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Abstract: Recently,  a  novel  four-dimensional  Einstein-Gauss-Bonnet  (4EGB) theory of  gravity  was proposed by
Glavan and Lin [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)], which includes a regularized Gauss-
Bonnet term using the re-scalaring of the Gauss-Bonnet coupling constant  in the limit .  This
theory has also been reformulated to a specific class of the Horndeski theory with an additional scalar degree of free-
dom and to a spatial covariant version with a Lagrangian multiplier, which can eliminate the scalar mode. Here, we
study  the  physical  properties  of  the  electromagnetic  radiation  emitted  from  a  thin  accretion  disk  around  a  static
spherically symmetric black hole in 4EGB gravity. For this purpose, we assume the disk is in a steady-state and in
hydrodynamic and thermodynamic equilibrium, so that the emitted electromagnetic radiation is a black body spec-
trum. We study in detail the effects of the Gauss-Bonnet coupling constant  in 4EGB gravity on the energy flux,
temperature distribution, and electromagnetic spectrum of the disk. With an increase in the parameter , the energy
flux, temperature distribution, and electromagnetic spectrum of the accretion disk all increase. We also show that the
accretion efficiency increases with the growth of  the parameter .  Our results  indicate that  the thin accretion disk
around a static spherically symmetric black hole in 4EGB gravity is hotter, more luminous, and more efficient than
that around a Schwarzschild black hole with the same mass for positive , while it is cooler, less luminous, and less
efficient for negative .
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I.  INTRODUCTION

Einstein’s  theory of  general  relativity (GR) was pro-
posed  over  a  century  ago  and  has  successfully  passed  a
large number of observational tests, primarily in the weak
field regime.  One of  the most  impressive results  derived
from GR is the prediction of black holes. Their existence
as physical  objects  is  consistent  with  available  observa-
tions of gravitational waves generated by the merging of
black  holes  according  to  the  LIGO  experiment  [1, 2],
through the extraordinary observation of the M87* black
hole shadow by the Event Horizon Collaboration [3], and
also  with  observation  of  the  electromagnetic  spectrum
emitted from an accretion disk around a black hole [4-6].
With these observations of black holes in the gravitation-
al and electromagnetic spectra, together with their future
developments,  tests  of  GR  and  its  alternatives  in  the
strong  gravity  regime  are  currently  gaining  considerable

attention.

α→ α/(D−4) D→ 4

In the  strong  gravity  regime,  the  observational  as-
pects of  black  holes  are  closely  related  to  a  narrow  re-
gion  not  far  from  the  event  horizon,  ranging  from  the
photon sphere to the accretion disk around the black hole.
This region is naturally of great significance, as it is per-
haps influenced  by  the  possible  higher  curvature  correc-
tions to the Einstein term in GR. The Gauss-Bonnet term
and  its  Lovelock  generalization  are  the  most  important
higher curvature terms studied in various alternative the-
ories  beyond  GR.  However,  in  four  dimensions,  the
Gauss-Bonnet  term  is  a  topological  invariant  and  thus
does not contribute to the gravitational dynamics; instead,
it  is  coupled  to  a  matter  field.  Recently,  a  novel  4EGB
theory  of  gravity  was  proposed  by  Glavan  and  Lin  [7],
which  includes  a  regularized  Gauss-Bonnet  term  using
the  re-scaling  of  the  Gauss-Bonnet  coupling  constant

 in the limit .  With such scaling, the
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Gauss-Bonnet term can make a non-trivial contribution to
the  gravitational  dynamics  in  the  limit .  However,
this modification is in contradiction with common know-
ledge and might cause some problems. This theory is not
well  defined in  the limit  [8-14].  Furthermore,  the
vacua  of  the  model  are  also  ill-defined  [15].  To  solve
these  issues,  several  variants  of  the  original  theory  have
been explored. In [10], it is shown that the original 4EGB
theory  can  be  reformulated  to  a  specific  class  of  the
Horndeski theory with an additional scalar degree of free-
dom. Its  Lovelock  generalization  as  a  scalar-tensor  the-
ory has also been considered in [11]. Similar results have
also been explored in [12, 13] by adding a counter term in
D-dimensions  and  then  taking  the  limit.  Another
regularization procedure  is  to  break  the  temporal  diffeo-
morphism invariance of the theory [16].  In this  way,  the
scalar degree  of  freedom  can  be  eliminated  by  a  Lag-
rangian multiplier  so  that  the  theory  has  the  same  num-
ber of degrees of freedom as GR.

