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Abstract: We reduce all the most complicated Feynman integrals in two-loop five-light-parton scattering amplitudes

to basic master integrals, while other integrals can be reduced even easier. Our results are expressed as systems of lin-

ear relations in the block-triangular form, very efficient for numerical calculations. Our results are crucial for com-

plete next-to-next-to-leading order quantum chromodynamics calculations for three-jet, photon, and/or hadron pro-

duction at hadron colliders. To determine the block-triangular relations, we develop an efficient and general method,

which may provide a practical solution to the bottleneck problem of reducing multiloop multiscale integrals.
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1 Introduction

Owing to the good performance of the large hadron
collider (LHC), we have entered the era of precision
high-energy physics. Some of the most important observ-
ables are three-light particles or jet production cross-sec-
tions [1-3], which can both be used for testing the strong
interaction at high energies and for determining the
quantum chromodynamics (QCD) coupling constant.
From the theoretical viewpoint, predictions with compat-
ible precision are needed, which requires perturbative
QCD calculations up to the next-to-next-to-leading order
(NNLO). Although significant advances have been made
in the past few years [4-24], a complete NNLO result is
still unavailable. One of the main concurrent obstacles is
computation of two-loop amplitudes.

To evaluate a two-loop five-light-parton scattering
amplitude, one usually first generates an integrand, re-
duces all of the Feynman integrals to linear combinations
of relatively simpler master integrals (MlIs), and finally
calculates these MIs. Because integrands can be obtained
either using the unitarity method [4-9] or using the con-
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ventional Feynman diagram method, and because MIs
can be calculated analytically [20-24], the bottleneck is
the reduction of Feynman integrals. For example, the
non-planar contribution of two-loop three-photon produc-
tion at the LHC cannot be calculated, owing to the lack of
such reduction for nonplanar integrals [19].

Reduction is usually achieved by integration-by-parts
(IBP) identities combined with Laporta's algorithm [25-
35]. Although many interesting proposals have been
made recently for improving the IBP reduction [36-49],
the problem of reducing multiloop multiscale integrals
has not been fully solved yet. The difficulty is twofold.
On the one hand, owing to the number of scales, an expli-
cit solution of the IBP system is usually too big to be
used in numerical calculations; in addition, it is very dif-
ficult to obtain [47-51]. On the other hand, although solv-
ing the IBP system numerically in a single run is feasible,
one usually needs to solve it many times, for either the
phase space integration or fitting analytical expressions,
which is very time- and resource-consuming. For ex-
ample, to reconstruct the fully analytical two-loop five-
gluon all-plus helicity amplitude [17], one needs to run
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the numerical computation of the IBP for nearly half a
million times'. If one uses the same method for recon-
structing analytical one-minus or maximal-helicity-viola-
tion amplitude, many more IBP calculation runs may be
needed, which becomes prohibitive.

We note that a reduction can be obtained efficiently if
a system of block-triangular relations is found, which has
a small expression size and can be solved numerically
very efficiently. Using our proposed series representation
of Feynman integrals as input [52, 53], in Ref. [52] we
described an algorithm that searched for block-triangular
relations and yielded some preliminary results. Although
our method developed in Ref. [52] is sufficiently good for
reducing integrals with integrands having only denomin-
ators, the method is very time-consuming for physical
problems that contain integrands with numerators.

In this paper, by further developing the method in
Ref. [52], we propose a two-step search strategy along
with a reduction scheme that is suitable for physical prob-
lems. Based on this, we successfully find out block-trian-
gular relations to reduce integrals in two-loop five-light-
parton scattering amplitudes. As expected, the relations
are only 148 MB in size, and can be numerically solved
hundreds of times faster than using other methods. Our
work constitutes an important step towards the complete
NNLO QCD calculation for three-jet, photon, or hadron
production at the LHC. Because our method is efficient
and general, it can be straightforwardly applied to any
other process, thus providing a practical solution for the
bottleneck problem of reducing Feynman integrals.

