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Abstract: The problem of the flat limits of the scalar and spinor fields on the de Sitter expanding universe is con-
sidered in the traditional adiabatic vacuum and in the new rest frame vacuum we proposed recently, in which the fre-
quencies are separated in the rest frames as in special relativity. It is shown that only in the rest frame vacuum can
the Minkowskian flat limit be reached naturally for any momentum, whereas in the adiabatic vacuum, this limit re-
mains undefined in rest frames in which the momentum vanishes. An important role is played by the phases of the
fundamental solutions in the rest frame vacuum, which must be regularized to obtain the desired Minkowskian flat
limits.  This procedure fixes the phases of the scalar mode functions and Dirac spinors,  resulting in their definitive
expressions  derived  here.  The  physical  consequence  is  that,  in  the  rest  frame  vacuum,  the  flat  limits  of  the  one-
particle operators are simply the corresponding operators of special relativity.
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I.  INTRODUCTION

The  quantum  field  theory  (QFT)  on  the  expanding
portion of the de Sitter space-time [1] can be studied ex-
tensively,  as  the  equations  of  the  principal  free  fields,
Klein-Gordon [2-8],  Dirac [2, 9-18],  and Proca [19, 20],
can  be  solved  analytically  in  various  local  charts.  In  the
co-moving charts with Cartesian space coordinates, there
are  plane  waves  solutions  that  are  eigenfunctions  of  the
momentum  operator,  as  in  special  relativity,  but  with
more complicated time modulation functions that are gen-
erally linear combinations of Bessel functions dependent
on  the  manner  in  which  the  frequencies  are  separated,
thus fixing the vacuum. Unfortunately,  in  this  geometry,
one cannot  use  the  energy  operator  to  separate  the  fre-
quencies  as  this  does  not  commute  with  the  momentum
operator. Thus, the main task here is the criterion of sep-
arating the  frequencies  by defining the  particle  and anti-
particle quantum modes [1].

The principal  method  used  to  date  has  primarily  fo-
cused on the asymptotic states, which are somewhat sim-
ilar  to  the  usual  Minkowskian  particle  or  antiparticle
states, as in the case of the adiabatic Bunch-Davies vacu-
um  type  [21]  largely  used  in  applications.  The  problem
arising  in  this  vacuum  is  that  one  cannot  reach  the  rest
limit for vanishing momentum, as this limit is undefined
for  the  corresponding  scalar  mode  functions  or  Dirac
spinors.  This  problem  has  been  considered  sporadically

by other authors, who have found similar results [2, 4, 7,
18].

Hence, we  propose  a  method  of  separating  the  fre-
quencies in rest frames, thus defining the rest frame vacu-
um (r.f.v.) of the massive Klein-Gordon [22], Dirac [23],
and Proca [24] fields. The novelty of this approach is that
the bosons can have either a tardyonic behavior or even a
tachyonic  one,  if  the  mass  is  less  than  a  given  limit,
which depends on the type of coupling (minimal or con-
formal). Fortunately, the tachyonic modes are eliminated
in a natural manner as all their mode functions have null
norms [22]. In contrast, the Dirac field of any non-vanish-
ing mass survives in this vacuum [23]. In other respects,
we  must  specify  that  the  r.f.v.  can  be  defined  only  for
massive  particles  as  the  massless  ones  do  not  have  rest
frames.  This  is  not  an  impediment  because  the  massless
fields of physical interest, namely the Maxwell and neut-
rino ones, have conformally covariant field equations for
which the solutions in the co-moving de Sitter chart with
conformal time can be drawn from special relativity [16,
25].

Technically speaking,  to  define  the  r.f.v.,  we  intro-
duced suitable  phases  depending  on  momentum  to  en-
sure  the  correct  limits  of  the  mode  functions  in  rest
frames [22-24]. Unfortunately, these phases are not suffi-
cient  to  define  the  other  important  limit,  namely  the  flat
one, when the de Sitter Hubble constant tends to zero. In
general,  this  limit  is  undefined  because  of  singularities
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arising in the phases of the mode functions defined in the
adiabatic vacuum. To remove these, a regularization pro-
cedure  was  applied  by  adding  the  convenient  phase
factors which, in general, depend on momentum [2, 4, 7, 18].

As  this  problem  has  not  yet  been  considered  for  the
recently defined r.f.v., the aim of this paper is to study the
flat  limits  of  the  Klein-Gordon  and  Dirac  fundamental
solutions in this vacuum, deriving the regularized phases
that  guarantee  that  these  limits  are  well-defined.  In  this
manner, the rest and flat limits completely determine the
form  of  the  mode  functions  or  spinors  of  the  de  Sitter
QFT. This is  important because there are quantities with
expressions that  are  strongly  dependent  on  the  mo-
mentum-dependent phase factors, such as the one-particle
energy  (or  Hamiltonian)  operator  [2, 6, 16].  We  prove
that  the  phase  factors  derived here  determine the  correct
Minkowskian flat limit of this operator.

