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Abstract: We  study  the  emission  of  fragments  in  central  collisions  of  light  and  heavily  charged  systems  of
40Ar+45Sc and 84Kr+197Au, respectively, using the Quantum Molecular Dynamics (QMD) model as the primary mod-
el. The fragments are identified using an energy based clusterization algorithm, i.e., the Simulated Annealing Clus-
terization Algorithm (SACA). The charge distributions of intermediate mass fragments [3≤ ≤12] are fitted with
power-law ( ) and exponential ( ) fits in order to extract the parameters τ and  whose minimum values
are also sometimes linked with the onset of fragmentation or the critical point for a liquid-gas phase transition. Oth-
er  parameters  such  as  the  normalized  second  moment , ,  average  size  of  the  second  largest  cluster

, phase separation parameter ( ), bimodal parameter (P), information entropy (H), and Zipf's law are also
analyzed to find the exact energy of the onset of fragmentation. Our detailed analysis predicts that an energy point
exists between 20-23.1 MeV/nucleon, which is very close to the experimentally observed value of 23.9 MeV/nucle-
on for the 40Ar+45Sc reaction. We also find that the critical energy deduced using Zipf's law is higher than those pre-
dicted from other critical exponents. Moreover, no minimum is found for τ values of the highly charged system of
84Kr+197Au, in agreement with experimental findings and various theoretical calculations. We observe that the QMD
+ SACA model calculations are in agreement with the experimental observations. This agreement supports our res-
ults regarding the energy point of the liquid-gas phase transition and the onset of fragmentation.

Keywords: heavy-ion collisions,  transport  model,  clusterization  algorithm,  Monte-Carlo  technique,  li-
quid-gas phase transition
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I.  INTRODUCTION

Y(A f ) ∝ A−τf

During the last three decades, extensive study of nuc-
lear  multifragmentation  has  been  conducted  due  to  its
possible link with the liquid-gas phase transition in nucle-
ar  matter  [1-25].  This  is  considered due to the similarity
between the  nuclear  forces  and  Van  der  Waal's  interac-
tions, i.e., a long range attractive part and short range re-
pulsive core. The first effort in this regard was the Fermi-
lab-Purdue  experiment  on  the  reactions  of p+Kr  and
p+Xe systems. The mass yield of fragments of up to mass
30  was  fit  with  a  power  law  dependence  ( )
[19]. This observation is consistent with the prediction of
Fisher's  droplet  model,  and  it  stimulated  a  large  number
of studies on the topic. The incident energy at which the
liquid-gas  phase  transition  occurs  is  often  labeled  as  the
"onset  of  multifragmentation"  or  "critical  energy  point"
[4-9, 14-21, 23].

Generally, the charge (or mass) yield of fragments is

∝ Z−τf A−τf

π

fit with a power law  (or ), and the value of τ is
extracted [4-7, 9, 11, 14-17]. The minima of the τ value,
when plotted as a function of the incident energy, are as-
sumed to indicate the onset  of  multifragmentation or  the
critical energy point [4-6, 9-11, 14-17]. Among the stud-
ies  on  this  topic,  Ogilvie et  al. [9] performed an  experi-
ment  with  the  ALADIN  forward  spectrometer  at  GSI,
Germany and reported the existence of minima in the val-
ues of τ for Au induced reactions with C, Al, and Cu tar-
gets at  an  incident  energy  of  600  MeV/nucleon.  Sub-
sequently,  Li et  al.  [15]  performed  an  experiment  using
the  Michigan  State  University  (MSU)  4 -array  to  study
the  central  reactions of 40Ar+45Sc. They  reported  a  min-
imum in the power law exponent τ at 23.9 MeV/nucleon.
However, the  corresponding  Percolation  model  calcula-
tions predicted a minimum value of around 28 MeV/nuc-
leon [15]. In contrast,  William et al. [3] reported the ab-
sence of minima in the values of τ for the highly charged
colliding  system  of 84Kr+197Au  at  incident  energies

        Received 3 June 2020; Accepted 31 August 2020; Published online 15 October 2020
      * Supported Council of Scientific and Industrial Research (CSIR), Govt. of India (03 (1388)/16/EMR-II)
     † E-mail: rohitksharma.pu@gmail.com
     ‡ E-mail: rkpuri@pu.ac.in

Chinese Physics C    Vol. 45, No. 1 (2021) 014101

     ©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd

014101-1



between  35  MeV/nucleon  and  400  MeV/nucleon.  The
dominance of the Coulomb forces was thought to hinder
the occurrence of such minima. Gupta and Pan have also
reported similar results for 197Au+197Au reactions [26].

S 2 γ2

In  addition  to  minima  in  the  values  of τ,  the  use  of
other  characteristic  signals  has  also  been  advocated  for
the study of the onset of multifragmentation or the liquid-
gas  phase  transition  [5, 21-23, 27-31].  Among  these  are
the fluctuation in the size of the largest fragment [27], the
size  of  the  second  largest  fragment  [28],  the  asymmetry
in the size of the two largest fragments [29], the paramet-
ers based on the moments of the charge distribution, i.e.,

,  [21, 22],  the  bimodality  of  the  order  parameter
[30, 31], the multiplicity derivatives [23] and the inform-
ation  entropy  (H)  [5],  and  Zipf's  law  [5].  Many  studies
have been  performed  using  these  signals,  and  great  pro-
gress has been made on the theoretical and experimental
fronts on the topic of liquid-gas phase transitions [5-8, 11,
18, 20, 23, 32].  See  Refs.  [1, 2, 33]  for  reviews  on  this
topic.