2 Feynman integrals in two-loop five-light-
parton scattering amplitudes

To obtain the very much needed reduction of Feyn-
man integrals in two-loop five-light-parton scattering
amplitudes, we only need to consider integrals that ori-
ginate from the four topologies shown in Fig. 1. All the
other Feynman integrals are one-loop-like, and can be
dealt with much easier.

Let us consider the most complicated case, topology
(a) in Fig. 1, as an example that will explain what kind of
Feynman integrals do we need to reduce. There are five
external momenta p;,---,ps flowing into the diagram,
satisfying on-shell conditions p? =0 (i=1,---,5) and mo-
mentum conservation Y3, p; = 0. As a result, this prob-
lem contains five independent mass scales, which can be
chosen as §={s,s2,53,54,55} with s;=2p;-p;y; and
ps = p1. With two loop momenta ¢; and ¢,, a complete
set of Lorentz scalars can be chosen as

£y
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Fig. 1.
hexa-box; (c) penta-box; (d) hexa-triangle.

All 8-propagator families: (a) double-pentagon; (b)

Dy =6;,Dy = (€, + p1)*, D3 = (6 + p1 + p2)°,
Dy =03, Ds = (£ + p3)*,Dg = (C1 + Lo+ p1 + p2 + p3)’,
D7 =(€1+ 6 ps)*, Ds = (61 +0)?,
Dy =(t2+ p1)?,D1g = (L2 + p2)?,
Dy =(6+ pa)?, )

where the first eight are inverse propagators and the last
three are introduced to make the set complete. Then, the
family of integrals defined by topology (a) can be ex-
pressed as

4-2, 4-2, Yo y~Vio )~ Vu
I(e.5) = d*2€f;d* 20, Dy "Dy Dy @)
e (in2-€)2 D'..D}
|- Dy
where the indexes vy,---,vg are integers, vg, vio and vy

are nonpositive integers. Two integrals in this family are
said to be in the same sector if the positions of their posit-
ive indexes are the same. The degree of an integral is
defined by the opposite value of the summation of all of
its negative indexes. Finally, we call a degree-m integral
is -type if it has n positive indexes and all of these pos-
degree-5 integral in the top sector, and it is %-type.

For later convenience, we define operators m* (for a
non-negative integer m), which generate a set of integrals
in the same sector or its subsectors when acting on an in-
tegral. For any integral Iy, 0*I; =I5, nmilvzﬁz’—'iilv,
171 generates a set of integrals with one index decreased
by 1, and i*I; generates a set of integrals with one
nonzero index increased by 1. For example, we have

1) We thank Y. Zhang for pointing out this. Here and in the rest of the paper, if not specified, "numerical" means rational numbers over a finite field of a big prime

number.
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T -a0-1) = e 011 1,1-40.1)s
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and

~

I n,1-40-1 = Hi0,1,1,1,1,1,1,1,-4,0.- 1)
Li1,0,1,1,1,1,1,1,-4.0,-13- 1(1,1,0,1,1,1,1,1,-4,0,~ 1}
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Li1,1,1,1,1,0,1,1,-4.0,-1)> 1(1,1,1,1,1,1,0,1,-4,0,~ 1}»
L1,10,1,1,1,0,-4.0,-135 D(1,1,1,1,1,1,1,1,-5,0,- 1)

T, 0,0 == 113 T L1 11,1, 1,-40,-2) ) - 4)

We also define operators 7°, which can generate a
set of integrals as a union of integrals generated by
{m-,m—-1 ,---,07} when acting on an integral.

As is well-known, the most complicatedl) integrals in
the amplitudes are those with the highest number of
propagators, i.e., v,=1(=1,---,8), and the highest nu-
merator degree, i.e., —(v9+vip+vi1). By studying the
two-loop five-gluon scattering amplitude diagram by dia-
gram, we find that the highest numerator degree is 5 for
all integrals. Therefore, we define an integral set

S@ =5%T1,1,1,1,1,1,1,1,0,0.0)» Q)

which contains 3914 nonzero integrals with all of the
most complicated integrals in five-gluon scattering amp-
litude being included. Because the five-gluon scattering
amplitude is sufficiently general, all of the most complic-
ated integrals (if not all integrals) belonging to topology
(a) appearing in five-light-parton scattering amplitudes
are included in set S,. In fact, for the two-loop five-
gluon all-plus helicity amplitude, integrals in topology (a)
form a subset of S, [5]. Therefore, for the purpose of re-
ducing integrals in physical amplitudes, the main job for
topology (a) is to reduce integrals in set S ).

