wxl) + (FX(ka)/Z + FX(wXI)/Z) ]

X ¥i (@ngr @yt 1) (14 Flwng)) (1+ F@)) (1+ Flwyn)

+ (‘Unq = ~Wng, Wyk = ~Wyk, Wyl = _‘UXI)

4]
solinl] ~-

+ (‘Uuq — ~Wng, Wyk ™ ~Wyk, Wyl w)(/) + (“an > Wyg, Wyk = Wyks Wyl = _‘U)(l)
+ (w,m = Wiy Wk = Wyks Wyl = —w)(/) + (“an = Wygs Wik = —Wyks Wyl = le)

+(Wng = Wygs Wk = ~Wyk, Wy = —w)(l)+(w,,q = —Wng, Wyk = Wyk, Wyl = w)(l) s (D10)

4
. 1 ood . 1d ,lw)z(k—M)% ,/wﬁl—M)%(w,,q+ka+wX1)
w0 20 fM Ok “’*’L " 2 o
* Wng [(“’nq + Wyk +w)(1) +(FX(ka)/2+FX(wX1)/2) ]

XYi (U)l]qsa)/\(ka w)(l)(l +f(wqq))(1 +f(w)(k))(1 +f(wxl))

+ (w,,q = —Wpgs Wyk = —Wyk, Wyl = —w)(l)

4]
%JC [7:]

+ (a),,q = —Wpg, Wyk = —Wyk, Wyl = u)X[) + (wﬂq = Wrg, Wyk = Wyk, Wyl = —(L)X])
+ (‘“nq — ~Wng, Wyk ™ Wyk, Wyl = _‘U)(l) + (“"zq — Wig, Wyk = ~Wyk, Wyl = wxl)
+ (w,,q = Wygs Wyk — Wy, Wyl = —w)(l) + (w,]q = Wy, Wyk = Wyk, Wyl = le) . (D11)

The derivative of « with respect to w can thus be expressed as,

d h? d d ]
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