α

Both  the  original  4EGB theory  and  its  variants  have
attracted much  attention  recently.  The  black  hole  solu-
tions [17, 18] and their physical properties, such as shad-
ows [19-21], quasi-normal modes [19, 22], the stability of
gravitational perturbations [23], the innermost circular or-
bits  of  massive  and  spinning  particles  [24, 25],  rotating
black  holes  [26],  charged  black  holes  in  anti-de  Sitter
(AdS) space [27],  radiating black holes  [28, 29], relativ-
istic  star  solutions [30], the gray-body factor  and Hawk-
ing  radiation  [31, 32],  the  stability  of  the  Einstein  static
universe [33], gravitational lensing [34, 35], the effect of
the speed of gravitational waves and scalar perturbations
[36],  observational  constraints  on  the  4EGB  theoretical
parameter  [36, 37],  and thermodynamic  geometry  and
phase  transitions  [38-41], have  been  extensively  ana-
lyzed. The BTZ black hole in three-dimensional Einstein-
Lovelock gravity has also been explored [42]. It is worth
noting that the holographic implications of the addition of
the Gauss-Bonnet term to the AdS gravity action in four
dimensions is addressed in [43].

In this paper, we explore the properties of the electro-
magnetic  spectrum  emitted  from  the  accretion  disk
around a static spherically symmetric black hole in 4EGB
gravity. For an astrophysical black hole, the study of the
electromagnetic  spectrum  from  the  accretion  process
around the  black hole  is  a  powerful  approach to  explore
the nature of the black hole spacetime in the strong grav-
ity  regime.  This  has  stimulated  many  studies  of  the  thin
accretion disk around various black hole spacetimes; see
[44-74] and the references therein. Therefore, it is natural
to  ask  whether  the  Gauss-Bonnet  corrections  of  4EGB
gravity  can  appear  in  the  electromagnetic  signatures  of
the accretion disk. To answer this question, we consider a
thin  relativistic  accretion  disk  model  around  a  4EGB
black hole, which is in a steady-state and in hydrodynam-
ic and thermodynamic equilibrium. In particular, we cal-

culate the energy flux, temperature distribution, and elec-
tromagnetic spectrum of the thin accretion disk and com-
pare these values with those in the standard GR case. The
possible  effects  of  the  Gauss-Bonnet  corrections  on  the
electromagnetic  signatures  from  the  thin  accretion  disk
are also explored.

α

The organization of our paper is as follows. In Sec. II,
we  present  a  brief  introduction  of  the  recently  proposed
4EGB  gravity  and  its  static  spherically  symmetric  black
hole solution.  In  Sec.  III,  we  study  the  geodesic  equa-
tions  for  the  timelike  particles  moving  in  the  equatorial
plane in the 4EGB black hole. Then, in Sec. IV, we study
the  physical  properties  of  the  electromagnetic  spectrum
emitted from the thin accretion disk around a 4EGB black
hole and  explore  the  effects  of  the  Gauss-Bonnet  coup-
ling constant  on the energy flux,  temperature distribu-
tion,  electromagnetic  spectrum,  and  accretion  efficiency
of  the  accretion  disk.  A  summary  and  discussion  are
presented in Sec. V.

II.  BLACK HOLE SOLUTIONS IN FOUR DIMEN-
SIONAL EINSTEIN-GAUSS-BONNET GRAVITY

In this section, we discuss the theoretical background
relevant  to  analysis  of  the  thin  accretion  disk  around  a
4EGB black hole.

Let  us  start  with  the  original  action  of  the D-dimen-
sional Einstein-Gauss-Bonnet gravity, which is

S EGB =

∫
dDx
√−g

 M2
Pl

2
R+αR2

GB

 , (1)

R2
GB ≡

RµνρσRµνρσ−4RµνRµν+R2

α MPl =

(8πG)−1/2

R2
GB

α→ α/(D−4)

D→ 4

D→ 4

where R is  the  Ricci  scalar  of  spacetime, 
 is  the  Gauss-Bonnet  term,  and

 is  the  dimensionless  coupling  constant.  Here, 
 is the reduced Planck energy, with G being the

gravitational constant. In four dimensional spacetime, the
Gauss-Bonnet term  is a total derivative; therefore, it
does  not  contribute  to  the  gravitational  dynamics.
However,  by  re-scaling  the  coupling  constant  as