In  the  literature,  there  have  been  studies  in  which
many-body  dynamical  models  were  used  to  investigate
the liquid-gas phase-transition in nuclear matter, e.g., Ma
et  al. studied  the  reactions  of 40Ar+27Al  between  25  and
150  MeV/nucleon  and  found  a  minimum  of τ at  65
MeV/nucleon  using  the  Quantum  Molecular  Dynamics
(QMD) model [4]. Belkacem et al. have analyzed the ex-
perimental data of the MULTICS-MINIBALL collabora-
tion  to  investigate  the  reactions  of 197Au+197Au  at  35
MeV/nucleon, and they also presented theoretical calcula-
tions  using  the  Classical  Molecular  Dynamics  (CMD)
model  [18];  they  obtained  critical  behavior  in  both  the
theory  and  experiment.  Ma et  al. studied 40Ar  on
27Al,48Ti, and 58Ni reactions using the Neutron Ion Multi-
detector for Reaction Oriented Dynamics (NIMROD) ex-
perimental  set  up  [6-8]  and  also  presented  calculations
using  the  CMD model  [6, 7].  In  their  studies,  they  used
most  of  the  characteristic  signals  mentioned  above  and
found critical behavior for the systems. However, two of
the authors  of  the  present  study and collaborators  repor-
ted no minimum in the power law exponent or clear on-
set of fragmentation in the reaction of 40Ar+45Sc using the
Isospin  dependent  Quantum Molecular  Dynamics
(IQMD) model [10]. A minimum was obtained when the
Coulomb potential was neglected [11].

The common point among the above mentioned stud-
ies using dynamical models is that all used the Minimum
Spanning  Tree  (MST)  algorithm  to  clusterize  the  phase
space. Recently,  we used various extensions of the MST
method  (which  includes  momentum  and  binding  cuts)
and found that there is no effect of these extensions [32]
on  the  extraction  of  the  minimum  of  the  exponent τ for
the  reaction  of 40Ar+45Sc.  The  absolute  values  were,
however,  far  from the  experimental  data.  To  resolve  the

general problems  of  the  MST algorithm,  Puri  and  Aich-
elin  [34] proposed  the  Simulated  Annealing  Clusteriza-
tion Algorithm (SACA) [35, 36] based on the method of
Dorso et al. [34]. This algorithm was found to resolve the
reported  failure  of  the  MST  method  for  weakly  excited
systems  [36, 37].  Recently,  two  of  the  authors  of  the
present study applied the QMD+SACA model to experi-
mental data near the Fermi-energy domain and were suc-
cessful  in  the  effort  [38].  The  aims  of  the  present  study
are two-fold: 1) to confront the QMD+SACA model with
experimental data at and farther away from the Fermi en-
ergy  domain  for  lighter,  i.e., 40Ar+45Sc,  and  heavily
charged  systems,  i.e., 84Kr  +197Au,  and  2)  to  determine
whether  combining  various  signals  of  the  liquid-gas
phase  transition  in  the  framework  of  the  QMD+SACA
model  provides  a  consistent  picture  and/or  to  determine
which signals are best suited for the purpose. The present
calculations  also  consider  the  utilization  of  Zipf's  law,
which has been introduced as a possible signal  of the li-
quid-gas  phase  transition  but  has  been  reported  to  show
signatures  at  much  higher  excitation  energies,  as  shown
in  Refs.  [20, 39].  Our  study  includes  lighter  systems  of
40Ar+45Sc  and  heavier  systems  of 84Kr +197Au.  Note  that
the main difference is not only the size of the system but
also the larger  Coulomb forces  in  the latter  compared to
those in  the  former.  The  study  reveals  whether  the  in-
volvement  of  these  large  Coulomb  forces  influences  the
compatibility of the QMD+SACA model.

In Section 2, we briefly discuss both the primary and
secondary  models.  A  detailed  analysis  of  the  theoretical
calculations is given in Section 3. Finally, we summarize
our findings in Section 4.

II.  METHODOLOGY

A.    Quantum molecular dynamics model
The  quantum  molecular  dynamics  [40]  model  is  a

many-body  dynamical  model  that  simulates  heavy-ion
collisions  on  an  event-by-event  basis.  In  this  model,  the
time evolution of a reaction is studied by following indi-
vidual  nucleons.  The  trajectories  of  nucleons  during  the
reaction are determined by mean field and nucleon-nucle-
on collisions.  The model  describes the reaction from the
well  separated  target  and  projectile  up  to  the  freeze-out
(final) stages, in which the nuclear matter is fragmented.
In this model, each nucleon of two colliding nuclei is rep-
resented  by  a  Gaussian  wave  packet  in  the  position  and
momentum space as [40]

ψi(r, pi(t), ri(t)) =
1

(2πL)
3
4

e[ i
h̄

pi(t)·r− (r−ri (t))2

4L
]. (1)

= 1.142A1/3
To  build  a  nucleus,  the  coordinates  are  assigned  to

nucleons  inside  a  sphere  of  radius R  (where
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PF PF(ri)√
2mV(ri) ri
ith

AT +AP

A is the mass number of the nucleus) in accordance with
the  liquid  drop  model.  The  nucleons  are  also  assigned
Fermi-momentum values between 0 and . Here, 
=  with V( ) being the local potential energy of
the  nucleon. If the chosen momentum leads to an over-
lap in the phase space with any previously defined nucle-
on, the  configuration  is  rejected.  To  keep  the  QMD for-
mulation as close as possible to classical transport theory,
the Wigner  densities  are  used  instead  of  the  wave  func-
tions.  The  Wigner  densities  correspond  to  the  phase-
space densities  in  classical  mechanics.  The  Wigner  rep-
resentation of the  nucleon system is given by

f (r, p, t) =
∑

i

1
(πh̄)3 e−[r−ri(t)]2/2L−[p−pi(t)]22L/h̄2

. (2)

