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Abstract: We study heavy flavor properties at finite temperature in the framework of a relativistic potential model.

Using an improved method to solve the three-body Dirac equation, we determine a universal set of model parameters

for both mesons and baryons by fitting heavy flavor masses in vacuum. Taking heavy quark potential from lattice

QCD simulations in hot medium, we systematically calculate heavy flavor binding energies and averaged sizes as

functions of the temperature. The meson and baryons are separately sequentially dissociated in the quark-gluon

plasma, and the mesons can survive at higher temperatures owing to the stronger potential between quark-antiquark

pairs than that between quark-quark pairs.
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1 Introduction

Heavy quark masses are significantly larger than the
typical temperature of the fireball formed in high energy
nuclear collisions at the Relativistic Heavy lon Collider
(RHIC) and Large Hadron Collider (LHC) and the typic-
al energy scale of Quantum Chromodynamics (QCD),
mg ~ (1-5) GeV > T ~(0.3-0.5) GeV and mg > Agcp.
Their thermal production in the fireball can thus be safely
neglected, and they are entirely originated from the ini-
tial hard processes that can be efficiently calculated in the
perturbation theory. On the way out of the fireball, the
heavy quarks pass through the quark-gluon plasma
(QGP) created in the collisions and strongly interact with
it. Because heavy flavor hadrons inherit the information
of the QGP carried by the heavy quarks, they have long
been considered as a sensitive probe of the QGP forma-
tion [1].

For closed heavy flavors, one can neglect the parton
creation-annihilation fluctuations and describe their stat-
ic properties with non-relativistic potential models [2].
The study is directly extended from vacuum to hot medi-
um by taking the heavy quark potential from lattice QCD
at finite temperature [3, 4]. Solving the two-body
Schrodinger equation for a QQ system, researchers ob-
tained the sequential dissociation temperatures for char-
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monium and bottominum states [5, 6]. The potential mod-
el is also extended to study open heavy flavor states, such
as D mesons and E.. and Q.. baryons, using the two-
body Dirac equation [7-10] or three-body Schrodinger
equation [11-14].

For heavy flavor baryons with a typical radius of 0.5
fm, the uncertainty principle leads to a characteristic mo-
mentum around 0.4 GeV, corresponding to a relative ve-
locity v ~ ¢ between any two constituents. Therefore, the
relativistic effect must be seriously considered, espe-
cially for singly charmed baryons. In contrast, the spin in-
teraction, which results in the fine structure of hadrons
and becomes more important in multi-quark states, is a
relativistic effect and must self-consistently be included
through the covariant Dirac equation. In this study, we in-
vestigate the three-body Dirac equation for heavy flavor
baryons in hot medium and determine the dissociation
temperatures for all heavy flavor hadrons in a self-con-
sistent manner.

The covariant wave equation proposed by Sazdjian
[15, 16] provides an approach to find relativistic bound-
state wave functions. The interaction potential and the
wave function of the bound-state are related in a definite
way to the kernel and the wave function of the Bethe-Sal-
peter equation [15, 17]. Crater and Alstine developed the
two-body Dirac equation [7, 8, 18, 19] for mesons, which
covariantly converts the Dirac equation with 16 degrees
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of freedom to a Klein-Gordon-like equation with highly
disentangled degrees of freedom. In this framework, one
can clearly see the relativistic corrections to the non-re-
lativistic potential model through the Darwin term and
numerous spin interaction terms. Subsequently, the three-
body Dirac equation for baryons was developed by Whit-
ney and Crater [20], which combines Sazdjian's N-body
relativistic potential model with the two-body Dirac equa-
tion.

To systematically describe heavy flavor mesons and
baryons in a relativistic potential model at finite temper-
ature, we first improve the method to solve the three-
body Dirac equation. We expand the baryon wave func-
tions in terms of the two-body spherical harmonic oscil-
lator states, which guarantees the completeness and or-
thogonality of the expansion, increases the accuracy of
the calculation, and can be used to study both the ground
and excited baryon states. We also assume a universal set
of model parameters for both mesons and baryons. This
makes the calculation more self-consistent and predict-
able. With the improved method, we then solve the two-
and three-body Dirac equations in hot medium, and de-
termine the heavy flavor dissociation temperatures by cal-
culating their binding energies and averaged radii.