,  it  is  shown by Glaan and Lin [7] that the
Gauss-Bonnet invariant  can  make a  non-trivial  contribu-
tion  to  the  gravitational  dynamics  in  the  limit .
With  such  scaling,  the  action  of  the  4EGB  in  the  limit

 can be written as [7]

S 4EGB =

∫
dDx
√−g

 M2
Pl

2
R+

α

D−4
R2

GB

 . (2)

Variation of this action with respect to the metric leads to
the field equation of 4EGB in a vacuum,
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Rµν−
1
2

Rgµν+
αM−2

Pl

D−4
Hµν = 0, (3)

where

Hµν =2(RRµν−2RµγR
γ
ν −2RλρRµλνρ+Rλρσµ Rνλρσ)

− 1
2

gµνR2
GB. (4)

Hµν
D−4

αHµν/(D−4)
D→ 4

Here,  we would  like  to  mention that  is  proportional
to  in D-dimensional  spacetime;  therefore,  in  the
field  equation  (3),  the  Gauss-Bonnet  contribution

 can  be  non-vanishing,  even  in  the  limit
.

However,  as  mentioned  in  the  previous  section,  the
theory  defined  in  this  way  has  no  well-defined  limit  [8-
14]. There  are  several  schemes  to  overcome  this  diffi-
culty in literature. One approach is to reformulate the ori-
ginal version to a specific class of the Horendeski theory,
which has the following action [10-13],

S =
∫
M

d4x
√−g

[ M2
Pl

2
R−2Λ0+ α̂

(
4Gµν∇µϕ∇νϕ

−ϕR2
GB+4□ϕ(∇ϕ)2+2(∇ϕ)4)]+S m, (5)

ϕ

gab→ e2ϕgab

ds2
D = ds2

4+ e2ϕdΩ2
D−4

where  is a scalar field inherent from D dimensions. In
[12, 13],  it  is  introduced  by  a  conformal  transformation

 .  In  [10, 11],  it  is  introduced  by  Kaluza-
Klein reduction of the metric .

Another approach  is  based  on  the  ADM  decomposi-
tion analysis and breaks the temporal diffeomorphism in-
vaiance  of  the  theory  [16].  In  this  way,  the  theory  only
has  spatial  covariance,  and  one  can  write  the  4-dimen-
sional spacetime metric as

ds2 = gµνdxµdxν

= −N2dt2+γi j(dxi+Nidt)(dx j+N jdt),
(6)

Ni γi jwhere N, ,  and  are the lapse function,  shift  vector,
and spatial metric, respectively. The action of the spatial
covariant 4EGB theory can be constructed as [16]

S EGB =

∫
dtd3x

√
γN

{
M2

Pl

2
( 3R−2Λ+Ki jK i j−K2)

+α
[
− 4

3
(8 3Ri j

3Ri j−4 3Ri jMi j−Mi jMi j)

+
1
2

(8 3R2−4 3RM−M2)
]}
, (7)

where

Ki j =
1

2N
(∂tγi j−2D(iN j)−γi jD2λGF), (8)

K = γi jKi j, (9)

Mi j =
3 Ri j+KKi j−KikK k

j , (10)

M = γi jMi j, (11)

λGFwith D denoting the spatial  covariant  derivative and 
being the Lagrangian multiplier.

In  all  of  the  theories  mentioned above,  for  either  the
original version or its variants, the static, spherically sym-
metric black hole solution shares the same metric form,

ds2 = − f (r)dt2+
dr2

f (r)
+ r2γ̄i jdxidx j, (12)

f (r) = 1+
r2

16πGα

1±
√

1+
64παG2M

r3

 , (13)

γ̄i j n ≡ D−2
D→ 4 n→ 2

α

−8GM2 ⩽ 8πα ⩽GM2

where  is  the  metric  of  an  dimensional  unit
sphere. In the  limit, . M denotes the mass of
the black hole, and the Gauss-Bonnet coupling constant 
is restricted to  [24]. The horizon of
the black hole is given by

r± =GM

1± √
1− 8πα

GM2

 , (14)