The  Wigner  representation  of  the  Gaussian  wave
packets obeys the uncertainty principle, and the one body
densities in coordinate and momentum space are given by

ρ(r, t) =
∫

f (r, p, t)d3 p=
∑

i

1
(2πL)3/2 e−[r−ri(t)]2/2L, (3)

g(p, t) =
∫

f (r, p, t)d3r. (4)

For  each  nucleus  generated  by  the  above  procedure,
the  ground  state  properties,  such  as  the  binding  energy
and  nuclear  density,  are  checked.  If  a  nucleus  fulfills
these conditions, then it is said to be successfully initial-
ized. The successfully initialized target and projectile are
boosted  towards  each  other.  During  the  reaction,  the
centroid  of  each  Gaussian  propagates  using  the  classical
equations of motion:

ṙi =
∂H
∂pi

, ṗi = −
∂H
∂ri

, (5)

where H represents the Hamiltonian and is given by

⟨H⟩ = ⟨T ⟩+ ⟨V⟩ =
∑

i

p2
i

2mi
+

∑
i

∑
j>i

∫
fi(ri, pi, t)Vi j(ri, r j)

× f j(r j, pj, t)dridr jdpidpj.
(6)

fi f j
th th

i j ri r j

Here,  and  are  the  Wigner  distribution  functions  of
the i  and j  nucleons, respectively, and V ( , ) is the
baryonic  interaction,  which  has  as  essential  components
the Skyrme, Yukawa, and Coulomb terms, and reads as

Vi j(ri, r j) = VSkyrme
i j +VYukawa

i j +VCoulomb
i j , (7)

Vi j(ri, r j) =t1δ(ri− r j)+ t2δ(ri− r j)ργ−1
( ri+ r j

2

)
+ t3

exp(−|(ri− r j)|/µ)
(|(ri− r j)|/µ)

+
ZiZ je2

|ri− r j|
. (8)

t1 t2 α β
t3 µ

Zi Z j ith

jth

Here,  and  depend  on  the  values  of  and  (de-
scribed  below),  and  are -6.66  MeV and  1.5  fm,  re-
spectively, and  and  denote the charges of the  and

 baryons.  In the limit  of nuclear matter,  the (two- and
three-body) Skyrme interactions can be reduced to dens-
ity dependent potential of the form

USky = α

(
ρ

ρ o

)
+β

(
ρ

ρ o

)γ
. (9)

α β

ρo
γ

√
σNN/π σNN

σNN

1 2

The parameters  and  are adjusted so that the aver-
age binding energy has a minimum at the normal nuclear
matter density ( )  and should be equal to −15.76 MeV,
while  determines  the  compressibility.  During  the
course  of  propagation,  if  the  two  nucleons  come  closer
than ,  where  is  the  nucleon-nucleon  cross-
section,  they  suffer  a  collision.  Here,  is  the  energy
dependent  nucleon-nucleon  cross-section  [40].  Before
every collision, the nucleons are checked for Pauli block-
ing: if the phase space where the nucleons would go after
scattering is already filled, the collision is neglected; oth-
erwise, it  is allowed. Within the framework of the QMD
model,  to  calculate  Pauli  blocking,  for  simplicity,  a
sphere in  coordinate  and  momentum  space  that  corres-
ponds  to  each  nucleon  is  considered.  In  this  way,  it  is
possible  to  achieve  the  same  Pauli  blocking  ratio  that
would be obtained for  each Gaussian,  for  which the cal-
culations take  much  longer.  Here,  we  calculate  the  frac-
tions P  and P  of  the  already  filled  final  phase  space,
which  will  be  occupied  by  scattered  partners.  Collisions
are then blocked with probability

Pblock = 1− [1−min(P1,1)][1−min(P2,2)], (10)

Pblock

α β
γ

and the corresponding collision is allowed with probabil-
ity  (1- ).  If  a  collision  is  blocked,  the  nucleons  are
assigned the same momenta that they had before the colli-
sion  The  reaction  information,  in  the  form  of  the  phase
space of the nucleons, is stored at various time steps dur-
ing the propagation. For the nuclear matter incompressib-
ility K = 200 MeV, the values of the parameters , , and

 are −356  MeV,  303  MeV,  and  1.17,  respectively.  Us-
ing this soft equation of state coupled with the energy-de-
pendent nucleon-nucleon  cross-section,  various  experi-
mental  observations  have  been  explained  in  previous
studies [37, 38, 41-46].

B.    Simulated annealing clusterization algorithm
It  is  now well  known that  as  soon as  nucleons  leave
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kth

the  compression  phase,  clusterization  algorithms,  also
known  as  secondary  models,  are  evoked  to  obtain  the
fragments. We use the simulated annealing clusterization
algorithm  (SACA)  [35, 36].  This  method  utilizes  the
concept of energy minimization via the simulated anneal-
ing technique to obtain the most bound fragment config-
uration.  To  exclude  the  formation  of  loosely  bound
clusters in intermediate stages of the algorithm, a binding
energy cut is implemented on the  cluster:

ζk =

A f∑
i=1

√(
pi− pcm

A f

)2
+m2

i −mi

+
1
2

A f∑
j,i

Vi j(ri, r j)