2 Three-body Dirac equation

The two-body Dirac equation, which is used to de-
scribe heavy flavor mesons, is discussed in detail in Refs.
[7, 8] in vacuum and Refs. [9, 10] at finite temperature. In
this section we focus on the three-body Dirac equation for
heavy flavor baryons. In the framework first developed
by Whitney et al. [20], based on Sazdjian's N-body re-
lativistic potential model [16], the baryon wave function
Y(ry,rp,r3) is controlled by the Schrodinger-like equa-
tion,

i;i 23: +E](V,J‘I’ EW, )
= <

where r; and p; are the quark coordinate and momentum,
respectively, E = Z(ef—m?)/(ée,-) is the energy eigen-

value related to th& effective quark mass ¢ and vacuum
quark mass m;, and the baryon mass M is determined by
the coupled equations,

M= 3E,+Z " )
i TEj

The interaction between (anti-)quarks is described by the
relativistic potential V;;(r;;) [8],

Vij =2m;;S +S% +2€;A— A%+ D
+0;-0;Pss +L;j- (0, +0)Ps0
+(0 - Fij)(oj-Fij)Lij- (0 +0))Psor
+L;j-(0;—0)Psop +iL;;- (0; X 0 ))Ds ox
+Q@(oi-#ij)oj-Fij)—0o;-0)Dr, 3)

with the mass and energy parameters m;; = m;m;/(€ + €;)
and €; = (6 +€)* —m? mz)/ (2(€ +€)), relative coordin-
ate r;j =r;—r;, unit Vector 7ij=rij/Irijl, and orbital and
spin angular momenta L;; and o;. The non-relativistic
central potential V,;(r) between the quark and antiquark
can be separated into two parts, V,g(r) = Auq(r) +S45(r)
with A 5(r) = —age/r and S 44(r) = ogqr, where A,; and
S 45 control, respectively, the behavior of the potential at
short and long distances. In vacuum, one usually as-
sumes the Cornell potential [21], including a Coulomb
part, which dominates the wave function around r = 0 and
a linear part, which leads to the quark confinement. For
V,4q between two quarks, one can still assume the separa-
tion, Vi (r) =Ag(r)+S4(r) with Ay (r) =—ay/r and
S 4q(r) = 0¢qr. The two couplings ¢4 and oy, in the
quark-quark potential are in general very different from
@45 and o5 in the quark-antiquark potential. However,
considering only one gluon exchange leads to a4y = @45/2
[22], and the recent lattice simulation [23] shows
Ogq = 045/2. All relativistic corrections in the potential
(3), including the Darwin term ®p, spin-spin coupling
®dgs, spin-orbital couplings Pso, Psor, Psop, and Dsox,
and tensor coupling ®r, are explicitly shown in Ref. [8].
Note that, any @ is a function of the distance |r;j|, the de-
pendence of the potential V;; on the azimuthal angles is
reflected in the coefficients in front of @.

Solving the baryon mass M and wave function ¥
from the Schrodinger-like equation (1) is not a simple ei-
genstate problem, as the eigenvalue £ or M appears also
on the left hand side of the equation. We solve M or the
binding energy & = M — M (M = m; +m, +m3) by employ-
ing iteration method. For a given value M at the n-th
step, we first obtain the corresponding effective quark
mass el.(") from the coupled equations (2), and then solve
the Schrodinger-like equation (1) as an eigenstate prob-
lem with eigenvalue E™. With a sufficiently large num-
ber of iteration steps, one could obtain the baryon mass
up to an arbitrary accuracy.

To solve the Schrodinger-like equation for the multi-
body bound state problem, a typically employed ap-
proach is to expand the wave function in terms of known
functions. While in some special cases, for instance the
ground state, one can use variational method and expand
the state in terms of Gaussian wave packets [24], a gener-
al and systematic study including both ground and ex-
cited states must be carried out in a complete and ortho-
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gonal Hilbert space. We employ a numerical framework
similar to Ref. [25] to treat the three-body bound state
problem. We solve the baryon mass and wave function in
the Hilbert space constructed by spherical harmonic oscil-
lator states, which are by definition complete and ortho-
gonal. Considering the mass difference among the three
quarks in a general baryon state, we take different con-
stituent masses in constructing the spherical harmonic os-
cillator states. This is different from Ref. [25], where all
the three constituents have the same mass. In such a
framework, we can study both the ground and excited
states.

As in a two-body problem, we factorize the three-
body motion into a center-of-mass motion and a relative
motion. To this end, we introduce the coordinates

R =(eir1 +er + &3r3)/(€1 + & + &),

p=Vee/(m(e +e))r—r),

A=+e& /(e +e)(e + e +6))
X (e1(r3 —r)) +e(r;—ry)), “

instead of ry, r, and r3, where m is an arbitrary paramet-
er that automatically disappears in the end and does not
affect the result [26]. Accordingly, we use the center-of-
mass momentum P and relative momenta p and ¢ in-
stead of py, p», and ps.

