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Abstract: We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-
Walker (RW) spacetimes. For the conformal coupling, the 2nd-order regularized power spectrum and 4th-order regu-
larized stress tensor are zero, and no trace anomaly exists in general RW spacetimes. This is a new result that ex-
ceeds those found in de Sitter space. For the minimal coupling, the regularized spectra are also zero in the radiation-
dominant and matter-dominant stages, as well as in de Sitter space. The vanishing of these adiabatically regularized
spectra is further confirmed by direct regularization of the Green's function. For a general coupling and general RW
spacetimes, the regularized spectra can be negative under the conventional prescription. At a higher order of regular-
ization, the spectra will generally become positive, but will also acquire IR divergence, which is inevitable for a
massless field. To avoid the IR divergence, the inside-horizon regularization is applied. Through these procedures,

nonnegative UV- and IR-convergent power spectrum and spectral energy density will eventually be achieved.
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1 Introduction

The vacuum expectation values of the stress tensor
and power spectrum of quantum fields in curved space-
times have direct observational effects in cosmology.
However, these physical quantities are prone to UV di-
vergences [1-3]. To remove UV divergences, several ap-
proaches have been proposed for regularization, such as
dimensional regularization [4-7], covariant point-split-
ting [8-14], and the zeta function [5, 15, 16]. These meth-
ods involve the Green's function and are essentially equi-
valent [5]. The appropriate subtraction term to the
Green's function in position space is generally hard to de-
termine. Only for the massless scalar field in de Sitter
space with conformal or minimal coupling, the subtrac-
tion term has been found [17]. Different from the above
approaches, adiabatic regularization works with the k-
modes [18-32], and by the minimal subtraction rule, the
power spectrum is regularized to the 2nd order and the
stress tensor to the 4th order. For a massive scalar field
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withw = (k% + m?)!/?as the Oth-order frequency, this pre-
scription is sufficient in removing all UV divergences,
but sometimes removes more than necessary, leading to
negative spectra, as demonstrated in de Sitter space [17].
In fact, Oth-order regularization is sufficient to achieve
nonnegative UV- and IR-convergent spectra for a
massive scalar field with conformal coupling, and, simil-
arly, so is 2nd-order regularization for minimal coupling.
Given the regularized power spectrum, the Fourier trans-
formation produces the regularized Green's function,
which is UV- and IR-convergent [17].

In this paper we extend the study to general spatially
flat RW spacetimes. We shall consider a massless scalar
field with a coupling &, whose exact solution is available
and regularization can be performed in an analytical man-
ner. Our aim is to search for proper regularization
schemes that will yield nonnegative UV- and IR-conver-
gent power spectrum and spectral energy density. As
shall be shown, the goal can be eventually achieved, but
there is no universal scheme that would work for all
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couplings and all RW spacetimes. First, UV convergence
can be easily achieved by regularization of a certain or-
der. Unlike a massive field, the Oth-order frequency of a
massless field is the wavenumber &, so that the 2nd-order
regularization for the power spectrum and the 4th order
for the spectral stress tensor are necessary to remove all
UV divergences. In particular, for the conformal coup-
ling ¢ = é, the regularization of all orders are equivalent,
yielding a zero power spectrum and a zero spectral stress
tensor, and there is no trace anomaly. For the minimal
coupling & = 0, the regularized power spectrum and spec-
tral stress tensor are zero in several important RW space-
times, such as radiation-dominated (RD) expansion, mat-
ter-dominated (MD) expansion, and de Sitter space. For
general couplings and general RW spacetimes, however,
the regularized spectra can be negative, as demonstrated
herein. To avoid this negative spectrum, we attempt to in-
crease the order of regularization on the pertinent spec-
trum as this will generally yield a positive spectrum. Nev-
ertheless, this higher-order regularized, positive spec-
trum tends to carry new IR divergence, which is charac-
teristic of the adiabatically regularized spectra of a mass-
less field [32]. To retain IR convergence, we shall apply
the inside-horizon scheme of regularization, by which the
long wavelength modes outside the horizon are fixed and
only the short wavelength modes inside the horizon are
regularized [32]. Finally, we shall achieve nonnegative
UV- and IR-convergent power spectrum and spectral en-
ergy density.

The paper is organized as follows.

In Sec. 2, we derive the exact solution of a coupling
massless scalar field and its Green's function in general
RW spacetimes, analyze the behaviors of the power spec-
trum and the spectral stress tensor, and give the prescrip-
tions of adiabatic regularization.

In Sec. 3, for the conformal coupling ¢ = %, we show
that adiabatic regularization of various orders are equal,
yielding zero power spectrum and zero stress tensor, and
there is no trace anomaly in general RW spacetimes. We
also present direct regularization of the Green's function,
confirming the result of adiabatic regularization.

Sec. 4 considers the minimal coupling £=0. We
show that the regularized power spectrum and stress
tensor are zero in several important RW spacetimes, the
results of which are also confirmed by regularization of
the Green's functions. In general RW spacetimes, we use
two examples to show that regularized spectra can be
negative, and the pertinent spectrum will become posit-
ive by realizing higher-order regularization, thereby also
acquiring IR divergence. The IR divergence will be
avoided by the inside-horizon scheme.

Sec. 5 presents the case for the general coupling &,
the analysis of which is similar to that in Sec. 4.

Sec. 6 provides the conclusion and discussions.

Appendix A lists high-k expansions of the exact
modes. Appendix B lists the WKB solutions and the asso-
ciated subtraction terms up to the 6th order, and demon-
strates the covariant conservation to each adiabatic order.

2 The massless scalar field in general RW
spacetimes

In a flat Robertson-Walker spacetime
ds* = a*(0)[dr? - 6;;dx'dx’], (1)

with the conformal time 7, a massless scalar field has the
Lagrangian density

1
L£=5V-8(¢"buby~ERS), )
and the field equation [2, 13, 25]
(O+£&R)¢ =0, 3)
wheren =L 2(?£)- LV2,R=6a"/a> is the scalar

curvature, ¢ is the coupling constant, and we consider a
range 0 < &< % specifically; and

&k ‘ o
o(x,7) = IW [ak(l&k(‘l')elk'x+aZ¢Z(T)C_1kix],

where ak,az are the annihilation and creation operators,

respectively, that satisfy the canonical commutation rela-
tion, and ¢y(r) is the k-mode, written as
¢1(1t) = w(7)/a(r). The equation of the rescaled vy mode
is

1
2 2 _
+ (K + (- 6)a R)v =0. 4)
In this paper we consider a class of power-law expanding
RW spacetimes,
a(t) = agll’, ©)

where the expansion index b is a constant, a’R = 6b(b—
1)772. The positive-frequency mode solution of (4) is

T X 1
(1) = \E ,/ﬂe‘ﬂ”ﬂHsl)(x), (6)

where x = k|7], H,(,l) are the Hankel functions, and

v= \/%—(6§—I)b(b—1). (7N

Three cases lead to a special value v = 1: the conformal
coupling (¢ = %), the Minkowski spacetime (b =0), and
the RD expansion (b = 1), and in these cases mode (6) re-
duces to

1 .
vi(T) = i\/g \/;ng”(x) = ﬁeﬂ“, (®)

conformal to the mode in Minkowski spacetime. Mode
(6) of a general v at high k& also approaches (8).
The Bunch-Davies vacuum state is defined such that
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ayl0) =0, forall k. 9) In a general RW spacetime the unregularized Green's
function in the vacuum is
G, x"H) = (Olg(r, 1)p(r’, 7')|0) = @y f et g (Vi)
1/2)11/2
SR S 1wl Ll f aik SE =D 5 Gy O k), (10)
a(t)a(t’) 8 0 [r—7']