 < Ebind×A f , (11)

bind f ⩾ bind

f pcm
A f

ζ{Ck} {Ck}

with E  = - 4.0 MeV if A   3, and E  = 0 MeV oth-
erwise.  In  the  above  equation, A  and  represent  the
total number of nucleons in a fragment and the center-of-
mass  momentum  of  that  fragment,  respectively.  It  is
worth  mentioning  that  the  potentials  used  in  the  above
equation are the same as those used in the QMD model to
maintain  self-consistency.  It  has  been  previously  shown
that the exact values of the binding energies do not affect
the  most  bound  structures  of  the  fragments  [41].  In  the
absence  of  such  conditions,  fragments  are  still  bound
close to their true ground state binding energies as per the
QMD model.  Within  the  SACA  method,  the  total  bind-
ing energy of the clusters  for cluster set  is cal-
culated at each step:

ζ{Ck} =
∑

k

ζk. (12)

After  the  initial  configuration  is  obtained  in  the  first
stage, usually using the MST method, the exchange of in-
dividual nucleons is allowed in order to find the possible
best configuration. A new cluster configuration is always
accepted if  it  is  more stable,  i.e.,  if  the sum of the bind-
ing energies of the clusters is greater than that of the pre-
vious configuration.  Otherwise,  an  exponential  probabil-
ity  is  assigned  to  the  new  configuration.  In  this  way,  a
large  number  of  configurations  can  be  built.  In  the  later
stages,  a fragment exchange procedure is  also applied in
order  to  achieve  the  global  most  bound  configuration.
The iterations are terminated if the exchange of nucleons
does  not  alter  the  sum  of  the  binding  energies  of  the
clusters.  After  millions  of  iterations  the  most  stable
cluster configuration is accepted. For example, if we start
from the ground state of the nuclei, i.e., 20Ne, 40Ca, 93Nb,
and 208Pb,  generated  by  the  QMD model  and  then  break
them  into  a  number  of  fragments,  the  SACA  finds  the
same nuclei with ground state binding energy after nearly
8000,  12000,  62000,  and  280000  iterations,  respectively

[36].  The  reader  is  referred  to  Ref.  [36]  for  the  detailed
procedure followed in the SACA.

∼

∼

In earlier studies, the SACA method was found to be
exceptionally successful in reproducing experimental data
for  wide  entrance  channels  [35-38, 41, 47, 48].  This
method explains not only experimental observations such
as the multiplicity of fragments and the size of the largest
cluster but  also  the  physics  of  event-by-event  based  ob-
servables such as  multiplicity  probabilities  and probabil-
ity distributions  of  the  three  largest  clusters.  The  al-
gorithm  both  identifies  realistic  fragment  structures  and
realizes  fragment  structures  as  early  as  60-90  fm/c,
when the matter is still dense and hot. This time is much
shorter than that required by the standard MST method to
provide the final fragment structures ( 300 fm/c). In oth-
er words, the SACA also enables understanding of the re-
action  dynamics  during  the  violent  stages  of  a  reaction.
For more details about the SACA method, readers are re-
ferred to Refs. [35, 36].

III.  RESULTS AND DISCUSSION

b̂ ⩽

For the present study, several thousand events of reac-
tions of 40Ar+45Sc and 84Kr+197Au were generated at dif-
ferent  beam energies  (ranging  between  15  MeV/nucleon
and 400 MeV/nucleon). The reactions were simulated for
a  reduced  impact  parameter,  0.25;  this  choice  was
guided  by  previous  studies  [3, 15]. Here,  the  soft  equa-
tion of  state  supplemented  by  the  Cugnon  parametriza-
tion of the nucleon-nucleon (NN) cross-section is used to
simulate the above reactions [40]. It is worth mentioning
that this choice of the equation of state and NN cross-sec-
tion has been highly successful in explaining various ex-
perimental results [37, 38, 41-46].

A.    Analysis of the charge distribution and multiplicity
values of the 40Ar+45Sc reaction

b̂ ⩽

In Fig.  1,  we  display  the  charge  yields  (see  the
crossed  squares)  calculated  using  the  QMD  model
coupled  with  the  SACA  method  for  central  collisions
(  0.25)  of 40Ar+45Sc  at  different  incident  energies
between  15  and  115  MeV/nucleon.  The  choice  of  the
centrality and incident energy range was guided by exper-
imental  measurements  reported  in  Ref.  [15].  Along  with
the calculated yields, we also provide the available exper-
imental data (see the stars) [15]. It can be observed that as
one increases the incident energy of the projectile, the ex-
citation energy of the composite system increases, and the
yield of  the  heavier  (lighter)  fragments  therefore  de-
creases  (increases).  Hence,  the  slope  of  the  charge  yield
becomes steeper  with  the incident  energy,  signifying the
violence of the binary collisions. We observe that the res-
ults  of  QMD+SACA  model  reveal  the  same  behavior,
and that they are consistent with experimental results for
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3 ⩽ Z f ⩽ 12

Z f ∝ Z−τf

Z f ∝ Z−τf

intermediate  mass  fragments  (IMFs), ,  and
calculations reported in earlier studies [3, 4, 9-11, 13-15,
38, 47, 48]. Encouragingly, the QMD + SACA model can
closely reproduce the measured charge yields at all incid-
ent  energies,  except  at  a  few points  at  15  MeV/nucleon.
The discrepancy at 15 MeV/nucleon is due to slightly less
appropriate  Pauli  blocking  at  this  low  incident  energy
[40].  In  earlier  studies,  the  charge  distribution  (for  3≤

≤12) was often fit with a power law   to invest-
igate  the  critical  energy  point  of  the  possible  liquid-gas
phase transition. Hence, we also fit the calculated charge
yields [3≤ ≤12] with a power law  .