We now focus on the relative motion of the three-
body problem, which controls the inner structure of the
bound state. We expand the relative wave function in
terms of two-body spherical harmonic oscillator states.
For a single spherical harmonic oscillator, its Schrodinger
equation with potential uw?r?/2 can be straightforwardly
solved with solutions  W,,(r) = ¥,u(r)Y"(6,¢) and
En=@2n+1+3/2)hw, where n,l,m are the principal, or-
bital, and magnetic quantum numbers, and Y}" and v, are
the angular and radial parts of the wave function. Note
that the radial wave function ,; does not depend on the
mass u and frequency w separately, as it depends on the
combined quantity @ = \/uw/h.

The two-body spherical harmonic oscillator states are
defined as a direct product of two single spherical har-
monic oscillator states,

|nplpmpn,11/1m/l> = |nplpmp>|ndl,1m,1) ®)

with the same scaling parameter « for the two oscillators.
The above defined two-body spherical harmonic os-

n,l,m,n,lm, 3
‘Pn,,l,,m,, (p)\Pml,xm/z W= Z D \PET/% @\PET/«% D, (12)

L n,l,m,n,lim,
n,l,m,n,lm,

where D is the rotation matrix. After the rotation, the six-

cillator states are exact solutions of a three-body bound
state problem with interaction potential
62620)2

(i) = L 2
(Irs) (€i+fj)(€1+€2+63)r” ©)

With the two-body spherical harmonic oscillator states
obtained, we define the Hilbert space as a direct product
of the flavor, spin and coordinate spaces,

Wrsc) = F)XISYX [nplomonalamy). (7

The possible flavor and spin states are shown in Ap-
pendix A. In such a Hilbert space, we expand the baryon
wave function

[¥) = Z Crscl|¥rsc). ®
FsC

Correspondingly, the Hamiltonian operator H of the sys-
tem becomes a matrix in the Hilbert space,

Hrscrsc =(YrsclHYrsc). ©)
Taking into account the complete and orthogonal condi-
tions for the states |[Wpsc), the eigenstate problem of a
three-body system, H|¥) = E|¥), becomes a matrix equa-
tion for the coefficients Crsc,
Z Hrscrsc Crsc =ECrsc (10)
FSC

with the Hamiltonian matrix elements

Hpscpsc = f d3pd3/lly;:,l,,m“ O, 1, (D

X(FI(SIK +W[S"Y[F Yo 1 (0) W1, (D).

an
The calculation for the kinetic energy K =Y, p?/(2e),
which is proportional to V3 +V3, is straightforward. The
difficulty comes from the calculation for the potential
part W =73, (e+€)V(rij)/(2ee€;). For the potential
V12(r12) between the first and second constituents, be-
cause ryy is proportional to p and independent of A, the
six dimensional integration [d*pd®A is reduced to a
simple radial integration f p*dp. For the other two poten-
tials Va3(rz3) and V3(ri3), as ry3 and rj3 depend on both
p and A, the integration over p and A cannot be simpli-
fied in this way. We then perform a rotation in the co-
ordinate space from (p, 1) to (p,A) to guarantee ro3 ~ p or
ri3 ~ p. This rotation in coordinate space is equivalent to
a particle index rotation from the ordering {1,2,3} to
{2,3,1} or {3,1,2}. The rotation can be explicitly written as

el

dimensional integration in calculating the expectation
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values of V,3 and V3 becomes again a simple radial in-
tegration f p?dp. The Hamiltonian matrix elements are
explicitly listed in Appendix A.

3 Heavy flavors in vacuum

Before we solve the two- and three-body Dirac equa-
tions at finite temperature, we first fix the model paramet-
ers by fitting the heavy flavor masses in vacuum. Note
that, the completeness of the two-body oscillator states
|nplpmpn411m4> is independent of the value of the scaling
parameter «, if we take infinite number of states. When
the number of the states is finite in practical computation,
the accuracy of the calculation depends on the choice of
the « value.

For a baryon ground state, the a value corresponding
to the fastest convergence can be fixed by applying the
variational method. We take « as a parameter and calcu-
late the energy eigenvalue £ and wave function ¥ as
functions of a. By minimizing the eigenvalue

OE & E

— =0 s _— > O, 13

da da? (13)
we obtain the « value corresponding to the fastest con-

vergence.