For topologies (b), (c), and (d) in Fig. 1, we define
sets of target integrals S ), S and S ), similar to S .

3 Search for block-triangular relations

Before presenting our method for reducing two-loop
five-light-parton integrals, let us first point out that for
multiscale problems, expressing general integrals in terms
of MIs explicitly is not preferred, even at the one-loop
level. Instead, one usually sets up a system of block-trian-

gular relations that can numerically relate all of the integ-
rals to MIs (see [54] and references therein).

The advantage of a system of block-triangular rela-
tions over the explicit solution can be understood based
on the integrals' singularities. If we express a complic-
ated integral as a linear combination of simpler Mls,
powers of Gram determinants will appear in the denomin-
ators of the coefficients of these Mls, which is necessary
because only thus the linear combination of MIs can gen-
erate correct singularities of the target integral. Then, the
numerators of these coefficients will have high mass di-
mensions and thus will have very long expressions. This
difficulty can be nicely resolved using a system of block-
triangular relations. Relations in each block can be very
simple, but their solution can naturally generate Gram de-
terminants in the denominator. Furthermore, correctly
choosing the blocks may result in the solution involving
only one Gram determinant.

Because reduction at the multiloop level is much
more complicated than for the one-loop case, the above
discussion implies that constructing a system of block-tri-
angular relations may be the best way to reduce mul-
tiloop multiscale integrals. Unlike the one-loop case,
where block-triangular systems can be achieved easily by
analytically solving the IBP relations, block-triangular
systems at the multiloop level are in general difficult to
obtain.

In Ref. [52], based on our proposed series representa-
tion of Feynman integrals [52, 53] as input information,
we constructed an algorithm that searched for block-trian-
gular relations to reduce multiloop multiscale integrals.
However, we found the method to be very time-consum-
ing for physical problems, although it was efficient for re-
ducing integrals with integrands containing only denom-
inators. To deal with physical problems such as two-loop
five-light-parton integrals, we propose here a two-step
search strategy.

In the first step, we set up a system of relations that
can numerically express all of the target integrals in terms
of MIs. The system is allowed to be somewhat inefficient
in numerical calculations; thus, the system is not re-
quired to be block-triangular. This system can be ob-
tained either by using our series representation of Feyn-
man integrals [52], or simply by using the well-known
IBP system.

In the second step, we search for a system of block-
triangular relations, which needs to be very efficient for
numerical computations. The algorithm is the same as
that proposed in Ref. [52] except that, instead of using
our series representation of Feynman integrals, we use the

1) The definition of complexity is a consequence of a convention to order integrals. In our convention, integrals are thought to be more complicated if they have
more propagators, integrals in the same sector are more complicated if they have higher total denominator powers or if they have higher degree, and so on.
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numerical solution obtained in the first step as input in-
formation.

More details about the search strategy can be found in
appendix.

4 Reduction scheme and results

To apply the above-proposed search strategy to phys-
ical problems, we still need to introduce the reduction
scheme, which amounts to choosing target integrals and
other integrals that are allowed to appear in each block. In
this paper, integrals in each block are defined by operator
m® acting on a proper integral. For example, to reduce
the integrals in S (), all of the integrals are allowed to ap-
pear in the first block, and the target integrals in this
block are all the 21 most complicated integrals in the top
sector with degree 5. The first block enables us to ex-
press all the 21 most complicated integrals in terms of
simpler integrals. Then, in the second block, we choose
the most complicated integrals among the rest of the in-
tegrals as target integrals, and use operator /7° acting on a
proper integral to generate a set of integrals that covers
all the target integrals. Then, the process is repeated.
Eventually, any integral can be expressed in terms of sim-
pler integrals.