The integration in (10) can be carried out [13, 17, 33],
and the result is a hypergeometric function, as follows

1
G((T) :mr(z —V)F(V+ 5)

3 o
§+V,§—V,2,1+E , (11)

where o =[(r-7)>—(r-r)?]/Qr7’) is half of the
squared geometric distance between two points x* and
x’*. For the equal-time 7 =7/ case the Green's function is

G(r—r") =(0lg(r,1)¢(r’, 7)|0)
- f TSR oy, )
0

|r— 7| k2

the auto-correlation function is

X F'q

G(O) =M. ) = = [ @iocor

- f " n2m% (13)
0 k

and the power spectrum is

3
22a2(1) 8ma?(t)72
The power spectrum is shown in Fig. 1 for b=2 and
&= é, which is UV-divergent, leading to an infinite auto-
correlation G(0). This also indicates that the stress tensor
in (23) as well as the trace in (24) will generally be diver-
gent as they contain a term o ¢”. The asymptotic behavi-
ors of the power spectrum can be analyzed by series expa-
nsion. At high £, the power spectrum for general ¢ and b is

A1) = ——— (D) = H P (14)

A1) =

4n2a272 2

I [2_(6,;:_1><b_1)b_3(65—1>(b—1)b[<1—6§)(b2—b>—2]

8x2

566 1)(b- Db|(1-6£)b? - b) - 2||(1 - 6£)(b* ~ b) - 6]

The first two terms are quadratic and logarithmic UV-di-
vergent. Our task is to perform adiabatic regularization
and establish a power spectrum that should be: 1) UV-
convergent, 2) IR-convergent, 3) nonnegative. By the
minimal subtraction rule [29], the first two terms of (15)
are subtracted off under the 2nd-order regularization,
/(8na’7?)~! with £&=1/8, b=2

k unreg

/
4 /

/
q =

/

W

N

—_

L
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Fig. 1. (color online) The unregularized A? for =2 and
&= L. The plot is with || = 1 for illustration.

x=k|7]

— +] (15)

k3
Areg = m(lw(f)l2 - @), (16)

where |v(k2)(7)|2 is the subtraction term given by (B13),
formed from the 2nd-order WKB approximate solution.
The 2nd-order regularized power spectrum (16) is UV-
convergent; however, it can be negative for certain val-
ues of & and b, as can be checked by the dominant third
term of Eq. (15),
3(6¢ - 1)(b— Db|(1 - 6¢)(b> —b) - 2]
- 82 (17)

at high £. When this term is negative, to obtain a positive
power spectrum, we shall try the 4th-order regularized
power spectrum,

k3
Bice = g (WP = @F). (18)

where |vf{4)(r)|2 is given by (B21), constructed from the
4th-order WKB approximate solution, and removes the
first three terms of Eq. (15). This usually yields a posit-
ive, UV-convergent power spectrum, which is dominated
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at high & by the fourth term of Eq. (15)

5(6¢ = 1)(b— 1)b[(1 - 6£)(B* ~ b) - 2| [(1 - 6£)(B* ~ b) - 6
N 16x*

(19)
We have checked that (19) is positive when (17) is negat-
ive. We shall demonstrate this procedure using examples
in later sections.

We examine the low-k behavior of A?. For =1, or
b =1, it has only one term,
Kool
A= — 20
kT 2n2a2 2k (20)

which also holds for all . For a general & by (A6), it is

A7) = T o k372, 1)

8m3a’r?
Regarding inflationary cosmology, if the scalar field ¢ is
used to model the perturbed inflaton scalar field during
inflation, the power spectrum A,% at low k realizes the
primordial spectrum of scalar field perturbations, which
is often written in the form of

2 n,—1
Ay oc k™7

Thus, one reads off the scalar spectral index

ns=4—2v=4—2\/%—(6§—I)b(b—1). (22)

The currently observed value is ny ~ 0.96, which for £ =0
corresponds to an expansion index b ~ —1.02 during infla-
tion [31, 32]. In general RW spacetimes, the power spec-
trum (21) with £ =0 is IR-convergent for —1 < b <2, and
is IR-divergent for b < -1 or b > 2. In this paper, we do
not discuss the issue of IR divergence in the unregular-
ized power spectrum, which can be avoided either by a
certain initial condition or by some precedent expansion
stage, as has been studied in Refs. [34, 35]. Nevertheless,
for a massless field, sometimes regularization may trans-
form an IR-convergent power spectrum into IR-divergent.
This is a matter of concern within this paper. When this
transformation occurs, to retain the IR convergence, we
can adopt the scheme of inside-horizon regularization, i.e,
the long wavelength modes outside the horizon are fixed
and only the short wavelength modes inside the horizon
are regularized [32]. By this procedure, the regularized
power spectrum will remain IR-convergent.

The stress tensor plays the role of a source of gravity
in general relativity. For the massless scalar field, it is

given by [25, 26]
1
Tyv =(1- 25)(9#(1561,(15 + (25 - E)guvao-(ﬁaa(p - 2§¢;ﬂv¢

1 1 3
+ Efgpv‘zbu(ﬁ _f(Ruv - EgﬂvR + §§Rg/4v) ¢2’ (23)
which satisfies the covariant conservation 7"}, = 0 by vir-

tue of field equation (3). The trace is

T+, = (6 — 3" 3,0+ E(1 — 6£)R”. (24)

The energy density in the BD vacuum state is given by
the expectation value

p== [ ©3)
where the spectral energy density is
3
4712(1/4 /
x(Sopiod-(S mP) e

the trace of the stress tensor is

P = | V2 + Rl + (66 - 1)

1 2 72 a 7% %/
(Tﬂ#>=2ﬂ2a4 fk dk (6¢ = 1) X [Iv;] - — i+ vey)

-l = (= - ("5')2)|vk|2 +(1- 65)“;”|vk|2],

27)
the pressure is
1 _. < dk
=—(T') = =, 28
p=-31= [ ng (3)
where the spectral pressure is
ol o, 1, 5 1
Dk =W[§|Vk| +§k [Vl +2(§_8)
Cl, 7% */ a’
X(;(Vk"k+vkvk )—(g)zlwclz)
1 ’ (l' /% %/
R G (A CAVER TS R
a// al 2 2 l al/ 2
(= () )l =6 = ) —nef) - (29)

For each k-mode, the unregularized spectral stress tensor
satisfies the covariant conservation pj + 3%(pk +pi) =0,
as can be checked by field equation (4). The spectral en-
ergy density and pressure have the following high-k ex-
pansions

1 4 (66D 366 Db Db +1) 566 = 12(b - DB (b+2)[(1-6£)(B - b) 2|

Pr T Anldt * 2 8

16x2

+35(6§— 1)2b*(b = 1)(b+3)[b(b — 1)(6& — 1) +2][(b— 1)b(6£ — 1) + 6] .