The number of the oscillator states or the size of the
Hilbert space is controlled by the total principal quantum
number N =2n,+2n,+1,+1;. We truncate the Hilbert
space by taking N < Nyax =0, 2, 4, 6, 8, and 10. Consid-
ering the degeneracy of the wave functions, the corres-
ponding number of states is 1, 28, 210, 924, 3003, and
8008. From the parity symmetry, which decouples states
with odd and even AN, and momentum conservation,
which decouples states with different total magnetic
quantum number m, +m,, the effective numbers of states
are reduced to 1, 8, 34, 108, 259, and 560. We first con-
sider three specific baryon ground states |ssc), |scc) and
|cce) containing one, two, and three charm quarks. We
calculate their binding energy &= M—M and verify its
stability when Np,y is large enough. The result is shown
in Fig. 1 for the three states and six values of Nyax. With
increasing Npmax, the a-dependence of & becomes increas-
ingly smooth and reaches almost a constant for Ny, =8
and 10. For the state |ssc), the minimum binding energy
obtained from the variational method is & = 0.642, 0.630,
0.616, 0.613, 0.610, and 0.609 GeV, corresponding to
a=0.72, 0.72, 0.80, 0.80, 0.84, and 0.84 GeV, when
Npax increases from 0 to 10. For the other two states
|scc) and |cec), the o dependence is similar; however, the
binding energy reaches stability much faster. In the fol-
lowing calculation, we assume Ny.x = 10, which already
guarantees the stability of the numerical calculation.

To self-consistently describe both the meson and ba-
ryon states, we assume a universal set of parameters by

fitting the heavy flavor meson and baryon masses. The
parameters we used, including the vacuum quark masses
and coupling strengths « and o, are shown in Table 1.
Note that, the relations between the couplings
@y =04504 and o, =0.490,; are close to the results
from one gluon exchange and lattice QCD.

The calculated heavy flavor meson mass My and the
comparison with the experimentally measured mass Mg
[27] are shown in Table 2. From the relative difference
Dg = (M7 — Mg)/Mg| between the data and model calcu-
lation, the two-body Dirac equation describes heavy fla-
vor mesons reasonably well, especially for charmonia and
all bottomed mesons with relative difference D, < 1%.
Because the potential description of the interaction

T T T
0750 [SSC]

0.5 0.6 0.7 0.8 0.9
a (GeV)

Fig. 1.
ing parameter o for singly, doubly, and triply charmed ba-

(color online) Binding energy & as a function of scal-

ryon ground states |ssc), |scc) and |ccc). The six curves from
top to bottom correspond to the maximal principal quantum
numbers Np. =0, 2, 4, 6,8, and 10. The two curves with
Nmax = 8 and 10 almost coincide.

Table 1. Universal set of parameters of potential model.

my, =myg = 0.135 GeV
my =0.263 GeV
m. = 1.400 GeV
my, =4.773 GeV
Qgq = @45/2.22=10.20

Tgq = 047/2.04=0.09 GeV’
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Table 2.  Experimentally measured [27] and calculated heavy flavor Table 3. Experimentally measured [27] and calculated heavy flavor
meson masses Mg and My. Dg = (M — Mg)/MEg| denotes the rel- baryon masses Mr and Mr. D denotes the relative difference
ative difference. between the data and our calculation.
meson Jr ME/GeV ML /GeV Dg (%) baryon JP ME/GeV M /GeV Dr (%)

D° 0" 1.865 1.940 4.0 A} a/2y* 2.286 2.440 6.8

D0 1- 2.007 2.066 3.0 H a/2* 2.454 2413 1.6

D+ 0 1.870 1.940 3.8 e a2t 2.453 2.413 1.5

D+ - 2.010 2.066 28 P a/* 2.454 2.413 1.6

D, o 1.968 2008 - Che 2" 2.468 2.557 3.6

D: - 11 5157 - =0 a/2* 2471 2.557 35

o a/2y* 2.577 2.566 0.4

e 0 2.984 2.990 0.2 0 /2" 2579 2566 05

1c(2S) 0" 3.637 3.609 0.8 Q0 /2t 2.695 2.681 0.5

het 1+ 3.525 3.506 0.5 B a/2* 3.621 3.632 0.3

J/y 1- 3.097 3.123 0.8 EL 1/2)* 3.619 3.632 0.4
w(2s) 1- 3.686 3.701 0.4 Q. ay* 3.745

Yo o+ 3415 344 08 plany 3/2)* 2,518 2.429 3.6

Xel 1+ 3.511 3.504 0.2 = S 2218 2429 36

30 3/2)* 2.518 2.429 3.6

Xe2 2+ 3.556 3.519 1.0 - 312 5 646 5567 20

B~ 0- 5.279 5.326 0.5 =0 3/2)7" 2.646 2.567 3.0

B 1- 5.325 5.371 0.9 Q0 3/2)* 2.766 2.689 2.8
B 0 5.280 5326 0.9 e 3/2)* 3.644
B - 5.325 5371 0.9 B G2t 3.644
By 0 5.367 5.408 0.8 Q: G/ 3.754
B - 5.415 5.458 0.8 ece G2 78