Using the above method, we successfully determined
systems of block-triangular relations for integrals in the
four topologies in Fig. 1. The file sizes for all of these re-
lations are acceptable, ~148 MB. To obtain these results
required ~200 central processing unit (CPU) core hours
to search for relations in the second step of the two-step
search strategy, in addition to hundreds of CPU-core
hours for generating input information by numerically
solving the system obtained in the first step. Some basic
information about these results is listed in Table 1.

For more intuitive understanding, we show a matrix
density plot for the block-triangular system of topology
(a) in Fig. 2. This system contains 3914 integrals and 108
MIs, which means we need 3806 linear relations to re-
duce all of the target integrals. In this plot, each line rep-
resents a relation, each column corresponds to an integral,
and black points represent nonzero elements in the mat-

Table 1.
tsearch represents the CPU time required to search for these relations

Main information about the obtained reduction relations.

in the units of CPU-core hours. fsve represents the time spent to
solve these relations numerically using one CPU.

top. #int. #Mls tsearch/h tsolve/S size/MB
(a) 3914 108 112 0.17 66
(b) 3584 73 31 0.090 40
(c) 3458 61 56 0.075 31
(d) 2634 28 8 0.035 11
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Fig. 2. Matrix density plot for relations of topology (a). Each
row represents a relation and each column represents an in-
tegral. Black points represent nonzero elements.

rix. Integrals are ordered, from the most complicated one
to the simplest one, with Mls at the end of each line. The
matrix is exactly block-triangular, and the largest block
contains only tens of relations.

Analytic expressions for all of these relations are
available from the website in [57]. Technical details
about our reduction scheme can be found in appendix.

5 Validation and comparison with other
methods

Our final reduction relations have been verified nu-
merically using an independent code FIRE6 [29] for ran-
domly chosen phase space points, and the results of both
approaches were in a good agreement.

For each given numerical point € and §, solving our
reduction relations of the four families cost 0.4 s using
one CPU, as is shown in Table 1. The time spent can be
divided into two parts: assignment (substituting numeric-
al € and § into the system), which is proportional to the
file size; and solving the system, which depends on both
the number of relations and how these relations are
coupled with each other. Because our systems are block-
triangular, the time spent on the latter part is shorter.
Therefore, the efficiency of numerical calculation of our
reduction relations can be simply estimated by the file
size.

Compared with explicit solutions, the file sizes of our
reduction relations are much smaller. The file size for ex-
plicit solutions of eight-propagator integrals with degree
up to 4 in topology (a), 26 integrals overall, is ~2 GB
[48]; that for the explicit solutions of eight-propagator in-
tegrals with degree up to 4 in topology (b), 32 integrals
overall, is ~0.8 GB [47]; and that for the solutions of all
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integrals in topology (c) is in excess of 20 GB for a com-
pressed format [49]. It can be expected that our relations
should be hundreds of times smaller than the complete
explicit solution in terms of the file size, which results in
more than a 100-fold speedup of numerical calculations,
even if there is no memory deficit for storing the huge ex-
pressions of explicit solutions.

We note that the file size of trimmed IBP relations to
reduce all of the integrals considered in this work is a few
GB, which is also much larger than that of our reduction
relations. The reason is that, although each IBP relation is
simpler than ours, the IBP system involves hundreds of
times more equations. Furthermore, the time spent on nu-
merical IBP is dominated by the latter factor, because
IBP relations are coupled in a complicated way. As a res-
ult, numerical IBP should be much more inefficient than
our method. Through our test, numerical IBP via
FiniteFlow [35] combined with LiteRed [34] costs
about 2 min for each phase-space point, which is slower
than our method by more than a 100-fold.

The above comparison reveals the advantage of our
method. Numerical evaluation of explicit solutions
spends too much time on assignments; while numerical
IBP spends too much time on solving linear equations.
Our method performs better on both parts, and therefore
itis much more efficient. Similar to numerical evalu-
ations over the field of prime numbers, our reduction re-
lations should also be much more efficient for numerical
evaluations with floating numbers, which enables phase-
space integration to obtain physical cross-sections.