128x*

} (30)
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1 X (6E-Db(b+2)x% (66— 1DXb-Dbb+1)(b+4) 5(65—1)2(b—l)b(b+2)(b+6)[(l—65)(b2—b)—2]
pk_47r2a4‘r4 3 6 - 8 * 48x2
L35 (66— 12(b—1)b(b+3)(b+8)[(b— 1b(6& — 1) +2][(b— 1)b(6E - D+6] ] 1)
384.x4 P

both containing quartic, quadratic, and logarithmic UV
divergences. The quartic divergences come from the de-
rivative terms, such as d,¢0,¢, except ¢?. Thus, we
search for a regularized stress tensor that should satisfy
the following criteria: 1) UV-convergent, 2) IR-conver-
gent, 3) nonnegative spectral energy density. A negative
pressure is allowed, so we focus on the spectral energy
density in this paper. By the minimal subtraction rule
[18], the first three divergent terms of p; in (30) are sub-
tracted off under the 4th-order regularization,

Pkreg = Pk — PkA4» (32)

where ppa4 is the 4th-order subtraction term given by
(B37). The resulting pjr, is always UV-convergent, and
if it is also positive, our goal has been achieved. Like the
power spectrum, however, the 4th-order regularized py
can be negative for certain values of £ and b, as is de-
termined using the dominant fourth term of Eq. (30) at
high «,

56— 1)*(b—1)b*(b+ 2)((1 —6&)(b* —b) - 2)
16x2 ’

When this happens, to obtain a positive spectral energy
density, we try the 6th-order regularization

(33)

Pkreg = Pk — PkA6s (34)

where the subtraction term pg46 is given by Eq. (B39).
Under this subtraction, the first four terms of (30) will be
removed, and the fifth term

35(6¢-1)%b% (b-1)(b+3)(b(b-1)(66-11+2)((b-1)b(6¢-1)+6)
128x4

(35)
remains and dominates the 6th-order regularized spectral
energy density at high k. As will be demonstrated, for the
RW spacetimes used in cosmology, this often gives a
positive, UV-convergent regularized spectral energy
density. For those rarely used in cosmology, say
-3 <b < -2, and for a coupling

bB*—b-2 1

67-6b * 6
both Egs. (33) and (35) will be negative for high &. Then,
the 8th-order regularized p; must be determined, which is
dominated by the following term

(36)

1
4m2att4 [ 256x6
+2)((b - Db(6E - 1) +6)((b— b6 — 1) +12)|. (37)

This term is positive with a coupling in the range of (36).
Thus, a positive UV-convergent spectral energy density
can be achieved using this procedure.

We mention that the four-divergence of the subtrac-
tion terms to the stress tensor is zero under regularization
of each order, so that the covariant conservation is re-
spected by the regularized stress tensor respects (See
(B45)—(B50) in Appendix B).

We examine the low-k behavior of the stress tensor.
For é=¢,or b=1, Eq. (7) gives v = 5, and (26) and (29)
reduce to

——63(b— 1) (b+4)b*(1 - 6§)2((b —1b(6&—-1)

k3 712 2 2 k3 1
pr= |+ E| = ok pe=soe (39)

which are UV-divergent and IR-convergent. For £ =0,
(26) and (29) reduce to

K
Pr= 47r2a2 | | ' ] )
B wev2 1 2| Vk 2
D= 4ﬂ2a2[| YT =322 (40)
shown in Fig. 2, while at low & they reduce to
242y 2 3.2 1
- i > A
l67r3a4T4r(v+1)x . b >
22—2v )CZV+3 0<b 1
s <3
o~ 167;3474 sin’(m)[ () SN CY
4nlattd’ b=0
2% T2 bh<0
16m3a4t4 | ,
22+2V 1
r 1 2 .3-2v > —
16m3 a4 @+ =, b 2’
22—2V x2v+3
O<b<i
n ) s 2°
o= 167r)ccl4f4 sin?(m)['(v)? (42)
- b=0,
1272a%t4’
2v
2.5-2v
T <0

where v = b—— if b> 5, and v———b 1fb< . Both py
and p; are IR-convergent when 2 <b<2, as shown in
Fig. 2, which includes the RD stage (b= 1) and the de
Sitter inflation (b = —1). However, when b= +2,or b > 2,
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(o unreg> Pk unreg)/(167ra47-4)_1 with fZO, b=1
70 I,’
60 7
v
50
40 /I
30 4
20 4
10 L

-

-
-

x=k|7]
05 10 15 20 25 30

Fig. 2. (color online) Red Dash: unregularized o, Blue Sol-
id: unregularized py. For é=0and b=1.

or b< -2, p; and p; are IR-divergent. The issue of IR di-
vergence of the unregularized spectra has been analyzed
in Refs. [34, 35], and it shall not be discussed further in
this paper. Regularization may change the IR-convergent
pr and p; into IR-divergent, just as with the power spec-
trum, and the scheme of inside-horizon regularization can
be used to retain IR convergence [17].

3 Regularization for ¢=1

First, we implement adiabatic regularization of the
conformally coupled massless scalar field, which is an in-
teresting case. This is because Eq. (4) with &= % is the
same as that in the Minkowski spacetime, i.e., the equa-
tion of mode ¢y =vi/a is conformal to that in the
Minkowski spacetime. Thus, the conformally coupled
massless scalar field ¢ is said to have conformal sym-
metry. Moreover, this conformal symmetry is reflected by
the zero trace of the stress tensor, as presented in Eq. (24)
with £ = 1. Now, the rescaled mode for £ =} is given by

—ikt

(1) = R (43)

(¢]
§|
~

which is valid for any expansion index b (see Egs. (7) and
(8)). The corresponding power spectrum (14) has only
one term,

o1
2m2a? 2k
so that the Oth-order regularization is sufficient, yielding
a vanishing regularized spectrum

A1) = (44)

, _ K 2 Oy KoL 1y
Mg = 55 (P =W @F) = (5 = 57) = 0.
(45)

The spectral energy density and pressure in Eq. (38) have
only one term, and the trace (T¥,); =0. The Oth-order
subtraction terms are given by (B33) and (B34), and are
just equal to the unregularized stress tensor. Hence, the
regularized stress tensor is zero,

K* K*
Pkreg = Pk — PkA0 = Rl a0l =0, (46)
k* k*

Pkreg = Pk — PkAO = 0, 47)

2224 12024

and the regularized trace is zero,

<Tﬁﬁ>kreg = Pkreg — 3pkreg =0. (48)
The above calculations show two important features of
the conformally coupled massless scalar field. First, the
vanishing spectra (45)-(48) hold for a general scale factor
a(t). Thus, in any flat RW spacetime, the power spec-
trum and the stress tensor are both regularized to zero and
there is no trace anomaly of the conformally coupled
massless scalar field. This is a generalization of the result
in de Sitter space [17] to general RW spacetimes. Second,
for £ = é, the vanishing regularized spectra (45)-(48) hold
for any order of adiabatic regularization, because the sub-
traction terms of any order are equal to those of the Oth
order. (See (B41)-(B44) in Appendix B).

The above results of adiabatic regularization also fol-
low from a direct regularization of Green's function. For
v= %, the unregularized Green's function (11) reduces to

1 2

Gy =~ 1672a(t)a(v' )t &

(49)
which has one term, and is UV-divergent at o =0. To re-
move this UV divergence, the natural choice for the sub-
traction term is

1 2

G =~
(@sut 16m2a(t)a(t’)tt’ o

(50)

and the regularized Green's function is simply given by
G(0)eg = G(0) = G(0)sup = 0. (51)

This vanishing Green's function confirms the vanishing
power spectrum of (45), as they are the Fourier trans-
formation to each other. Consequently the regularized
stress tensor is also vanishing when it is constructed from
the vanishing Green's function.

Thus, under the above two different approaches, we
have demonstrated that zero trace is still ensured by the
proper regularization. Two references [11, 14] also
worked directly with a massless scalar field, and claimed
that the trace of the stress tensor would become nonzero
(the so-called trace anomaly) after regularization. In Eq.
(3) of Ref. [11], the Green's function G(o) is assumed to
have a term vIno +w, which would lead to the trace an-
omaly. As our Eq. (49) tells, the Green's function for
& =é contains no such term, so that the conclusion in
Ref. [11] regarding the existence of the trace anomaly
does not hold in RW spacetimes. We have also examined
Ref. [14] on a massless scalar field in RW spacetimes,
and find that their calculated (7},,) of Eq. (5.30) does not
contain the trace anomaly by any combination, and that
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their trace anomaly in Eq. (6.5) was actually put in by
hand, rather than following from any finite part of Eq.
(5.30).