AY 1/2)* 5.620 5.793 3.1

s 0 9.399 9.378 0.2 5t /2" S8l 5760 07
5(2S) 0 9.999 9.964 0.3 5 (1/2)* 5769

hp1 1" 9.899 9.918 0.2 3 a/2* 5.816 5.769 0.8

T(1S) 1- 9.460 9.507 0.5 = a/2* 5.792 5.913 2.1

T(2S) - 10.023 10.025 0.0 E, /2" 5.795 5.913 2.0

Xb0 o+ 9.859 9.878 02 gy a2t 5.792 5.903 1.9

Xb1 1+ 9893 9.912 02 ES a2t 5.795 5.903 1.9

o . 9912 9929 02 Q; a/2* 6.046 6.021 0.4
g5, a/2* 10.210
between a light and a heavy quark is no longer a good = any® 10210
enough approximation, the relative difference Dy be- 2y a/2* 10.319

comes larger for D mesons, Dy ~ (2% — 4%). %' G/2* 5.832 5.781 0.9
The baryon masses and the comparison with experi- 0 @/2* 5.781

mental data are listed in Table 3. For doubly charmed ba- % 3/2)* 5.835 5.781 0.9
ryons EY and EZ!F, which have been observed experi- g0 3/2)* 5915
mentally, the agreement between the calculation and data B 3/2)* 5915
is good, with a relative difference of Dy < 0.4%. Theoret- Q- G/2)* 6.033
ically, we expect that the relativistic potential model gt 3/2)* 10221
should be more reliable in describing triply charmed and =0 3/2)¢ 10221
doubly and triply bottomed baryons. For singly charmed o a2 10331

or bottomed baryons, however, the model calculation is o

Qo (3/2)* 14.499

not as good, as the two light quarks in such a baryon
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render the potential approximation no longer good
enough. In particular for those baryons with two light
quarks u and d, the relative difference becomes signific-
antly larger. For A7, it reaches ~7%. It is phenomenolo-
gically suggested that [11], a three body force
C/(mymyms) controlled by the constituent quark masses
may improve the calculation for heavy flavor baryons, es-
pecially for the baryons with two light quarks.

With the expansion method in a complete and ortho-
gonal Hilbert space, we can calculate not only the baryon
ground states, but also the excited states. Table 4 shows
the result for Q.[ssc]. Q0 and Q:(2770)° are the ground
states with J¥ = (1/2)* and (3/2)*, and the other five ba-
ryons are excited states. The masses of the excited states
have been experimentally measured, however the total
spins and parities are not yet fixed. From our model cal-
culation, they are all 1P states with J¥ = (1/2)7,(3/2)",
and (5/2)~. The mass difference among the excited states
originates mainly from the spin-orbit and spin-spin inter-
actions. The expansion method in our calculation guaran-
tees the accuracy of the calculation, and the relative dif-
ference for the masses is Dp<4.3%.

Table 4.

excited states of Q..

Experimentally measured and model calculated ground and

experiment model
baryon Dg
JP Mg/MeV JPMeV My (%)

Q0 1/2)* 2.695 (1/2)*(1S) 2.681 0.5
Q:(2770°  (3/2)* 2.766 (3/2*(1S) 2689 28
Q.(3000)° 3.000 (1/2)"(1P) 2.990 0.3
0.(3050)° 3.050 (3/2)~(1P) 3.052 0.1
Q.(3065)° 3.065 1/2-(@apy 3074 03
0.(3090)° 3.090 (3/2)~(1P) 3.085 0.2
Q.(3120)° 3.119 (5/27(1P) 3252 43

4 Heavy flavors in hot medium

We now turn to study the properties of heavy flavor
hadrons in hot medium. In contrast to light hadrons,
which are all produced at the end of the quark-gluon
plasma, heavy flavor hadrons can be produced in initial
hard scattering and survive in the quark-gluon plasma,
due to their larger binding energies compared to light
hadrons. However, because of the medium screening ef-
fect, the interaction between quarks becomes weaker
when the temperature increases. Above a certain temper-
ature, the interaction potential well is too narrow to form
some (or all) of the bound states, and these hadrons disso-
ciate. The surviving temperature or the dissociation tem-
perature of a heavy flavor hadron in hot medium can be
determined by solving the corresponding dynamical