α > 0
8πα =GM2 α

−8GM2 ⩽ 8πα ⩽ 0

where there are two horizons when  and one degen-
erate horizon when . When  is negative, the
spacetime  is  also  well  defined  beyond  the  horizon  if

.  In  this  case,  the  black  hole  only  has
one horizon, which is given by

r+ =GM

1+ √
1− 8πα

GM2

 . (15)

−8GM2 ⩽ 8πα ⩽GM2
In  this  paper,  we  consider  the  black  hole  solution  in  the
region .  It  is  worth  noting  that  the
above solution was also found in gravity with a conform-
al  anomaly  in  [75]  and  was  extended  to  the  case  with  a
cosmological constant in [76].

III.  GEODESIC MOTION OF TEST PARTICLE IN
4EGB BLACK HOLE

The accretion disk is formed by particles moving in a
circular orbit around a compact object, the physical prop-
erties  and  electromagnetic  radiation  characteristics  of
which are determined by the space-time geometry around
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the compact object. To study the electromagnetic proper-
ties of the thin accretion disk around a 4EGB black hole,
let us first consider the evolution of a massive particle in
the black hole spacetime. We start with the Lagrangian of
the particle,

L =
1
2

gµν
dxµ

dλ
dxν

dλ
, (16)

λ

L = 0
L < 0

pµ

where  denotes the affine parameter of the world line of
the  particle.  For  a  massless  particle,  we  have ,  and
for  a  massive  one, . Then,  the  generalized  mo-
mentum  of the particle can be obtained as

pµ =
∂L
∂ẋµ
= gµν ẋν, (17)

which  leads  to  four  equations  of  motions  for  a  particle
with energy E and angular momentum l,

pt = gtt ṫ = −Ẽ, (18)

pϕ = gϕϕϕ̇ = l̃, (19)

pr = grr ṙ, (20)

pθ = gθθθ̇. (21)

λ

Here, a dot denotes the derivative with respect to the af-
fine  parameter  of the  geodesics.  From  these  expres-
sions, we obtain

ṫ = − Ẽ
gtt
=

Ẽ
f (r)
, (22)

ϕ̇ =
l̃

gϕϕ
=

l̃

r2 sin2 θ
. (23)

gµν ẋµ ẋν = −1
ṫ ϕ̇

For  timelike  geodesics,  we have . Substitut-
ing  and , we get

grr ṙ2+gθθθ̇2 =−1−gtt ṫ2−gϕϕϕ̇2 =−1+
Ẽ2

f (r)
− l̃2

r2 sin2 θ
. (24)

θ = π/2 θ̇ = 0

We  are  interested  in  the  evolution  of  the  particle  in
the equatorial circular orbit. For this reason, we can con-
sider  and  for simplicity. Then, the above ex-
pression can be simplified into the form

ṙ2 = Ẽ2−Veff(r), (25)

Veff(r)where  denotes the effective potential and is given by

Veff(r) =
(
1+

l̃2

r2

)
f (r). (26)

Veff(r)→ 1 r→ +∞

Ẽ > 1
Ẽ = 1

Ẽ = 1

α

α

ṙ2 = 0 dVeff(r)/dr = 0
Ẽ

l̃ Ω

It is immediately clear that  as , as
expected  for  an  asymptotically  flat  spacetime.  In  this
case,  particles  with  energy  can  escape  to  infinity,
and  is the  critical  case  between  bound  and  un-
bound orbits.  In  this  sense,  the maximum energy for  the
bound  orbits  is . Fig.  1 clearly shows  how  the  ef-
fective  potential  of  a  particle  in  the  4EGB  black  hole
spacetime depends  on  the  Gauss-Bonnet  coupling  con-
stant .  In this figure,  the peak of the effective potential
of a particle increases with . The stable circular orbits in
the equatorial  plane correspond to those orbits with con-
stant r, i.e.,  and . Under these condi-
tions,  the  specific  energy , the  specific  angular  mo-
mentum , and the angular velocity  of a particle mov-
ing in a circular orbit in the 4EGB black hole can be writ-
ten as

Ẽ = − gtt√
−gtt −gϕϕΩ2

=
f (r)√

f (r)− 1
2 r f ′(r)

, (27)

l̃ =
gϕϕΩ√
−gtt −gϕϕΩ2

=
r
√

r f ′(r)√
2 f (r)− r f ′(r)