4 Regularization for £=0

Next, we perform regularization for the minimally
coupled £=0. As listed in Appendix B, the subtraction
terms of various orders depend on the expansion index b
through a(r). We shall consider some specific values of
b. (The case b = —1 of de Sitter space was realized in Ref.
[17].)

We first consider the RD expansion stage, in which
the index b =1 and the scalar curvature R=0. Eq. (7)
gives v = % which holds for any coupling ¢. The rescaled
mode v, becomes the same as (43), and the power spec-
trum Af becomes the same as (44). We use the 2nd-order
regularization, and obtain a zero regularized power spec-
trum

k3
Aireg = W(h’k(TNz - |V]((2)(T)|2) =0. (52)

Notice that a” =a’” = ... =0 for the RD stage with a « 7,
so that the Oth-, 2nd-, and higher-order adiabatic substrac-
tion terms of the power spectrum are equal,
WO@OP =P @R =..= L (see (BS), (B13), (B20),
(B21), (B28), and (B29) in Appendix B). In addition, the
regularization of the corresponding Green's function is
the same as those given by Egs. (49), (50), and (51) in the
previous section. The spectral energy density (39) and
spectral pressure (40) become

! (x*+ Xz) (53)
o —— x —_—
Pk 4rlattt 27
1 x4
- (45, 54
Pk 47r2a4‘r4( 3 2) (54

which contain quartic and quadratic UV divergences. The
2nd-order substraction terms (B35) and (B36) are

R (55)

PRA = 42 gd \ 222 ’

k* 3
=— (= +1), 56
Pra2 = o2 ah (2x2 ) (56)
so the regularized stress tensors are vanishing

Pkreg = Pk —pPra2 =0, (57)
Pkreg = Pk — PkA2 = 0. (58)

(Note that the 4th-order substraction terms (B37) and
(B38) happen to be equal to those of the 2nd-order as
a’ =a" =0.) Thus, in the RD stage, the 2nd-order regu-
larization is sufficient to remove all the divergences of
the power spectrum and stress tensor of a minimally
coupled massless field. This is similar to that which oc-

curs in de Sitter space, in which the 2nd-order regulariza-
tion also produces a zero power spectrum and zero stress
tensor of a minimally coupled massless scalar field [17].
The result can also be derived in terms of Green's func-
tion. For b = 1, the unregularized Green's function (11) is
the same as (49), as is is the subtraction term in (50), so
the regularized Green's function is  G(0)wg =
G(0)—G(0)sup = 0; thus, the regularized power spectrum
is zero and the regularized stress tensor is zero.

We next consider the MD stage, b =2. Mode (6) with
v =3 becomes

ix

vi(r) = jﬁ(u )ic) (59)
and the power spectrum (14) becomes
A1) = L (i + L) (60)
2n2a? \2k  2k372

By the 2nd-order regularization, using |v1(€2)|2 from (B13),
the regularized spectrum is zero

k.

Breg = 523 (M@F =P @F) = 0. (61)
The spectral stress tensors (39) and (40) for b = 2 become

9

_ 4 2

P = W(x +2x°%+ 5), (62)

1 42 9
= a3t 3 ) (©3)

which contain quartic, quadratic, and logarithmic UV di-
vergences. To remove these divergences, we apply the
4th-order regularization, and the subtraction terms (B37)
and (B38) are

K 2 9
S | R A 64
Pras= 53 ( 2 2x4)’ (64)
K 4 27
LI § R AL | 65
12n2a* ( X2 2x4) (65)

The regularized spectral energy density and pressure are
zero

PkAs =

Pkreg = Pk — PkA4 = 0, (66)

Pkreg = Pk — PkA4 = 0. (67)

These results can be also derived in terms of Green's

function. For v = % we can directly integrate Eq. (10) to

obtain the Green's function
1 1 1 . . )
G - - _d3k ik-(r—r)—ik(t—7")
@) =507 attat) f ke

1 o1 141 1 1

G- )

1 1
=~ —~Ino), 68
8n2a(t)a(t)|r7| ( o no-) (68)

in which both terms are UV-convergent and should be re-
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moved. Thus, the subtraction term is taken to be

! (- é ~Ing), (69)

G(@)sup = 8r2a(t)a(t)|r’|

resulting in
G(O—)reg =G(0)-G(0)sup =0, (70)

which agrees with the vanishing regularized spectra (61),
(66), and (67).

From the spectra (15), (30), and (31) with £ =0, we
see that, after subtracting their respective divergent terms,
all the remaining convergent terms are proportional to a
common factor

b(b—2)(b-1)(b+1),

which is vanishing for » = 0,+1,2. Hence, for the minim-
ally coupled massless scalar field, the regularized power
spectrum and stress tensor are zero in the Minkowski
spacetime, the RD stage, the MD stage, and the de Sitter
space, the latter case was shown in Ref. [17].

What about a general index »? In the following, we
consider two quasi de Sitter inflation models with b ~ —1.
For the model b =-1.02, as shown in Fig. 3, the 2nd-or-
der regularized Aireg is positive, UV-convergent, and IR-
divergent. However, the 4th-order regularized pirey is
negative, as shown in Fig. 4. This is implied by the dom-
inant fourth term of (30) of o,

2
5(b-2)b—-1b (b+1)(b+2), (71)
16x2

which is negative for b = —1.02. This is the phenomenon
of negative spectra previously mentioned around Eqgs.
(33) and (34). To obtain a positive spectral energy dens-
ity, we proceed to compute the 6th-order regularized pjre,
in Eq. (34), which is dominated by the fifth term of (30).
As a result, the 6th-order regularized pyreg is positive and
UV-convergent, as shown in Fig. 4. As for the IR diver-
gences in the regularized spectra, we adopt the inside-ho-
rizon scheme [32], as follows. The UV divergences come
from the high k-modes; whereas, the low k-modes do not

cause UV divergence. Therefore, only the short
A} o/ (812> With =0, b=—1.02

0.20
0.15
0.1(}\

\ 2nd-order
0.05 &

\k
x=k|7|
0.0 0.5 1.0 1.5 2.0

Fig. 3. (color online) For £=0, b=-1.02: the 2nd-order

A,%reg is UV convergent and IR divergent.

Pireg/(16ma*t®) ™! with ¢=0, b=—1.02

0.04 \
0.03
0.02 \
\ 6th-order
0.01 N
------------ x=k|T
”a’ ————— 4 r 6 § | |
—0.0H— >
0.00 e 4th-order
Fig. 4. (color online) Red Dash: the 4th-order regularized

Prreg 18 negative, Blue Solid: the 6th-order regularized pireg
is positive, and k* UV convergent at high k. The model
b=-1.02 and £ =0.

wavelength modes need to be regularized inside the hori-
zon during the expansion (k > 1/|r|, where 7 is a fixed
time during the expansion), and the long wavelength
modes outside the horizon remain unchanged. Under this
scheme, UV divergences are removed and IR diver-
gences are avoided. Thus, for the case b =-1.02 under
consideration, the spectral energy density is regularized

by

1
Ok —Prae, Tork> m,
Pk(Dreg = 11 (72)
Pk» fork < —.
71

The regularization is performed instantaneously at a fixed
71. The result is plotted in Fig. 5. Thus, IR divergence is
avoided, a positive UV- and IR-convergent spectral en-
ergy density is achieved, and the regularized energy dens-
ity iS preg = [ Prreg % = 0.622 %45 at [r| = 1.