τ ≃ τ ≃

τ ≃

τ ≃ 1.39

The extracted values of τ are plotted in Fig. 2(a). We
display  the  experimental  values  of τ obtained  using  the
power law fit for the charge yield of IMFs with stars and
our theoretical predictions with squares. We can see that
the  value  of τ increases  with  the  beam  energy  (>20
MeV/nucleon),  reflecting  the  steepening  of  the  slope  of
the charge  distribution  with  the  incident  energy.  Experi-
mentally, it was observed that the value of τ changes from

 1.2 at 25 MeV/nucleon to  4.72 at 115 MeV/nuc-
leon.  The  corresponding  excitation  energy  was  observed
to vary from 8 to 29 MeV/nucleon.  The minimum value
that  is  considered  a  signal  of  criticality  was  obtained  at
23.9  MeV/nucleon  with  1.21  by  fitting  the τ values
with  a  fourth  order  polynomial.  We also  fit  the τ values
obtained using the QMD+SACA model with a fourth or-
der polynomial and observed a minimum in the extracted
τ value at 20.1 MeV/nucleon with . It is also im-
portant  to  mention  that  one  usually  expects  to  have τ =

Z f ⩽ 2

χ2

χ2

χ2 ∼

2.2 at the critical point, whereas here the obtained values
are  much smaller.  This  deviation is  due to  the  exclusion
of lighter particles ( ) from the fit.  It  was shown in
Ref. [49] that the τ values depend crucially on the choice
of  the  mass/charge  range  that  is  fit  to  obtain  them.  Our
present  prediction  for  the  minimum  value  of  the  light
charged system of 40Ar+45Sc is in a close agreement with
the measured one (23.9 MeV/nucleon)  [15]. We also in-
spect values:  their  minimum  should  be  at  the  critical
point, and they should be larger at other values. To check
the  goodness  of  fit,  we  also  calculated  for  the  power
law  fit  [26].  We  obtained  the  minimum  value  at  20.1
MeV/nucleon, i.e.,  1.1, which reaches very high val-
ues at other incident energies. This indicates that the best
fit  is  obtained  at  the  critical  energy  point,  which  further
supports our results.  This is the closest value reported in
the literature  to  date  for  any  theoretical  model.  In  con-
trast,  the  QMD  +  MST  model  predicted  the  minimum
value at 18.03 MeV/nucleon, and the values of τ were far
from  the  experimental  values  [12, 32].  The  Percolation
model calculations also predicted the energy of the critic-
al point at 28 MeV/nucleon with τ = 1.5; these values are
much  higher  than  the  experimentally  observed  values
[15]. The QMD + SACA calculations thus not only repro-
duce  the  measured  charge  yields  but  also  appropriately
explain the behavior of the power law factor "τ" over the
entire energy range. To observe the trends, we have also
provided τ values from the QMD+SACA model for incid-
ent  energies  from  115  MeV/nucleon  to  200  MeV/nucle-
on,  for  which  experimental  values  are  not  available  (see

Z f

Fig.  1.    (colored  online)  Charge  distributions  obtained  in  the  central  reactions  of 40Ar+45Sc  at  beam  energies  between  15  and  115
MeV/nucleon: The crossed squares show the calculated results of the QMD + SACA method, whereas the stars represent the experi-
mental data [15]. The lines correspond to the power law and exponential fits of the fragment charge distributions for IMFs [3≤ ≤12]
using the QMD + SACA model.
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∼

the inset of Fig. 2(a)). We find that the τ values continue
to increase  with  the  rise  in  incident  energy.  The  bottle-
neck in the present calculations is that the SACA method
recognizes stable fragment structures as early as  60-90
fm/c. It can thus provide vital information for the hot and
dense nuclear matter.

< NIMFs >

< Nc >

⩾

< NIMF >,

< Nc >

< Nc >

< Nc >

In Fig.  2  (b-c),  we  also  display  the  multiplicities  of
the  intermediate  mass  fragments  (IMFs)  ( )  and
the charged particle multiplicities ( ) for the 40Ar +
45Sc system as functions of the incident energy. For these
observables, the experimental observations are only avail-
able  for  incident  energies  35  MeV/nucleon  [14].  We
see  that  the  theoretical  calculations  are  consistent  for

 which decreases in multiplicity value as the in-
cident energy is increased. However,  is predicted
to  be  quite  large  compared  to  the  experimental  values.
This larger value of  is due to the excess of lighter
particles. The result for  can be qualitatively repro-
duced by the QMD+SACA model.

∝ −λ Z f

λ

∝ −λ Z f

λ

λ

We  also  found  that  in  some  studies,  the  exponential
fit  e  is used instead of the power law fit [7, 8]. The
critical  exponent  is  also  considered  here  to  show  the
minimum near critical point. To check this, we also fit the
above  calculated  yields  (see Fig.  1,  straight  lines)  with
exponential  fits  of  the  form  e  and plotted  the  ex-
tracted  values  in Fig.  3  (a).  Interestingly,  the  QMD +
SACA method again found a minimum in the extracted 

λ

χ2

⩾

λ

λ

values. The exact minimum was extracted by fitting the 
values  with  a  fourth  order  polynomial.  The  minimum
value 23.1  MeV/nucleon  is  very  close  to  the  one  ob-
tained using the power law fit (= 20.1 MeV/nucleon) and
to the experimental value (= 23.9 MeV/nucleon). It is the
first  time  that  such  close  agreement  between  model  and
experimental results  has  been obtained.  It  is  worth  men-
tioning,  however,  that  this  fit  is  poor,  and  that  the  is
exceptionally large in this case (except at higher incident
energies  45 MeV/nucleon, where it decreases). This fit
was only used for the case study considering earlier stud-
ies  [7, 8].  We  have  also  provided  some  values  of  for
115  MeV/nucleon  to  200  MeV/nucleon  to  examine  the
trend (see the inset of Fig. 3 (a)). We see the same trends,
i.e., a gradually increasing trend for  as the incident en-
ergy increases.