equation with heavy quark potential at finite temperature.
This was the original idea of Matsui and Satz [1], who
suggested J/y suppression as a signal of the quark-gluon
plasma formation in heavy ion collisions. By solving the
non-relativistic Schrodinger equation for charmonium
states, y., ¥, and J/y are found to be sequentially disso-
ciated with increasing temperature [5]. The potential that
controls the absolute value of the dissociation temperat-
ure depends on the detail of dissociation process in hot
medium [28]. Yet, its exact form is undetermined on the
theoretical side, but can be constrained by two limits. One
is the slow dissociation limit, which allows sufficient
time for the constituent quarks to exchange heat with the
hot medium and reach thermal equilibrium, and the po-
tential takes the form of the free energy F. The other is
the rapid dissociation limit, assuming no heat exchange
between constituent quarks and the medium, such that the
potential is the internal energy U. The free energy F has
been computed via lattice QCD simulations [3], while the
internal energy U can be obtained via the thermodynamic
relation U = F+ TS, where S = —9F/0T is the entropy. In
a general case in high energy nuclear collisions, the po-
tential } is in between these two limits, F <V < U [5].
More discussions on the choice of the interaction poten-
tial can be found in Refs. [29, 30]. From the above ther-
modynamic relation, one can tell the potential well is
deeper in the internal energy limit, hence the dissociation
temperature with V = U is higher than that with V=F.
Considering the Debye screening at finite temperature,
the short and long range interaction potential V=
F,5 =A4q+S 45 are respectively expressed as [5, 10, 31]

o
99 -
Agg(rnT)=-— e,

S_(FT):@ ra/é4 Npr
e u | 2320(3/4)  23/41(3/4)

- aqqﬂ ’ (14)

where T is the Gamma function, K is the modified Bessel
function of the second kind, and the temperature depend-
ent screening mass u(7) can be extracted by fitting the
lattice simulated free energy [3]. From the known free en-
ergy F, one can then obtain the other limit of the poten-
tial, V=U.

From the definition of the dissociation temperature T4
for a heavy quark bound state in hot medium, it is de-
termined by the vanishing binding energy or infinite aver-
aged radius,

Kija(u*r?)

€(Ta) =0, (r(Tq))=co. (15)

Considering the plateau structure of the heavy quark po-
tential at large distance, the lattice simulated free energy
[3], the binding energy e is the difference between the
hadron masses calculated with potential V(r = 0, T) and
vV(rT),
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(T) = M(co, T)— M(T). (16)
For heavy flavor mesons, M(T) is calculated from the
two-body Dirac equation, and M(co,T) is simply ex-
pressed as

M(o0,T) = Vg(co,T) + \/vgq(oo,T)Jr(ml Tmo)?. (17)

For heavy flavor baryons, M(T) is calculated from the
three-body Dirac equation, and M(co,T) is determined by
the upper limit of the binding energy,

2 2
1 Ej_mj € +E€;
Z = V,i(c0, T 18
62 € "26116] j(OO ) ( )
ij i<j

with
2m;m

J 2
V. ,T)+V, ,T 19
€i+6j qq(oo ) qq(oo ) ( )

Vij(eo,T) =

and

M) 1 m; —m;

K 3 3Z €+€ (20)
J#i /

(T 1 <r(Te))
= N W -Ih a o N
|

(T 1 r(Te))

€(Te)

104% \
=102
=

107} | | ) Y .
10 15 20 25 30 35 40

T/ T,

Fig. 2. (color online) Scaled meson binding energy and root-
mean-squared radius as functions of temperature in two
limitsof V=Fand V=U.

The scaled meson and baryon binding energy and aver-
aged radius in the two limits of V=F and V=U are
shown in Figs. 2 and 3 as functions of scaled temperature.
From the recent lattice simulation [32], the critical tem-
perature for the QCD deconfinement phase transition is
T, ~ 155 MeV. With increasing temperature, the binding
energy decreases and the averaged radius increases,
which indicate an increasingly loosely bounded state. Fi-
nally, at the dissociation temperature 74 the binding en-
ergy reaches zero, and the averaged radius becomes infin-
ity, which indicates vanishing of the bound state. Be-
cause heavy flavors are in more deeply bound states in
the limit of V = U, they can survive at higher temperat-
ures in this case. The surviving temperatures for charmed
mesons and baryons are listed in Table 5. A sequential
dissociation of both mesons and baryons is evident due to
their different binding energies.

T T

(1) /<r(Te))

€(T)/ &(Tc)

L
= V=U ]
~ —
= B
= =
~ ]
T E

=
I -
— — 0
() -1 CCC__
%10 - Qcc
~ 1072 Zee _]
—~ QC
w107 — = o
— As ]
Tt = | A P R
1.0 1.5 2.0 2.5
T/ T,
Fig. 3. (color online) Scaled baryon binding energy and

root-mean-squared radius as functions of temperature in
two limits of V=F and V=U.
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Table 5.
mesons and baryons in two limits of V=F and V="U.