For the model »=-0.98, the 2nd-order regularized
power spectrum is dominated by the third term of (15)
and is negative, as shown in Fig. 6. Thus, we proceed to
calculate the 4th-order regularized power spectrum ac-
cording to Eq. (18), which is positive, UV-convergent,
and dominated by the fourth term of (15), as shown in
Fig. 6. To avoid the IR divergence caused by the 4th-or-
der regularization, we apply the inside-horizon scheme

4
2| =P,

2
Ak(T)reg = W

|T11| (73)
[viel?, fork < —.

|71l
The resulting power spectrum is plotted in Fig. 7. Ac-
cordingly, the IR divergence is avoided, and a positive
UV- and IR-convergent power spectrum is achieved. By
the Fourier transformation of (73) according to the for-
mula (12), we obtain the corresponding regularized
Green's function G(r—r’)., which is UV-finite and IR-
convergent, as shown in Fig. 8. The 4th-order regular-
ized spectral energy density is positive and UV-conver-
gent, as plotted in Fig. 9, and the regularized energy dens-
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Prreg/(16ma*t1H)™! with €=0, b=-1.02

1.5 /
1.0 /

0.5 //
e

0.0 0.5 1.0 1.5 2.0

Fig. 5. (color online) For £ =0, b =-1.02: the inside-horizon
regularization for pi(r)., according to Eq. (72). The plot is
at a time |r;| = 1 for illustration.

x=k|7i|

Aireg/(gﬂ'az'rz)_l with £€=0, b=—0.98

0.8 \

0.6

0.4

4th-order
02 \</
\\
x=k|1|
W02 04 06 08 1,0 12 14

-0.2
_04 2nd-order
-0.6
Fig. 6. (color online) For & =0,b = -0.98: the 2nd-order A?

kreg
is negative; the 4th-order A? . is UV convergent and IR di-

kre;
vergent.

A? e/ 872%71%) ™! with =0, b=-0.98

141
1.’) .
1.0
8 /‘/
0.6
0.4
0.2
x=k|7|
02 04 06 08 10 12 14
Fig. 7. (color online) For ¢ =0, b =-0.98: the inside-horizon

regularization for A%reg according to Eq. (73).

ity iS preg = J(;oopkrengk =0.228% at |t] = 1. The above
two examples show that the inside-horizon scheme is ef-
fective in avoiding IR divergences.

5 Regularization for general ¢

Now, we explore adiabatic regularization for a gener-
al coupling ¢, and search for proper regularization

G(|r-1')/(87a%7%)! with £€=0, b=-0.98

16

15

14

13 \

12

\
\
11
10 [r—r|
0 2000 4000 6000 8000 10000

Fig. 8. (color online) For ¢=0, b=-0.98: the regularized

Green's function G(r—#'|)g, is Fourier transform of the
regularized power spectrum in Fig. 7.

Pireg/(16ma* )™ with £=0, b=—0.98

0.020

0.015\

\ 4th-ord
0.010 Y

«w
—

0.005
\\
x=Kk|T|
0 2 4 6 8 10
Fig. 9. (color online) For ¢ =0,b =-0.98: the 4th-order pjreq

is positive, UV convergent and IR log divergent.

schemes that would yield the nonnegative UV- and IR-
convergent spectra A} and p;. We shall consider several
values of b in various interesting cosmological models.
By the minimal subtraction rule, the 2nd-order regulariza-
tion for A? and the 4th-order regularization for py are de-
fault, and we shall attempt higher-order regularization
when a negative spectrum appears.

First, we consider b =1 for the RD stage with a gen-
eral &£. The analysis between (52)-(58) is also valid for a
general £, and the results are Afreg = Pkreg = Pkreg = 0.

Next, we consider b =2 for the MD stage with a gen-
eral £. For illustration, & = % is used in the following, oth-
er values of & can be analyzed in the same fashion. As
shown in Fig. 10, the 2nd-order regularized Aireg is neg-
ative, dominated by the third term of Eq. (15), and the
4th-order regularized Azreg is positive and UV-conver-
gent, but IR-divergent. As shown in Fig. 11, the 4th-or-
der regularized pireg is negative, dominated by the fourth
term in Eq. (30), while the 6th-order regularized pjreg is
positive, dominated by the fifth term of (30).

Then, we consider » =—1 in de Sitter space. We plot

the regularized power spectra for & :é in Fig. 12, the

2nd-order regularized A%reg is negative, while the 4th-or-
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A%reg/(gﬂaz‘rz)_l with £=1/8, b=2
0.2

4th-order

x=k|1|

~
N

—0.1 2nd-order
-0.2
Fig. 10.  (color online) For »=2 and &= 1/8, the 2nd-order

regularized A? is negative, and the 4th-order regularized A?
is positive, and UV convergent.

Pk reg/(l67"'347-4.)_1 with £=1/8, b=2

2.0 \
1.5

\ 6th-order

1.0 \,
0.5

7T g

————ore—==== ¥ x=k|7|
6

h-order

-0.5

Fig. 11. (color online) For 5 =2 and ¢ = %, Red Dashed: the
4th-order regularized pire is negative; Blue Solid: the 6th-
order regularized pire is positive, and k=* UV convergent
at high k.

A%reg/(877'327'2)71 with f: 1/8, b=-1

0.20¢ \
0.15
\«— 4th-order
0.10 \
0.05 Y
o x=k|7|
—0.05 2 4 @ 3 10
~010 /4—* 2nd-order
-0.15
Fig. 12.  (color online) For »=-1 and &= {, the 2nd-order

regularized A? is negative, the 4th-order regularized A? is
positive and UV convergent.

: 2
der regularized A

IR-divergent. As shown in Fig. 13, the 4th-order regular-
ized p; is positive and UV- and IR-convergent. (Here
2‘2—2“ - “a—z - “‘la—?z =0 for de Sitter space, so that the 2nd-
order subtraction term (B35) is equal to the 4th-order
(B37), and the 2nd-order regularized py. is equal to that of
the 4th-order.)

Finally, we consider the quasi de Sitter inflation mod-

is positive and UV-convergent, but

pkreg/(167ra47'4)_l with f:l/& b=-1

0.012
0.010

0.008 /\\
0.006

0.004
0.002 N

4th-order

\\—
L x=k]7]|
] 10 15

-0.002

Fig. 13.  (color online) For »=-1 and ¢=§, the 4th-order

regularized p; is positive and UV convergent.

A} g/ (8a>t?)™! with £=1/8, b=-0.98

0.20¢ \

0.15

0.10 \4/ 4th-order

0.05 \\

— - x=k|7|

005 P 4 ¢ 3 10
~010 /‘\ 2nd-order
-0.15
Fig. 14. (color online) For » =-0.98 and ¢ = 1/8, the 2nd-or-

der regularized A? is negative, the 4th-order regularized A?
is positive and UV convergent.

,okreg/(167ra4‘r4)_1 with é=1/8, b=—0.98
0.012

0.010
0.008 \
0.006

\+
AN

4th-order

0.004
0.002 ™
\\—
x=K|T|
0 5 10 15
Fig. 15. (color online) For »=-0.98 and ¢ = 1/8, the 4th-or-

der regularized py is positive and UV convergent.

el with b=-0.98 and ¢=1. As shown in Fig. 14, the
2nd-order regularized A7 is negative, and the 4th-order
regularized Ai is positive and UV-convergent but IR-di-
vergent. Furthermore, Fig. 15 shows that the 4th-order
regularized py is positive, IR-finite, and UV-convergent.
For the model with 5 =-1.02 and & = %, as shown in Fig.
16, the 2nd-order regularized A? is negative; the 4th-or-
der regularized A,% is positive and UV-convergent, but IR-
divergent. Fig. 17 shows that the 4th-order regularized py
is positive and UV-convergent, but IR-log-divergent.