, (28)

Ω =
dϕ
dt
=

f ′(r)√
2r f ′(r)

. (29)

The  marginally  stable  circular  orbits  around  the
4EGB black hole can be determined from the condition

d2Veff(r)/dr2 = 0. (30)

Combining  this  equation  with  (27)  and  (28)  and  solving
for r, the radius of the marginally stable circular orbit can
be calculated as

 

l̃ = 3.7

Fig.  1.    (color  online)  Effective  potential  of  a  particle  with
 in the 4EGB black hole spacetime.
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rms =
3 f (rms) f ′(rms)

2 f ′2(rms)− f (rms) f ′′(rms)
, (31)

rms
α

α

which  does  not  admit  any  analytic  solution.  We solve  it
numerically  and  plot  the  result  in Fig.  2,  which  clearly
shows that the radius of the marginally stable circular or-
bit  decreases with increasing Gauss-Bonnet coupling
constant .  In addition, we give an approximate analytic
result  for  the  marginally  stable  circular  orbits  using  a
Taylor expansion when  is small, which yields

rms = 6GM− 44π
9M
α+O(α2). (32)

α
This approximate analytic result clearly shows that posit-
ive values for  tend to decrease the radius of the margin-
ally stable  circular  orbits.  Here,  we  would  like  to  men-
tion  that  the  evolution  of  the  massive  particles  in  the
4EGB black  hole  and  the  marginally  stable  circular  or-
bits have also been studied in [24].

IV.  ELECTROMAGETIC PROPERTIES OF THIN
ACCRETION DISK AROUND THE 4EGB

BLACK HOLE

H≪ R
gtt gtϕ grr gθθ gϕϕ

In this  section,  we  consider  the  steady-state  thin  ac-
cretion disk model and apply it to studying the accretion
process  around  the  4EGB  black  hole.  For  this  purpose,
we  adopt  the  Novikov-Thorne  model  of  a  thin  accretion
disk consisting of  anisotropic  fluid  moving in  the  equat-
orial  plane  [77, 78].  In  this  model,  the  disk  height H is
negligible  compared  with  the  characteristic  radius R of
the disk, i.e., . This assumption leads to the metric
components , , , ,  and  only depending on
the radial coordinate r. The disk is also assumed to be sta-
bilized  at  hydrodynamic  equilibrium,  with  the  pressure
and vertical  entropy  gradient  being  negligible.  An  effi-
cient  cooling  mechanism via  heat  loss  by  radiation  over
the disk surface is assumed to be functioning in the disk,
which prevents  the  disk  from  collecting  the  heat  gener-

ated by stresses and dynamic friction. The thin accretion
disk has an inner edge at the marginally stable orbit of the
compact  object  potential,  and  the  accreting  matter  has  a
Keplerian motion in higher orbits.

The physical properties of the accretion disk are gov-
erned by certain structure equations, which arise from the
requirement of the conservation of the rest mass, the en-
ergy, and the angular momentum of the fluid. In the thin
accretion disk  model,  the  stress-energy  tensor  of  the  ac-
creting  matter  in  the  disk  can  be  decomposed  according
to [77, 78]

T µν = ρ0uµuν+2u(µqν)+ tµν, (33)

where

uµqµ = 0, uµtµν = 0, (34)

ρ0 qµ tµν

uµ

∇µ(ρ0uµ) = 0

where  the  quantities , ,  and  represent  the  rest
mass density, the energy flow vector, and the stress tensor
of the accreting matter, respectively, as defined in the av-
eraged rest-frame of  the orbiting particle  with four-velo-
city . From the equation, if the rest mass is conserved,
i.e., , it follows that the time averaged rate of
accretion of the rest mass is independent of the disk radi-
us,

Ṁ0 = −2π
√−gΣur = const., (35)

Σ(r) =
∫ H

−H
< ρ0 > dz, (36)

Σ(r)where  is the time-averaged surface density, and z de-
notes cylindrical coordinates. According to the conserva-
tion law  of  the  energy  and  the  law  of  the  angular  mo-
mentum conservation

∇µT tµ = 0, ∇µTϕµ = 0, (37)

one can  obtain  the  time-averaged  radial  structure  equa-
tions of the thin disk around the 4EGB black hole,

[Ṁ0Ẽ−2π
√−gΩWr

ϕ],r = 4πrF(r)Ẽ, (38)