Scaled dissociation temperatures T4/7. for charmed

Iy Xe v’ Dy Dy D° D0

V=F 1.42 - - 114 110 1.10  1.08

= 309 130 124 250 198 235  1.80
Qe Qe Eee QB A

V=F 1.15 1.06 1.05 1.03 1.02 1.02
V=U 2.18 1.63 1.54 1.41 1.39 1.37

S Summary

We investigated heavy flavor hadrons in vacuum and
hot medium within the framework of multi-body Dirac
equations. With the improved method to solve the three-
body Dirac equation, we first adopted a universal set of
model parameters by fitting the heavy flavor meson and
baryon masses in vacuum. Taking the free energy and in-
ternal energy simulated by lattice QCD as the two limits

Appendix A: Hamiltonian matrix elements

Let's first consider the elements of the baryon kinetic energy
(~ (V2+V3%)) and averaged radius (~ (o* +1%)), as they can be dir-
ectly calculated without rotation from (p,2) to (p, ). Taking into

PP

4
<nplpm/,n

for a = p, 1. Note that, the kinetic energy and averaged radius are di-
agonal in spin and flavor spaces.
For the potential V;;(r;j) between quark i and quark j, the spin-

p'p"p

After the rotation (13), we have similar matrix elements for ®(|r3)
and ®(|rp3|) with the replacement of (p, 1) by (ﬁj).

The orbital angular momentum dependent terms and tensor
term in V;;(r;;) depend on the azimuthal angles ¢ and ¢ of r;;. Note
that, the couplings ®so,®sor, Psop,Psox, and @t depend only on

of the heavy quark potential, we then solved the eigenval-
ues and eigenstates of the two- and three-body Dirac
equations at finite temperature, from which we systemat-
ically determined the binding energies, averaged sizes,
and in turn dissociation temperatures for all the heavy fla-
vors. Mesons and baryons are separately sequentially dis-
sociated in the quark-gluon plasma. In contrast to
mesons, baryons are easily melted in hot medium due to
the weaker interaction between quark-quark pairs than
between quark-antiquark pairs. Considering the limita-
tion of the potential model, the Dirac equations must be
systematically improved to better approximate QCD and
then used to make better predictions for comparison with
the experimental data, especially for mesons with one
light quark and baryons with two light quarks.

We thank Mr. Tiecheng Guo for the collaboration in
the beginning of the work and Profs. Charles Gale and
Sangyong Jeon for helpful discussions. Computations
were partially made on the supercomputer Beluga, man-
aged by Calcul Québec and Compute Canada.

account the orthogonality of the spherlcal harmomc oscillator

I)‘l
states, (n)Lmyn’ lymlinglompnalima) = P 6”6,,,:76,,*16‘6m;,we have

— (Ll L V2 ol ) = 67 amga 5 5,,“(1 [(2n,,+za+3/2)525;+ Via(ng +1a+ 1/2)05%" + \/(n,,+1)(na+za+3/2)62§"],

Lymila nglompnalam, ) = 6 5%5 a 5,,/{(1-2 [(2n,, +1a+3/2)60 = \na(ng +1a + 172600 = g + D(ng +1,,+3/2)5Z§"], (A1)

[
independent terms and spin-spin coupling term depend only on the
distance between two quarks. For ®(|ri2[), we have simply

m(e; +€)
(np oy Ly (oDl lpmpnalamy ) = 6”6,,196216,16524 f 2dp Y, (Wi 1 (PP [\/;EZ”] (A2)

the distance |7;|, and the angle dependence arises from their coeffi-
cients H(oj,0j,L;j,#j) shownin (3). To calculate the matrix ele-
ments of the coefficients in flavor and spin spaces, we first con-
struct all possible symmetric, antisymmetric, mixed symmetric, and
mixed antisymmetric flavor states |F),

[FYs/a = [lg19293) £ 1929193 +1g24391) £ lg302q1) +1g3q192)  lg1 43g2)] / V6,

[FYmis/a = [-21919293) 7 21929193) +14243q1) £ 1430241) + |3 q192) + |q193g2)] / V12,

IF)assa = 1924391) £ 1439291) — lg3q192) Flq193g2)] / V4, (A3)
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where the symmetry of |F)ys and |F)y»4 and antisymmetry of
|FY)aas and |F)y4 are in the sense of the flavor exchange between
the first two quarks ¢ © g2, corresponding to the isospin triplet

1S)s1/2 = 121/2,£1/2,+1/2) = [1,£1)15|£1/2)3 =1, +

Dozl£1/2)) =1, %

and singlet for ¢1,q> = u,d. We then express all possible three-body
spin states |S) as a product of the two-body spin state IS,S);; and
single spin state |s;);,

D31 1£1/2),,

1S)s3/4 = [|i1/2,i1/2,$1/2>+|il/2,¢l/2,il/2)+|¢l/2,il/2,il/2)]/\f: V1/3|L, 1) |F1/2)5 + \/ﬁll,O)lzlil/Zh