In the above, when IR divergence appears, the inside-
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A7 /(872277 with £=1/8, b=—1.02

0.20¢ \
0.15
” \4//4th-order
0.10 \
0.05 AN
\
1 x=k]|1|
0.05 P 4 6 ] 1
—VU.UJ
_ /4\ Ynd-order
0.10 / IO-o1ruct
-0.15¢
Fig. 16. (color online) For »=-1.02 and & = 1/8, The 2nd-or-

der regularized A? is negative, and the 4th-order regular-
ized A? is positive and UV convergent.

Prreg/(16ma’ )™ with £=1/8, b=—1.02

0.012
0.010

0.008 /\\
0.006

\ 4th-orde
0.004 Y

=

0.002
\\_
[ x=k|7|
] 10 15
—-0.002
Fig. 17. (color online) For =-1.02 and ¢ = §, the 4th-order

regularized pirg is positive at high k.

horizon scheme can be applied, as in Sec. 4, the details of
which are not discussed to save room. Hence, for general
¢ and b, positive UV- and IR-convergent power spec-
trum and spectral energy density can be achieved.

6 Conclusion and discussions

We have studied adiabatic regularization of a mass-
less scalar field in general RW spacetimes with a coup-
ling ¢ (in the specific range 0 < ¢ < é for this paper), and
this extends our previous study in de Sitter space [17].
The analytical expressions of the power spectrum, the
corresponding Green's function, and the spectral stress
tensor were presented, all of which contain UV diver-
gences. Our goal is to find the appropriate schemes of
regularization that will achieve nonnegative UV- and IR-
convergent power spectrum and spectral energy density.
Adiabatic regularization respects the covariant conserva-
tion of the stress tensor to each order. For the massless
field, the UV divergences are generally removed when
the power spectrum is regularized to the 2nd-order, and
the stress tensor to the 4th order. The nonnegativeness,
however, is not always ensured by the conventional pre-
scription, and this is our main concern in this paper.
Through several examples, we have found that there is no

regularization scheme of fixed-order that would work for
all couplings and all RW spacetimes. An adequate
scheme depends upon the coupling ¢ and the expansion
index b.

Several interesting cases are very simple. For the con-
formally coupled massless scalar field in Sec. 3, we found
that the regularized power spectrum and stress tensor are
zero, and no trace anomaly exists in general RW space-
times. The regularization of the field with conformal
symmetry effectively amounts to the normal ordering in
the Minkowski spacetime. This result is a generalization
of our previous work on de Sitter space [17]. We have
also explicitly identified the mistakes of Refs. [11, 14] on
a massless field. Most literature on the trace anomaly
started with a massive field, adopted the 4th-order regu-
larization on the stress tensor, and then took the massless
limit. As we showed in detail in Ref. [17], for a massive
scalar field, 4th-order regularization is not appropriate,
because it will lead to an unphysical, negative spectral
energy density, which is a vital shortcoming unnoticed in
the previous literature. In fact, for a conformally coupled
massive scalar field, Oth-order regularization [17] is the
correct scheme, as it not only removes all the UV diver-
gences, but also gives a positive spectral energy density,
and the resulting stress tensor is zero in the massless lim-
it, agreeing with the present paper. Therefore, the trace
anomaly claimed in literature is an artifact caused by the
inadequate 4th-order regularization.

Another simple case is minimal coupling where £ =0,
as in Sec. 4, the regularized spectra are zero for
b=0,+1,2, corresponding to the Minkowski spacetime,
the de Sitter space, the RD stage, and the matter-domin-
ated stage. In the above simple cases, we also conducted
direct regularization of the Green's functions in position
space, and found that the regularized Green's functions
are zero as well, confirming the zero spectra by adiabatic
regularization. In particular, for the RD stage, the regular-
ized spectra are also zero for any coupling &. This is be-
cause during the RD stage, the scalar curvature R=0 so
that the wave equation (3) with arbitrary ¢ is also con-
formal to those in the Minkowski spacetime.

For the cases of general ¢ and b in Sec. 5, we found
that the regularized spectra of the massless scalar field
can be negative under the conventional regularization. To
avoid the negative spectra, we performed higher-order
regularization to the pertinent spectrum. Specifically, if
the power spectrum is negative under the 2nd-order regu-
larization, we calculate its 4th-order regularization, and
similarly if the spectral energy density is negative under
the 4th-order regularization, we calculate its 6th-order
regularization. In fact, the resulting higher-order regular-
ization spectrum will usually become positive for the RW
spacetimes commonly used in cosmology. In some rarely
used RW spacetimes, the 6th-order regularized spectral
energy density may still be negative, then we go to the
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8th-order, which will eventually yield a positive spectral
energy density.

A massless field may carry IR divergence in the un-
regularized spectra, as summarized in (21), (41), and
(42). Refs. [34, 35] present studies regarding avoiding the
IR divergence in the unregularized spectra. In this paper,
we have analyzed the IR divergences caused by regulariz-
ation. In particular, IR divergence occurs when going to
higher-order regularization for general ¢ and b. These
new IR divergences can be avoided by the inside-horizon
scheme of regularization, as demonstrated by the ex-
amples in Fig. 5 and Fig. 7. The details of the inside-hori-
zon scheme were discussed in Ref. [32], and we only
mention the following two related points. First, the scalar
field considered in this paper is linear, and its k-modes
are independent of each other, unlike the nonlinear fields
[36]. Under the inside-horizon scheme, each regularized
short wavelength mode respects the covariant conserva-
tion to pertinent order, the unregularized long wavelength
modes also respect the covariant conservation. Thus, the

Appendix A: High k expansions of exact modes

total stress tensor respects the covariant conservation by
the inside-horizon scheme. Second, the long wavelength
modes outside the horizon correspond to the waveband of
the observed CMB temperature anisotropies and polariza-
tion [31, 32]. When the scalar field is used to model the
cosmological perturbations, the inside-horizon scheme re-
serves the spectra perturbations of the long wavelength
band, so that the observed primordial spectrum will not
be affected by any scheme of regularization.

Through these detailed investigations, we conclude
that for a coupled massless scalar field in general RW
spacetimes, the nonnegative UV- and IR-convergent
power spectrum and spectral energy density can be
achieved by adiabatic regularization, with the help of a
higher-order scheme and the inside-horizon scheme when
necessary.

The authors thank A. Marciano for valuable discus-
sions.

We list some asymptotic expressions following the analytical solution for a general RW spacetime, which are used in the context.