[Ṁ0 l̃−2π
√−gWr

ϕ],r = 4πrF(r)l̃, (39)

Wr
ϕwhere  is the averaged torque and is given by

Wr
ϕ =

∫ H

−H
< tr
ϕ > dz,

√
−G =

√
1+ lr. (40)

< tr
ϕ > ϕThe quantity  is  the average value of the -r com-

 

rms

α

Fig. 2.    (color online) Marginally stable orbit radius  as a
function of the Gauss-Bonnet coupling constant  for particles
moving in the thin accretion disk around the 4EGB black hole.
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∆t ∆ϕ = 2π
Ẽ,r = ωl̃,r F(r)

ponent of the stress tensor over a characteristic time scale
 at  the  azimuthal  angle . By  applying  the  en-

ergy-angular momentum relation ,  the flux 
of  the  radiant  energy  over  the  disk  can  be  expressed  in
terms of the specific energy, angular momentum, and an-
gular velocity of the orbiting particle in the thin accretion
disk around the 4EGB black hole,

F(r) = − Ṁ0

4π
√−g

Ω,r

(Ẽ−Ωl̃)2

∫ r

rms

(Ẽ−Ωl̃)l̃,rdr, (41)

rmswhere  is the inner edge of the thin accretion disk and
is assumed to be at the radius of the marginally stable cir-
cular orbit around the 4EGB black hole.

F(r)

α

M = 106M⊙ Ṁ0 = 10−12

M⊙/yr F(r)

α
α

α

α
α

α

We calculate  the radiation flux  numerically and
illustrate its  behavior as a function of the radial  distance
for various values of the Gauss-Bonnet coupling constant

. Following [46, 47], here, we consider the mass accre-
tion  driven  by  the  4EGB  black  hole  with  a  total  mass

 and  a  mass  accretion  rate  of 
. In Fig. 3, we present the energy flux profile 

radiated by a thin accretion disk around the 4EGB black
hole  for  various  values  of  the  Gauss-Bonnet  coupling
constant . The energy flux grows monotonically with in-
creasing value of . The figure shows that the energy flux
possesses a single maximum, which also grows monoton-
ically with increasing . At the same time, its radial posi-
tion  is  shifted  toward  the  location  of  the  horizon.  The
main reason is that for positive , the effect of the Gauss-
Bonnet  coupling  constant  decreases  the  radius  of  the
marginally stable  orbit,  so  that  the  lower  limit  of  the  in-
tegral in (41) becomes smaller, while for negative , the
radius of the marginally stable orbit increases, so that the
lower limit becomes larger.

F(r)

The accreting matter in the steady state thin disk mod-
el is considered to be in thermodynamic equilibrium. The
radiation flux  emitted by the thin accretion disk sur-
face will  thus  follow  the  Stefan-Boltzmann  law.  There-
fore,  the  effective  temperature  of  a  geometrically  thin

black-body disk is given by

Teff(r) =
(

F(r)
σ

)1/4

, (42)

σ = 5.67×10−5 erg s−1 cm−2 K−4

Teff(r)

α

α α

α

where  is  the  Stefan-
Boltzmann constant. In Fig. 4, we display the radial pro-
file of the effective temperature  of the thin accre-
tion disk around the 4EGB black hole for various values
of  the  Gauss-Bonnet  coupling  constant .  The  effective
temperature shows behavior similar to that of the energy
flux shown in Fig. 3. It is easy to see from Fig. 4 that the
temperature at the fixed radius grows monotonically with
increasing value  of .  For  a  positive  value  of , the  ac-
cretion  disk  is  hotter  than  that  around  a  Schwarzschild
black hole, while it is cooler for negative .