6 Summary and outlook

In this paper, we achieved the reduction of a set of in-
tegrals which covers all of the most complicated integ-

Appendix A: reduction method

A.1 Search strategy: step one

We take integrals originated from topology (a) in the main text
as an example for explaining the details of our technique.

We want to set up a set of relations, using which we can ex-
press all integrals in S, in terms of MIs for any given phase-space
point (rational numbers for both § and ¢), with coefficients calcu-
lated in the finite field of a 63-bit prime number. Although the IBP
method [25-35] can do this, we would like to explain in the follow-
ing that our method proposed in [52] may provide a better choice.

For each given integral Iy, called a seed, there are 12 IBP rela-
tions among the integral set

G = (1" 171"}, (A1)

In addition, there are six relations owing to the Lorentz invari-

rals in two-loop five-light-parton scattering amplitudes.
Our results are expressed as systems of linear relations in
the block-triangular form, which are very efficient for nu-
merical calculations. The remaining integrals involved in
amplitudes can be easily reduced using the same method,
on demand. Therefore, a complete reduction of integrals
in two-loop five-light-parton scattering amplitudes, which
challenges all other methods, is available now. Because
Mls are already known [20-24], our results provide the
complete calculation of two-loop five-light-parton scat-
tering amplitudes, and thus complete NNLO calculation
of three light particles or jet-production at the LHC on the
horizon.

To obtain the block-triangular relations, we de-
veloped the method in Ref. [52] by proposing a two-step
search strategy along with a reduction scheme. As our
newly developed method is general and efficient, other
more complicated problems, like two-loop integrals for
tf+jet, tfH, or 4-jet hadron production, are also within
reach. Our work opens the door for complete NNLO
QCD calculations for production of three or more
particles at the LHC.

In the current application of our method, most CPU
time is allocated to solving the system obtained in the
first step. Although the time spent is tolerable for the cur-
rent problem, improvement may be needed for more com-
plicated applications. There are different options. Using
the method in [52], better integral sets can be explored.
Another possible choice is to use trimmed IBP systems
obtained by solving the Syzygy equations [44-48]. These
possibilities will be addressed in future studies.

We thank K.T. Chao, F. Feng, Q.J. Jin, Z. Li, X.H.
Liu, H Luo, C. Meng, J. Usovitsch and Y. Zhang for
many useful communications and discussions.

ance [55], which can be interpreted as linear combinations of IBP
relations from other seeds [56].

The above IBP relations can also be found out easily using the
method proposed in [52]. To this end, we introduce a parameter n
for all integrals in GI*, and then search relations among them us-
ing input information from the series representation [52, 53]. Up to
dimax = 1, where dn.x 1s a half of the maximal value of the mass di-
mension for the coefficients of relations, we find at least 12 rela-
tions; while up to dima.x =2 we find at least 12+6 relations. Because
these relations are analytical in n, we can take n — 0 directly and
recover the aforementioned 12 +6 IBP relations.

The advantage of our method in [52] is that it allows to search
for relations among any set of integrals. As the simplest generaliza-
tion of G, we can define an integral set
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Gy = {11711, (A2)
and search relations among them. Up t0 dmax =2, there are typic-
ally 2 more relations besides 12+6 IBP relations for each seed.
With more relations in hand, it is possible to select better relations
to achieve a more efficient reduction. For example, our relations
from all #-type seeds can already reduce 15 out of all 3 -type integ-
rals to integrals with lower degree (these relations are available at
[57]). IBP relations from these seeds cannot achieve this, because
2 -type integrals do not show up.

One can certainly explore other integral sets for each seed, to
further improve the reduction efficiency. We did not do that be-
cause the efficiency of either the IBP set (6) or the generalized set
(7) is sufficient for us to deal with the problem in this work.