At high k, the mode v of (6) approaches to

1 (14 (@2-1) (16v*—40v2+9) (640 —560v* + 10362 —225) . (256v® — 53761° + 31584v* — 51664v2 + 11025)
e — i - -
LY. 7 8x 1282 30723 98304.x*
(—1024v10 + 42240v® - 56179270 + 2764960v* — 42288842 + 893025)
+i + ) (A1)
3932160x°
. . 2 4 2
where the first term corresponds to the positive-frequency mode in w2 =2 HP (o = i(l s - 1, 306y —4(11’ +9)
. . . . 4k 2k 8x 128x
Minkowski spacetime, and other terms are due to expansion ef- . 5(2v = 5)2v—3)2v = D2y + 1)(2v +3)2v+5) . ) )
fects. The squared mode at high & is 10246 e
The time derivatives to the 4th adiabatic order are given by
2 410442 6_ 4 2_
|V1'<|2 —k 1_ @~ -1) 3 (16v* — 104y~ +25) _ (64v° —2096v* +4876v- — 1089) N )’ (A3)
2 16x2 256x4 2048x°
ViV iy 8B 1— 4 16v4—(64b2+ 128h + 104)v2 +(16b% +32b +25)
()P (5 - :
a 2k 16k 256kx
(216 + 864D + 1089) - (960b? + 3840b +4876) v + (384b% + 1536b +2096 ) v* — 641°
+ + ) (A4)
2048kx*
From these, the high-k expansions of p; and p; canbe ob- 2-21(1\2
. . ; |Vl|2 ~ a2 P2 ﬂ (A7)
tained, as in Egs. (30) and (31) in the context. a 0 7
Atl th f the relat . o
. ow k, the mode v, of (6) and the related squared modes are and the time derivatives are
given by I
-v-3% Tv)-2I(v+1) ;z_1
x\r+r TO) Gzo-) v, = E({) rpan T T sy (A8)
e (= e'2\"72)) (AS) k ’
(2) 2k T2 4\2n
2P , x\-2v-1 (C(v) =2 (v + 1))?
vl = x| ———, (A6) MP=(5) " e, (A9)
n 2 327
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(Vi)’:ﬂa—l(f)_%"’ phap L=20TO) =200+ D) izt
a T 0\2 22+b \21 ’

(A10)

2 2

'(Lk)’z: 2 [(]—2b)F(v)—2F(v+l)] |
a 167

From these follow the low-k expansions of p; and p; in Egs. (41)

and (42).

2 _~2v_-1-2b
ay“x |

(A1)

Appendix B: The 0th-, 2nd-, and 4th-order adiabatic subtraction terms

The WKB approximate solution [18, 19, 25-27, 37] of the
massless scalar field equation (4) is written as the following
(")(T)—(ZWk(T))_”zexp i f Wi’ )dr] (BI)

where the effective frequency is

” 7.2\ 11/2
)
The WKB solution of W; is obtained by iteratively solving (B2) to
a desired adiabatic order. Take the Oth-order [25],

wO =k, (B3)

and the Oth-order adiabatic mode

Wi (1) =

"ZO) (1) = (2k)~ e I kdr’ (B4)
The Oth-order quantities that appear in the Oth-order subtraction
terms are
1 1
WP = —— = (BS)
WO %
W o)k
WP = [ +W =2 (B6)
© k
4w )3 2’
YOO 4 OO _ g (B7)
OVE_ L0 4 0r @ 0.
‘( a ) :a—z(lv | —;(vk Ve v vt
a2 oy 1k 21
+(;) vl )_ a7(§+( ) 2k) (B8)

These Oth-order subtraction terms are independent of ¢. The 2nd-
order adiabatic mode is

W2 (r) = QW () e W (B9)
The 2nd-order effective frequency is given by the firstiteration of (B2)

1
O (0) 2
1 1w 3, W 2
2 2 k k
k +(§—6)a R—z[ EO) _E(T) ]} . (B10)

(2) _
W=

Keeping only two time derivatives of a(r) gives

W - k2+6(§_,)7~k 3(5_1&% (B11)

W)= - 36~ 7)“ fa, (B12)

The 2nd-order subtraction term for the power spectrum is

Cow® 2% 2%

|V(2)|2_ 1 _ 1 3( l)a /ll (B13)

6l B
The 2nd-order subtraction term for p; and p; also involves the fol-
lowing terms

W'Y k 1\3a”
)72 _ (2) o R
P e

(2)7,(2) (2)(2) >
VDD D@ k ~0 (B15)
ko k k Vk ’
AW ,E2>)2

2 1o a (2)/(2)* (2),(2) %/ (2)
= (WP =205 +v )+(a)|v )

k 1 a’ 2
=20 T aala) e 8)%:173'
(B16)
These 2nd-order subtraction terms are dependent on &. A very im-
portant property of a massless scalar field is that W(z) W‘O) k for
the conformal coupling ¢ = }. Actually, W,(C") = W,(CO) =k holds for an
arbitrary nth-order, as is implied by the iteration formula (B2).
The 4th-order adiabatic mode is defined by

ST WD Vg
v @) = Wy e e (B17)
the 4th-order effective frequency is given by the iteration
1
(2) 1 (2) 2
1 (W, 3,.W 2
@ _ |2 (e W\ 2p [ 3%
W =+ (¢ 6)a R 2( W 2( e ) ]] ) (BI8)
!

Keeping up to four time derivatives, the following are obtained
)

3é-4a” 9, 12a
(4) 6
W, =k ——=(é-=) 5=
A It 1
1 3 " a’ 2 28" a’ 24 Za//
_(5_6)@( a @ & a (B19)
and
@1 1 a 3 a//// a//2
O = e DS e (L
a/2a// a///a/ 1.2 27 a//2
2 -2 )+( ‘g) TR (B20)
Then,
1 3a” 1,9 a”?
@2 _ % _(£— 2 2
1= +(E 02 e w e
3 g a//Z 20"’ 2(1,2 ’”
—(f— @( 22 e ), (B22)
4’ 1" ’ o
WO @ @@y T :_§(§_1)(a _aa)
k Yk k 2(W,ﬁ4))2 2 B2
(B23)
put together yields
vy 4 a . ay @ 4 a
|(%)/‘2 [Iv( Y <o o )*+v](( N )+(;)2|V(k4)|2]
_1 k 1 a/2 1 ) 9 a//Z
2 2k a? 6 2k 43 a2
1 3 g ar/2 6a’a’ loa/ZH//
—(¢-=2)— - - . B24
€ 6)8k3 a a2 a? a’ )J (B24)

These 4th-order subtraction terms are also dependent on ¢. The
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portions up to the two time derivatives of the above reduce to the The 6th-order effective frequency is derived by iteration
2nd-order results. (4) " @, ]2
. L © _ |2 1oy, 1 3 W 2%
Similarly, the 6th-order adiabatic mode W=l +(E-g)aR-5 W(4) —5( 2@ 7l - (B26)
VO (r) = W ) 2 W (B25)