L(ν)

Because we consider the radiation emitted by the thin
accretion disk surface as perfect black body radiation, the
observed  luminosity  of  the  thin  accretion  disk
around the 4EGB black hole has a red-shifted black body
spectrum [79, 80],

L(ν) = 4πd2I(ν)

=
8πhcos i

c2

∫ r f

ri

∫ 2π

0
g3 ν3erdϕdr

exp
( hνe
kBT

)
−1
, (43)

ri

r f

νe
I(ν)

kB

where i is the inclination angle of the thin accretion disk
around  the  4EGB  black  hole, d is  the  distance  between
the  observer  and  the  center  of  the  thin  accretion  disk, 
and  are the  inner  and  outer  radii  of  the  disc,  respect-
ively, h is  the  Planck  constant,  is the  emission  fre-
quency  in  the  local  rest  frame  of  the  emitter,  is  the
Planck distribution,  is  the  Boltzmann constant,  and g
is the redshift factor

 

α

106 M⊙ 10−12 M⊙/yr

Fig.  3.    (color  online)  Dependence  of  the  radiated  energy
flux over the thin accretion disk on the radial distance for vari-
ous values of the Gauss-Bonnet coupling constant . Here, the
mass  of  the  black hole  and the  mass  accretion rate  are  set  to

 and , respectively.

 

α

106 M⊙ 10−12 M⊙/yr

Fig. 4.    (color online) Temperature profile of the thin accre-
tion  disk  around  a  static  spherically  symmetric  black  hole  in
the  4EGB  gravity  for  various  values  of  the  Gauss-Bonent
coupling constant . Here, the mass of the black hole and the
mass accretion rate are set to  and , respect-
ively.
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g =
ν

νe
=

kµu
µ
o

kµu
µ
e
, (44)

ν
uµo = (1,0,0,0)

uµe = (ut
e,0,0,Ωut

e)

r→ +∞
ri = rms r f = +∞

νL(ν)

ν
α α

α

α

α α

where  is the radiation fraquency in the local rest frame
of the distant observer,  is the 4-velocity of
the  observer,  and  is  the  4-velocity  of
the emitter.  Because  the  flux  over  the  disk  surface  van-
ishes at  for asymptotically flat geometry, in this
paper,  we take  and . To illustrate the ef-
fect  of the Gauss-Bonnet term in the emission spectrum,
we  calculate  the  radiation  spectrum  numerically
and display its behavior as a function of the observed fre-
quency  for various  values  of  the  Gauss-Bonnet  coup-
ling constant  in Fig.  5.  For positive , increasing val-
ues  of  produce  greater  maximal  amplitude  of  the  disk
emission  spectrum  as  compared  with  the  standard
Schwarzschild case, while negative  produces a smaller
maximal amplitude. The figure also shows that the cut-off
frequencies  of  the  emission  spectra  increase  for  positive

 and  decrease  for  negative , from  the  value  corres-
ponding to the standard Schwarzschild black hole.

ϵ

Finally, let us consider the accretion efficiency of the
4EGB black  hole,  which  is  defined  as  the  ratio  between
the rate  of  the  radiation  of  the  energy  of  photons  escap-
ing from the disk surface to infinity and the rate at which
mass-energy  is  transported  to  the  black  hole  [77, 78].  If
all the  emitted  photons  can  escape  to  infinity,  the  effi-
ciency  is  related  to  the  specific  energy  of  the  moving
particle in the disk, measured at the marginally stable or-
bit as

ϵ = 1− Ẽms. (45)

ϵ
α

ϵ
α

The  dependence  of  the  accretion  efficiency  on  the
Gauss-Bonnet  coupling  constant  is  plotted  in Fig.  6,
which shows that the accretion efficiency  of the 4EGB
black hole increases with increasing value of . This in-
dicates  that  the  accretion  of  matter  in  the  4EGB  black

α
α

α

α

hole is more efficient for positive  and less efficient for
negative  than  that  in  the  Schwarzschild  black  hole.
Therefore,  the  4EGB  black  hole  with  positive  Gauss-
Bonnet coupling constant  can provide a more efficient
engine for transforming the energy of accreting matter in-
to  electromagnetic  radiation  than  that  with  a  negative
value of .

V.  CONCLUSION AND DISCUSSION

α/(D−4) D→ 4

D→ 4

α

α

α
α

α

α

α

The recently  proposed  4EGB  theory  of  gravity  in-
cludes a  Gauss-Bonnet  curvature  correction  to  the  Ein-
stein  term  with  a  coupling  constant  proportional  to