B.    Maximal fluctuations in the 40Ar+45Sc reaction

kth

At the minimum of the critical exponent τ, the fluctu-
ations  reach  their  maximum,  indicating  the  possibility
that this is the point of the onset of multifragmentation or
the critical point of the liquid-gas phase transition. Campi
[21]  was  the  first  to  exploit  this  feature  and  introduced
powerful methods to characterize the critical  behavior in
fragmentation. These methods are based on the condition-
al moments of the asymptotic cluster charge distributions.
Generally, the  moment of the cluster charge distribu-
tion is defined as

Mk =
∑

Z f,Zmax

Zk
f n(Z f ), (13)

Zmax
n(Z f )

Z f

S 2

where  is  the  charge  of  the  largest  fragment,  and
 is defined  as  the  multiplicity  of  the  fragment  hav-

ing  charge  in  an  event.  The  moments  are  calculated
event-by-event  and  then  averaging  is  performed  across
the  events.  The  normalized  second  moment  ( )  is
defined as [21, 22]

S 2 =

∑
Z f,Zmax

Z2
f n(Z f )∑

Z f,Zmax
Z f n(Z f )

, (14)

γ2and  is constructed as

γ2 =
M2M0

M2
1

. (15)

< S 2 > < γ2 > < Zmax2 >The  parameters , ,  and  (aver-
aged over a large number of events) should exhibit a peak
at  the  incident  energy,  where  the  minimum value  of  the
exponent parameter τ is obtained [4, 19-22, 28].

< S 2 > < γ2 >, < Zmax2 >

In Fig.  3  (b-d),  we  display  the  average  values  of
,  and  as functions of the incident

 

∝
Z f
−τ

< NIMFs >

< Nc >

Fig.  2.    (color  online)  (left)  The  extracted  values  of  the
power  law  parameter τ (obtained  from  the  power  law  fits 

 of IMFs, as shown in Fig. 1) plotted as a function of the
incident  energy.  The  solid  lines  correspond  to  fourth  order
polynomial  fits  to  the  extracted τ values  obtained  using  the
QMD + SACA model. The dashed vertical line represents the
point  of  onset  of  multifragmentation  with  the  QMD+SACA
model.  (inset)  We display the τ values in the incident  energy
range  of  120  to  200  MeV/nucleon.  (right)  The  multiplicity
values of the IMFs ( ) and the charged particle multi-
plicity ( ) are shown as functions of the incident energy
of the projectile. The data points are taken from Refs. [14, 15],
and the symbols have the same meaning as in Fig. 1.
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< S 2 > < γ2 > < Zmax2 >

λ

energy.  We  see  that  all  these  parameters  pass  through
their maximal  value  over  the  incident  energy.  Interest-
ingly,  all  the  parameters , ,  and 
predict  a  maximum  at  20  MeV/nucleon,  which  is  again
very  close  to  the  earlier  predicted  value  using τ/  ,  i.e.,
20.1  (23.1)  MeV/nucleon.  We  also  used  other  critical
parameters,  i.e.,  the  phase  separation  parameter  and
bimodal parameter, which we discuss below.

C.    Phase separation parameter and bimodality in the
40Ar+45Sc reaction

S p =< Zmax2 > /
< Zmax >

S p

S p

The  phase  separation  parameter  (
), which was introduced in the percolation mod-

el calculations, reaches a value close to 0.5 near the crit-
ical point [49]. Ma et al. also utilized this parameter and
found  consistent  results  for  the  extraction  of  the  critical
energy  point  in  their  experimental  study  [8].  Our  results
for this parameter using the QMD+SACA model are dis-
played in Fig. 3 (e). If we see our calculations, the value
of  exhibits  linear  behavior  with  two  different  slopes
above and below the incident energy of 20 MeV/nucleon.
We  see  =  0.52  at  20  MeV/nucleon.  Therefore,  the
present  QMD+SACA  calculations  indeed  display  the
characteristic signal of this parameter.

Z f

(
∑

Zi⩾13 Zi−
∑

3⩾Zi⩽12 Zi/
∑

Zi⩾3 Zi)

Z f
Z f ⩽ Z f ⩾

The other  parameter  used  here  is  the  bimodal  para-
meter. It is based on bimodality, i.e., the observation of a
double  peaked  distribution  of  the  order  parameter  [30,
31]. Each component is supposed to represent a different
phase  and  provides  a  definition  of  the  order  parameter
that  separates  the  two peaks.  Accordingly,  if  the  nuclear
system is in the region of coexistence, the distribution of
the  probability  of  the  order  parameter  is  bimodal  in
nature.  Borderie et  al. [50]  defined  =  12  as  the  limit
between  the  liquid-gas  phase  at  INDRA.  They  defined

 as  the  order  parameter.
This  may  be  intended  to  connect  the  density  difference
between the liquid and gas phases. Ma et al. [8] changed
this limit between the two phases of the lighter system to =
3 (  3 as a gas and  4 as a liquid) and defined the
bimodal parameter as

P =

∑
Zi⩾4

Zi−
∑

1⩾Zi⩽3

Zi∑
Zi⩾1

Zi

, (16)

where P =  0  was  the  point  of  equal  distribution  of  the
charge in the liquid and gas phases. In Fig. 3 (f), we show

λ ∝ −λZ f

< S 2 > < γ2 > < Zmax2 > S p

Fig. 3.    (color online) The extracted values of the parameter , obtained using exponential fits  e  of the IMFs. The normalized
second moment , variance , average charge of the second largest fragment , phase separation parameter , and
bimodality parameter P are plotted as functions of the incident energy. The dotted line shows the exact energy point  of the onset  of
fragmentation.
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the results for the bimodal parameter for the 40Ar+45Sc re-
actions as  a  function  of  the  incident  energy.  We  see  a
change  in  the  slope  occurring  near  20  MeV/nucleon,
which is the point of coexistence. Next, we analyze Zipf's
law and the information entropy [5] for characteristic sig-
nals of phase-transition.