Keeping up to six time derivatives, one obtains

3 ) 12 1711 172 20" d 2 12 1 73
W ks (fk S g (aa T e ) TE D ow
. ({;_ %)2 (45a///2 27“1/3 . 274" o . 15361/261”2 99a"" a’ a”’ (é‘_ %) 3" 3a///2
K 82 4d® 4a? 8a* 4] B\ 16 4a?
9a//3 B 3a""" a’ B 21a"" a"” . 9a////alz B 9a///al3 . 9al4a// B 27[1/2[1”2 N 6a///a/a//) (B27)
8a3 4a? 16a2 4a3 2a* 2a’5 4a* a3 ’
and
Oy L3 ar 3E-p) @ o 2ala 2aval) 2E- R @ 13565
k Tk k3 a 4k5 a a? a3 a? 2kS a? 2k7 a3
(é:_ 1 ( 45a///2 . 4561”3 B 450" o’ _ 225a/2a//2 . 1354 d’a”’ ) . (é‘_ %) ( ~ 31" . 3a///2 _ 9a//3
14 8a2 4a3 4q? 8at 4a3 k7 16a 4q2 8a3
3" 2a"a” 9(1”"(1’2 9[1”,0,3 9(1'411” 27a12a/12 6a"d’a” —
* 4q? * 1662 4a3 * 274 245 * 4t &P ' (B28)
Then
©)2 _ (6)\—1
v, 1"=CW; )™, (B29)
O LY ey k- - Pd? 3E-p (@ o 2ad 2
™1 = (4(W(6>)3 k )’ 2 T %ka T w2 8k3 a &2 & &
27(€: 1 )3 7”3 (f 63a 1112 27“//3 274" o 171“/2(//2 117a"d’ a"’
wa k5 o R v R T R v
(é: _ E) 3" 3a///2 ga//3 34" a! 214" a” 9a////a/2 9u/lla/3
© \32a 82 164 82 324 | 85 4d
9a/4a// 27“/201/2 37"d a’’
+ _ + , B30
4a° 8at a’ (B30)
(6)/ s 1 2 i i,
WO O 5 4 O ©)5ry Wy __3(5—* a" da E-3)" (27a”a"  27d'a"
Vi Vi Vv T = 6 3 P S 2 3
2W, )2 2k? a a k 2a 2a
1 1107 s " 1 1012 13 1 ’ 112
- 3 9 3 9 9a’” 9
+( §) (3" 9a"a’  3d"a Jerat 9a%a” 9™y (B31)
k> 8a 8a? 2a? 4a3 4at 4a3
put together yields
(6) Ly 1\2 172 1
|(VL)'|2 _1 W2 ﬂl(v(s)’v(o)* (6) (6)* )+( ) W (6)|2 1]k a’? N 3¢~ _E-p)a” 3(¢- g)(ﬁ B ﬁ _6d"d
a a2k a kK 2|2 2ka? 2ka 4i3a? 8 N a  a? a2
. 10a'2a”)+ 27 -y . E-3)? 63a"? 274" L 2ara 495a"2a’"? 225a”'a’a”) E—=3) 327" 3d"
a3 4k5a3 k3 16a2 8a3 8a2 16a* 8a3 kS 32a 8a2
9(1”3 3a""a’ 204" a” 21&””[1,2 21“///‘1/3 210’411” 6a/2ar/2 9" d’a’”’
- - + - + - + . (B32)
1643 4q? 3242 8a3 4q* 4a5 a* 2a3
The portions up to the four time derivatives of the above reduce to P =3 kj . [7| ©r2, 2 kzlv(o)lz 26— é)(—2|"20),|2
the 4th-order results. i a, ,
. . a O 0« (0) (0)x/ a 2, 0)2 21,(0);2
The Oth-order subtraction terms for spectral energy density and +3;(Vk Vi VeV )‘3(;) Vi 17+ 267w 7
pressure are +12§ (0) ) K
o 0 0, © 1272a*"
pra0 == [P +k2|v< P+ (66~ 1) (00 (B34)
0,001y | (O)I )] K4 (B33) which are independent of £.
dn2a*’ The 2nd-order subtraction terms for the spectral energy density
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and pressure are which depend on &. It is important that the derivatives are kept only
K 1 3d 1 4 (66— b2 x? . . .
DAz = 7[ - ]— [ ] up to second order in these 2nd-order subtraction terms, and this
4nlat "6 k2 a? Anlatrt
(B35) will ensure the covariant conservation to the 2nd adiabatic order.
4 . .
Praz :%[1 +(E- ,)7(6i _97)] The 4th-order subtraction terms for the spectral energy density
127 6"k
(66— Db(b+2)2 (B36) and pressure are
Tanat [? - 6 ]’
K* 1.3a? 2d"a a'* 4d’a’? 1 (66 - 1)P2x>  3(66—1)2(b—Db*(b+1)
s = —|1-(->)=— - - - = 4
Phas = i gh [ g 6) 2 a? - ) 2k4( ) 2 3 ] A2 [x 3 + 3 , (B37)
k4 11 a’ a 2 2q"" 100" a’ 5q" 2 16a”d’ 2
puss = |+ 6 ) 6%~ ) e g g (P - R )
4 _ 2 (b —
_ 1 X1 (66— Db(b+2)x . GE-1)(b-Dbb+1)(b+4) . (B38)
Amlattt 6 8

The 6th-order subtraction terms for spectral energy density and pressure are

K* [ 3E-Ha? 9E-D? (2a7d 4a’2a”)+(,—%)3( 27a'"3 243a’2a”2+81a”’a’a”)+(§—é)2 9a""* 94’

PRAS = gt a2 @ & a’ IS a? 2a* a’ k6 82 | dad
. 94" o' ~ 94" g"" ~ ga////a/Z N 18[1”'(1,3 B 18a14an . 9gal2a//2 B 274" a’ a’”’ )] _ 1 . (65— 1)b2X2
4a? 4a? a3 a* a’ 8a* 4a3 4nlattt 2
366— 12(b— Db+ 1) SO0 12(b= Db (b +2)[(1-6£)(b? - b) -2
N + i (B39)
8 16x2
which is the first four terms of py in (30),
K (€-5)(6a” 942\ 9E=5) (24 10a"a 5a” 16a%a”\ (=)’ (- 8la”? 1354 8la"d"
Prae =15 044 k2 a a? 2k4 a a? a? a3 ko a? a3 a?
121 5a12a//2 5674""a’ "’ (g_ 1 9q’"""" 81“///2 63(1"3 63a"""a’ 184" a"" 54a////a12
- + ) (— + - + + -
2a* a3 ko 4a 8a? 4a3 4q? a? a3
. 108a”"a’®  108a*a” . 1071a%a’*  423d"”d’a” ¥ (6£- Db(b+2)x* (65— D2 -Dbb+1)(b+4)
a* a’ 8at 4a3 47r2a47'4 6 8
, S6e- 12(b= Db(b+2)(b+6)[(1-66)(b> ~ b) -2
\ (B40)
48x2
[
which is the first four terms of p; in (31). so that the Oth-, 2nd-, 4th-, and 6th-order subtraction terms are all
As previously mentioned, for the conformal coupling £ = £, equal. Inspection of iteration (B2) tells that, for ¢ = £, the subtrac-

(WIEO))—I - (W]?))—l - (W1£4))_1 - (W;f’))—l 1 (B41) tion terms of any order are the same as those in (B41)-(B44).

k Now we show that the four-divergence of the subtraction terms
WO =P = PP = P = % (B42) of the stress tensor is zero at each adiabatic order
PKAO = PkA2 = PkA4 = PkA6s (B43) (T 3)an = 0- (B45)
PkAO = PkA2 = Pk4 = Pka6s (B44)  The time derivative of Eq. (B39) gives

Pias :ma' [648(,5:— é) A -3 - 7)a ( 3(¢- é)a + 1263 - é ya'"" + 8k4a”) +36(¢ - é)zaa'z ((108(§— é) ~19)a”? - lSa’”a')

36t LY ((6(5— D)) a2 (1aia” ~0a) e 2as(e - 1) - )) #9(e 1) (8K +2(e 1) (16K~ 5ol

1 1 1112 2 12 1 " // 6
(e 2 )(6(6(e - )= 1)a"? + 4+ (36(¢ - £ ) ~5)a""a )) 16k°4° (B46)
[
and combining (B39) and (B40) gives so that the four-divergence of the 6th-order subtraction terms is
3% (ouas + Pras) = ~Plag: (B47)
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’

, a
Piag + 3~ (Pras + Pras) = 0. (B48)
Similarly, it is checked that
al
pl/cAn+3; (Pran+ Pran) =0 (B49)

is valid for n = 0,2,4. Hence, the covariant conservation

(T‘HV(") ;V>reg = <T‘uv ;V> - <T#V ;V>An =0 (BSO)

is respected by the regularized stress tensor at each order we need

in this paper.
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