With integral sets in hand, we generate a system of linear equa-
tions from all seeds belonging to Z-type with 3<n<8 and
0<m<5, and use the package FiniteFlow [35] to trim the system
by removing redundant relations and solving the trimmed system
numerically, which expresses all integrals in S, as linear combin-
ations of 108 MIs (after exploring symmetries among MIs using
LiteRed).

A.2 Search strategy: step two

In this step, we search linear relations to reduce the given tar-
get integrals in G; C S, to simpler integrals in G, C S, (the redu-
cibility can be tested numerically easily). Combining the reduction
scheme that will be described in the next section, a block-triangu-
lar system can be finally obtained.

We first describe how to search linear relations among the in-
tegral set G :={I},...,Iy} € Sy of the form

N
Z 0i(e, NIi(e,5) =0, (A3)
i=1

where Q;(e,§) can be decomposed as

€max
Oed) =) > O e, (A4)

«=0 ,TeQd‘.

where emax 1s the maximal power of e allowed to appear in the rela-
tion, Qg = (1eN5|A; ++--+15 =d;}, d; is a half of the mass dimen-
sion of Q; which can be fixed by dyax = max{d;,---,dy}, and Q:.dl'““
are unknown rational numbers to be determined. It is crucial to
point out that, for given emax and dmax, the number of unknowns is
finite. Therefore, it can be determined by a finite number of con-
straints. As will be explained in the following, these unknowns can
be determined by the result obtained in the first step.

Based on the system of equations in the first step, for a given
numerical point € and § every integral in G can be represented as
an 108-dimensional vector, with elements being the projection onto
MIs,

I;={Ci1,---,Cii08}), i=1,---,N. (AS)

By inserting these numerical vectors into Eq. (8), we obtain a
vector equation, which results in at most 108 independent con-
straints over the unknowns. By repeating the above procedure
many times (at most several thousand in this work), a sufficient
number of constraints can be obtained, for determining all of the
unknowns. As the above values are actually calculated in the finite
field of a given prime number, we still need to repeat the proced-
ure for several different prime numbers (at most 15 in this work)
and use the Chinese remainder theorem to reconstruct the real res-
ults of the unknowns. Finally, linear relations with given dmax and
emax are obtained.

To reduce G, to G,, we just set G :=G; UG, and search rela-
tions among G with different values of dp.x and enax. For the pur-
pose of the current work, we find it is sufficient to fiX €nax =3. To
find out simple relations, we follow the algorithm proposed in [52]
by starting the search procedure with dpmax =0 and increasing dmax
by 1 each time, until enough relations are obtained to reduce G; to
Gs.

A.3 Reduction scheme

The reduction scheme determines which integrals should be in-
volved in each block. We generate the integrals through previously
defined operator m° acting on properly chosen integrals.

For example, in the first block for topology (a), we need to re-
duce the most complicated 3-type integrals. To this end, we set
G = S(a) = 361(1’1_1,1’1Yl’1,1’090’0) with G chosen as all 21 %—type integ-
rals. We indeed find out 21 independent relations, which can re-
duce all 3 -type integrals to simpler integrals. The most complic-
ated relation corresponds to di.x = 7, which means that the coeffi-
cients of 3-type integrals are degree-2 polynomials in §. We then
reduce #-type integrals, which can be realized by setting
G =4°I1,11,1,1.1,1,1000 With G; chosen as all 15 £-type integrals. To
top-sector

reduce the rest of the integrals, we set

that are not Mls.
After reducing the top-sector integrals, we still need to reduce
the integrals in the subsectors. For example, for the seven-propag-

S are of #-type, we set G =4°1( 111,111,000,
all 35 £-type integrals in this sector.

Based on the above scheme, we obtain 3801 reduction rela-
tions. By introducing additional 5 symmetry relations among Mls,
we have 3806 relations in total that can express 3914 integrals in
S (@ as linear combinations of 108 MlIs.

We note that there is a way to further reduce the block size that
has not been applied in this work. For example, by setting
G= 391(0‘1,],|,1,],1,1,_]4,0,0,, we can generate smaller-size blocks to re-
duce a part of 4-type integrals.
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