D.    Zipf's law in the 40Ar+45Sc reaction
Zipf's law  is  well  known  in  linguistics  as  a  relation- th < Zn >

ship  between  the  frequency  rank  of  English  words  and
their frequency of use in the literature [51]. Y. G. Ma [5]
introduced Zipf's  law as  a  characteristic  signal  of  the  li-
quid-gas  phase  transition  in  heavy-ion  collisions.  In
heavy-ion  collisions,  the  law  is  utilized  as  follows.  The
clusters  are  first  arranged  in  decreasing  order  of  their
charges  in  an  event.  The  largest  is  assigned  rank  1,  the
second largest rank 2, and so on. The obtained values of
the size of the fragments of the n  rank, i.e., , are

< Z >
< Zn >∝ n−ξ .

Fig. 4.    (color online) The values of  versus rank (n) in the decreasing order of the fragment charges at different incident ener-
gies for 40Ar+45Sc reactions. The lines denote the power law fit, 
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< Zn >∝ n−ξ ξ

ξ

fit with a power law in the form , where  is
the  order  parameter.  At  the  critical  energy  point,  Zipf's
law is followed with  = 1 [5]. In Ref. [52], it was shown
that Zipf's law is simply a consequence of the power law
fit,  and that  it  does not  add further  information.  In Refs.
[7, 8], Zipf's law is followed. In Refs. [20, 39], Zipf's law
is  followed away from the  critical  point.  It  is  interesting
to  see  the  results  of  our  calculations  using  the
QMD+SACA model for Zipf's law.

< Z >

ξ
⩽

ξ
ξ

∼

In Fig. 4, we display a graph of  versus rank (n)
at  incident  energies  ranging  between  15  and  200
MeV/nucleon. The values obtained via the power law fit
( ) are also shown at the corresponding incident energies.
Note that we only use the power law fit for n  6. The ob-
tained values of  are plotted in Fig. 5 (a) as a function of
the incident energy. We see Zipf's law  = 1 is satisfied at

 35  MeV/nucleon.  This  energy  is  far  from  the  critical
energy  point  predicted  by  using  other  order  quantities.
Our  results  using  the  QMD+SACA  model  are  same  as
those  reported  in  Refs.  [20, 39].  Therefore,  within  the
QMD+SACA  model,  there  is  no  consistent  picture
between Zipf's law and other characteristic signals.

E.    Information entropy in the 40Ar+45Sc reaction
C. E. Shannon introduced the concept of Shannon in-

formation entropy,  which measures  the  information con-
tained in a message that is sent along a transmission line
[53]. Since its introduction, Shannon information entropy
has  been  applied  to  a  wide  variety  of  problems in  fields
such as  nuclear/particle  physics,  astrophysics,  life  sci-
ences, economics, and engineering (see Ref. [33] for a re-
cent review on this). Cao and Hwa first used this concept
in nuclear particle physics to study multi-particle produc-
tion in  high energy hadron collisions  [54].  They defined
the  information  entropy  method  in  the  whole  reaction
system  and  in  event  space.  Y.  G.  Ma  introduced  this
concept  as  a  characteristic  signal  to  study  the  liquid-gas
phase transition in heavy-ion collisions.  The information
entropy was constructed as

H = −
∑

i

pi ln(pi), (17)

∑
i

pi piwith  = 1. Here,  is the normalized probability dis-

tribution of the total multiplicities having 'i' particles pro-
duced in an event. It should be kept in mind that the em-
phasis is on event space and not on phase space. The in-
formation entropy exhibits a peak at the point of maxim-
um fluctuations.  The results for the QMD+SACA model
are shown in Fig. 5 (b). The information entropy (H) has
a peak at 20 MeV/nucleon, indicating that the greatest un-
certainty  in  the  probabilities  occurs  at  this  energy.  We
also  see  that  the  energy  at  which  the  largest  value  of H
occurs is consistent with our observations of other critic-
al parameters (except Zipf's law).

Combining  all  the  results  from Figs.  1-5 (except
Zipf's law), our study predicts the critical point (or onset
of  fragmentation)  for 40Ar+45Sc to  be  in  the  band  of  20-
23.1 MeV/nucleon, which is in close agreement with the
experimentally observed value of 23.9 MeV/nucleon.

F.    Critical behavior in the 84Kr+197Au reaction

b̂ ⩽

Z f

We  next  extended  our  study  to  the  heavily  charged
system  of 84Kr+197Au  for  the  reduced  impact  parameter

 0.25,  for  which no minimum in  the  power  exponent
has  been observed experimentally  [3].  In Fig.  6, we dis-
play the charge distributions (crossed squares)  [3≤ ≤
12] obtained in the highly charged reaction of 84Kr+197Au
at six different incident energies in the range of 35 to 400
MeV/nucleon. The available experimental data [3] for the
same reaction are also displayed (see the stars). Note that
the QMD+SACA model  is  able  to  reproduce the experi-
mental measurements for IMFs in most of the cases.