 in  the  limit .  With  this  formulation,  the
4EGB gravity  can make a  non-trivial  contribution to  the
gravitational  dynamics  in  the  limit . Several  vari-
ants of this theory have been explored recently, and they
have  the  same  static,  spherically  symmetric  black  hole
solution. In this paper, we study the physical properties of
a thin accretion disk around a static spherically symmet-
ric black hole in 4EGB gravity. The physical quantities of
the thin accretion disk, such as the energy flux, temperat-
ure  profile,  electromagnetic  emission  spectrum  profiles,
and accretion efficiency, have been analyzed in detail for
the  4EGB  black  hole.  The  effects  of  the  Gauss-Bonnet
coupling  constant  on  these  physical  quantities  have
been explicitly obtained. With an increase in the paramet-
er , the energy flux,  temperature distribution,  and elec-
tromagnetic  spectrum  of  the  disk  all  increase.  The  main
reason for this behavior is that for positive , the effect of
the Gauss-Bonnet coupling constant  decreases the radi-
us of the marginally stable orbit, so that the lower limit of
the  integral  in  (41)  becomes  smaller,  while  for  negative

,  the  radius  of  the  marginally  stable  orbit  increases,  so
that  the lower limit  becomes larger.  In  addition,  we also
show  that  the  accretion  efficiency  increases  with  the
growth  of  the  parameter .  Our  results  indicate  that  the
thin accretion disk around the static, spherically symmet-
ric black hole in 4EGB gravity is hotter, more luminous,
and  more  efficient  than  that  around  a  Schwarzschild
black hole with the same mass for positive , while it is

 

α

106 M⊙
10−12 M⊙/yr

Fig. 5.    (color online) Emission spectrum profile for the thin
accretion disk around the 4EGB black hole for various values
of  the  Gauss-Bonnet  coupling  constant .  Here,  the  mass  of
the  black  hole  and  the  mass  accretion  rate  are  set  to 
and , respectively.

 

ϵ

α

Fig.  6.    (color  online)  Accretion  efficiency  of  the  4EGB
black hole  as  a  function  of  the  Gauss-Bonnet  coupling  con-
stant .
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αcooler, less luminous, and less efficient for negative .
In  addition  to  the  above  main  results,  we  would  like

to mention two directions that can be explored to extend
our  analysis.  First,  in  this  paper,  we  only  focus  on  the
static and spherically symmetric black hole case. It would
be interesting to explore the behaviors of the electromag-
netic emission spectrum profiles of the thin accretion disk
around  a  rotating  black  hole  in  the  4EGB  theory.
However,  construction  of  the  rotating  solution  is  not  an
easy task,  and a  rigorous  rotating  black hole  has  not  yet
been found via solving the field equation. Although there
is an effective rotating solution generated from the static
and spherically symmetric black hole using the Newman-
Janis  procedure [21, 26],  it  is  still  not  clear  whether  this
solution is an exact one that satisfies the field equation of
the 4EGB theory.  To explore the features of  the electro-
magnetic  emission  spectrum  with  rotation  effects,  we
prefer  to  find  the  rotating  solution  by  solving  the  field
equation; this will be considered in our future work.

α

Second, when the rotating solution is found, it would
also be interesting to constrain the black hole parameters,
including  the  angular  momentum  and  the  Gauss-Bonnet
parameter ,  using  the  observation  spectra  of  the  X-ray

α

|16πGα| ≲ 1010m2

−7.78×10−16 ≲ 16πGαH2 ≲ 3.33×
10−15

binaries. For example,  using the continuum-fitting meth-
od  [79],  the  angular  momentum  of  stellar-mass  black
holes can be measured, and the deviations from Kerr can
be constrained using the X-ray data from black hole bin-
aries.  At  present,  the  observational  constraints  of  the
4EGB theory primarily come from Refs. [36] and [37]. In
[37],  the  authors  have  considered  the  constraints  on 
from various physical systems, including solar system ex-
periments, binary pulsars, and cosmological observations.
The  tightest  constraints  come  from  observations  of  the
periapsis  advance  of  the  LAGEOS  II  satellite  and  from
the  observation  of  binary  black  hole  systems,  both  of
which  lead  to .  In  [36], the  authors  ob-
tain  the  constraints 

, where H is the Hubble parameter, from the current
observation  of  the  speed  of  GWs  measured  by
GW170817  and  the  gamma  ray  burst  event  GRB
170817A.  Compared  with  these  existing  constraints,  the
X-ray  binaries  can  provide  a  very  different  environment
for testing the 4EGB theory and may be more sensitive to
the strong gravity behavior of the 4EGB theory. We hope
to address the above issues soon in future studies to pos-
sibly extend some of these results.
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