= V1/3|1L,£1)03 [F1/2); + V2/311,0)53 1£1/2); = y/1/3]1,

£1)131F1/2) + V2/311,0013121/2),,

IS msi2 = [21£1/2,£1/2,F1/2) - |£1/2,F1/2,£1/2) - |F1/2,£1/2,+1/2)] / V6 = V2/311, 1) |F1/2)5 - \/ﬁ|1,0)12|i1/2>3

= \3/410,0)53 1£1/2); — V1/12]1,0003 1£1/2); + y/1/6]1,
= —/3/410,0)13121/2); — 1/12]1,0)131£1/2), + V1/6]1,+

=-1/210,0)131£1/2), = 1/2[1,0)13 [%1/2), + 1/2]1,

where one can clearly see that the mixed antisymmetric states cor-
respond to the spin singlet of the first two quarks, and the symmet-
ric and mixed symmetric states correspond to all the triplets.

Employing the algebraic method used in quantum mechanics
for the single spin operator s; and orbital angular momentum L;j,
we introduce the ladder operators for the relative coordinate #;;, 7,
and 7* = (7, £ify)/ V2 = sinfe*?/ V2 with the raising and lowering
relations,

) [avren2—am 0
Lmy = | S Z A (et S|,
Fellom =\ Jamnarn O o )Irm)

A+1Em)@ +1xm) 4y | (FmTFm) 4|,
\/ ° \/2(21+1)(211+1)51/ j|l,mtl)_

MILmy=F

221+ +1) !

£1)p31¥1/2),

D131¥1/2),,

I Vaa1/2 = [£1/2.%1/2,£1/2) = [%1/2,£1/2,%1/2)] / V2= (0,012 [+1/2)3 = —1/210,00p3 11 /2); + 1/2[1,003|1/2); -
£D131F1/2),,

Vi,

13 |F1/2)
(A4)

[
H(a-,-,o-j,Lij,i',-j)ls,Sz)|lpmp> in angular momentum space can be

analytically calculated. They are

HpS g =285 +1)— 3]6”6 '“65 5Sf (A6)
for spin-spin coupling with H =007},
SO _ m), m, S’ m), m, s’
HyO g =[2m,S . 6,,,‘6 +D "Ds,anwés +Dy " D§ 0,01 +1]5 5
(A7)

with D' = \(T+m+T)(T—m)

H=Lij-(0i+0)),

for spin-orbital coupling with

s
Hy P =[2m, ((1-9)65 = (57 =SH)55_, ) ,,,;jas;

— — My
(AS) +Z¢\/(S+sz—1)(5+s,—2)nlp
Wlth the above preparatlon,.we are now ready to compute the ma.t- % ((1 _9) 6§’+1 S 6§7 1) 6Zp+l 5?'}1] 6?” (AS8)
rix elements of the coefficients H(oy,0;,L;j.#ij). For a fixed spin e
state |5,S.)ls;) and a fixed spherical harmonic oscillator for spin-orbital difference and cross couplings with
|nplpmpn414m,1>, the matrix elements Hisps = <lpmp|< ¢ H=L;j-(o0i—0j) and H =iL;;- (o X 0}),
|
~3my (o +1)2 = 4m2) (I, + 1, +2)2 - 4m2)
Hg g =03 60 6me [652 =25 (S + 1)) | 2222 ( +o )
LS.L'S m[ ( )] 412 41 _3 A 2 16Q20, + D)1, + 1)U + 1, + 1) w202
l} + DI, +m,+4) /T, +my+1) 1,
_Z [5§55< 1m+|(3+5)(25¢33) Up Ty + DIy 2mp + H/TUp 211y + 1) ; )
F 21, + 1)(21}’7 + 1)U, + l;) +1)2 ot
(U 2m)C(y Fmy+ DT Fmy=2) 1 (mp+mp) /(o £mp + 1)(Ip F myp) s
QI+ DL+ 1)Uy + 1, + 1) =2~ 42 +4l,-3
v . 172 = Gy 4 DB = Gy +1)2) p
+05 O x2m+2V (S £S5)(S £5:-1) aR+41, -3 o
L(lp +mp +5)/T(l, £mp, +1) Ty Fmp+1)/TUyFm,—3) 1 A9)
+ -
4@y + D)L, + 1)U, + 1+ 1)2 o+2 4Ly + D)L+ 1)U, + 1+ 1)2 072
for tensor coupling with H =3(o; - #ij)(0 - Fij)— 07 - 0, and . . . . R R
for spin-orbital tensor coupling with H = (0 #j)(0o; Fi))

HS or

LSS’ (A10)

1
_ 2 Ss
K] Z( vsL's"” +HL’S’ L"S")HL"S” LS

(Lij-(oi +0))).
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