∝ Z−τf

Further, we again  fit  the  charge yields  at  each incid-
ent energy with power law fits   , and the extracted
values of the power law factor τ are plotted against the in-
cident energy in Fig. 7. We observe that the extracted val-
ues of τ increase monotonically with the incident energy
without passing through a minimum value.  This absence
of a minimum for τ has been attributed to the dominance
of long range Coulomb forces in highly charged systems
[3, 11, 26].  In  the  figure,  we  also  display  the  results  of
previous calculations (represented by different lines) that
used  the  Statistical  Multifragmentation  Model  (SMM)
with  and  without  sequential  decay  [3].  In  the  present
study,  we  find  that  the  calculations  using  QMD+SACA
give τ values that  are  close  to  the  experimentally  meas-
ured ones  as  well  as  to  the  SMM  calculations  with  se-
quential  decay  [3]. In  the  inset,  we  also  display  the  res-

 

ξ

< Zn >∝ n−ξ

ξ = 1

Fig. 5.    (color online) (a) Energy dependence of the  para-
meter  extracted  from  the  power  law  fit, ; (b)  val-
ues  of  the  information entropy (H)  for 40Ar+45Sc reactions in
the incident energy range of 15-200 MeV/nucleon. Zipf's law
is  followed when ,  represented  by  the  dashed  horizontal
line [5].
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ults of τ down to the incident energy of 15 MeV/nucleon:
no minimum is seen in the extracted values of τ. We also

λ < S 2 > < γ2 >

< Zmax2 > S p

analyzed  the  other  critical  parameters , , ,
, P, , H, and  Zipf's  law  for  this  highly

charged system  (results  are  not  shown  here)  and  ob-
served  no  characteristic  signal  of  the  liquid-gas  phase
transition. The absence of liquid-gas phase-transition sig-
nals is  due to the Coulomb forces in this highly charged
system.

∼

The consistency of the QMD+SACA approach in re-
producing experimental data for light and heavily charged
systems  gives  us  confidence  that  it  can  provide  reliable
information  about  the  critical  point  of  the  liquid-gas
phase transition or  the  point  of  onset  of  multifragmenta-
tion. It  is  worth mentioning that the SACA method does
not  have  free  parameters  as  in  other  calculations.
Moreover, the fragments can be realized as early as  60-
90  fm/c,  when  the  nuclear  matter  is  still  hot  and  dense.
Moreover,  the  QMD+SACA model  provides  results  that
are consistent between all  of the characteristic signals of
the  liquid-gas  phase-transition,  except  for  Zipf's  law,  for
which the model  gives  a  higher  critical  energy value for
the  lighter  system.  The  present  study  therefore  suggests
that Zipf's law is not suitable for predicting the liquid-gas
phase transition [20, 39]. Further, this study provides the
first  consistent  calculation that  is  in  accordance with  the
onset of fragmentation in the lighter system and the sub-
sequent absence of such trends in the highly charged sys-
tem. Recently, Lin et al. [20] used the SMM and studied

Z f

Fig.  6.    (color  online)  The  charge  distributions  obtained  from  the  central  reactions  of 84Kr+197Au  at  six  different  beam  energies
between 35 and 400 MeV/nucleon. The solid lines represent the power law fitting of IMFs [3≤ ≤12] obtained using the QMD +
SACA model.

 

 

Z f

Fig.  7.    (color  online)  Extracted  values  of  the  power  law
factor τ,  obtained from the power law fits  of  IMFs [3≤ ≤
12] for the central reactions of 84Kr+197Au as shown in Fig. 6.
The symbols have the same meaning as in Fig. 1. Here, differ-
ent  lines  represent  the  Statistical  Multifragmentation  Model
(SMM) calculations with and without sequential decay [3].
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various critical  signals  for  primary  and  secondary  frag-
ments.  It  was  found  that  few  signals  may  give  different
results  for  primary  and  secondary  fragments.  In  the
present results, in which SACA gives realistic fragments,
all  signals  except  Zipf's  law  yield  characteristic  signals
for the lighter system. Therefore, no additional statistical
decay codes are required. Considering the consistency of
the QMD+SACA model,  it  can be used to  guide the ex-
periments to study possible liquid-gas phase transitions in
nuclear matter.

IV.  SUMMARY

In  this  article,  we  investigated  the  charge  yield  of
fragments  and  its  connection  with  the  liquid-gas  phase
transition  (i.e.,  the  onset  of  multifragmentation)  in  light
and heavily charged systems of 40Ar+45Sc and 84Kr+197Au,
respectively. We also used various parameters and found
that the QMD+SACA calculations are consistent with the

∼

experimental measurements. Using different critical para-
meters,  we  obtained  a  critical  point  of  the  liquid-gas
phase transition or  the  point  of  onset  of  multifragmenta-
tion between 20-23.1 MeV/nucleon for the 40Ar+45Sc sys-
tem (Zipf's law was an exception, predicting a critical en-
ergy of  35 MeV/nucleon), which is close to the experi-
mentally  observed  value  of  23.9  MeV/nucleon.  No  such
critical  point  of  the  liquid-gas  phase  transition  (or  onset
of  multifragmentation)  was  observed  for 84Kr+197Au,  in
agreement with  experimental  findings  and  other  theoret-
ical calculations. We feel that the existing model is highly
suggestive of the critical behavior in lighter colliding sys-
tems, although  more  work  needs  to  be  performed  to  es-
tablish this more firmly. We believe that the present mod-
el is one step ahead of the QMD model coupled with the
MST algorithm or  its  variants,  and that  it  is  also helpful
for the analysis of experimental data for light and heavily
charged systems. We believe that the QMD+SACA mod-
el can be useful in guiding future experiments.
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