We specify  that  we recover  previous  results  [2, 4, 7,
18]  concerning  the  regularized  phases,  but  the  complete
expressions of the scalar mode functions or Dirac spinors
are presented  here  for  the  first  time.  Moreover,  the  ap-
proximations we obtain here are also new results that can
be  used  in  concrete  calculations.  However,  the  principal
new result is that in the r.f.v., the flat limit is reached nat-
urally,  including  for  vanishing  momenta,  in  contrast  to
the adiabatic vacuum in which the rest limit is undefined,
forcing one to redefine the time modulation functions [7].

In the next section, we present the framework of our
attempt to briefly review the theory of covariant fields on
local-Minkowskian  curved  backgrounds,  observing  that
these fields transform under isometries according to cov-
ariant representations (reps.) induced by the finite-dimen-
sional  reps.  of  the  Lorentz  group.  In  the  second  part  of
this  section,  the  covariant  reps.  on  the  de  Sitter  space-
time  are  considered  focusing  on  their  generators,  which
are  the  principal  conserved  observables  of  the  quantum
theory.  The  third  section  is  devoted  to  the  plane  wave
fundamental  solutions  of  the  Klein-Gordon  and  Dirac
fields  in  the  adiabatic  and  rest  frame  vacua,  observing
that the last vacuum naturally solves the rest limits. In the
next section,  we  derive  the  flat  limits  of  the  aforemen-
tioned  fields  using  a  new uniform asymptotic  expansion
we propose here based on numerical arguments. This en-
ables  us  to  derive  the  regularized  phases  that  ensure  the
flat limits of the fundamental solutions. Thus, we obtain,
for the first time, complete expressions of the scalar mode
functions and Dirac spinors in the r.f.v. as well as useful
approximations  of  these  quantities.  Moreover,  we  show
that in this approach, the flat limit of the one-particle en-
ergy  operator  is  simply  the  corresponding  operator  of
special relativity.  Finally,  we  present  our  concluding  re-
marks.

II.  PRELIMINARIES

(M,g)
{t, x⃗} xκ

κ,ν, ... = 0,1,2,3

In  local-Minkowskian  space-time , we  may  in-
troduce local charts  for which the coordinates  are
labeled by the natural indices . The scalar,
vector, and tensor fields can be defined locally on M us-
ing different classes of tensors that transform covariantly
under  diffeomorphisms  and  implicitly  under  isometries
that are of physical interest, producing conserved quantities.

eα̂ = eκ
α̂
∂κ

ωα̂ = êα̂κ dxκ

κ̂, ν̂, ... = 0,1,2,3 eµ
α̂

êα̂µ

Λ

L↑+
gκν = ηα̂β̂ê

α̂
κ êβ̂ν η = diag(1,

−1,−1,−1)
{x;e}

The  presence  of  the  Dirac  field  requires  orthogonal
unholonomic  (or  local)  frames  in  which  the  Dirac
matrices make sense. These frames are defined by the tet-
rad vector fields , while the co-frames are given
by  the  dual  1-forms  labeled  by  local  indices

. Given the tetrad components  and ,
one  fixes  the  tetrad  gauge.  This  can  be  changed  at  any
time  using  the  pseudo-orthogonal  transformations  of
the  Lorentz  group  which  preserve  the  metric  of M,

,  because  the  Minkowski  metric 
 is invariant under these transformations. Thus,

we have to use frames  formed by a local chart and
the  local  frames  given  by  the  tetrad  fields.  The  task  is
now to construct a gauge-invariant theory independent of
the gauge fixing.

A.    Covariant fields

ψ(ρ) : M→V(ρ)
V(ρ)

ρ S L(2,C)
L↑+

ωα̂β̂ = −ωβ̂α̂

To obtain a gauge-invariant theory, we define the cov-
ariant fields ,  with  values  in  the  vector
spaces  carrying  the  finite-dimensional  non-unitary
rep.  of the group , which is the universal cover-
ing group of  [26, 27]. In the usual covariant paramet-
rization,  with the real  parameters, , the trans-
formations

A(ω) = exp
(
− i

2
ωα̂β̂S α̂β̂

)
∈ S L(2,C) (1)

sl(2,C)
S α̂β̂ Λ[A(ω)] ∈ L↑+

A(ω)
Λ
µ̂ ·
· ν̂ [A(ω)] =δµ̂

ν̂
+ω

µ̂ ·
· ν̂ + · · ·

depend  on  the  covariant  basis-generators  of  the 
Lie algebra, . The transformations  asso-
ciated  to  through  the  canonical  homomorphism
have the matrix elements  [28].

ψ(ρ)The  Lagrangian  theory  of  the  covariant  field  is
gauge  invariant  if  we  replace  the  usual  derivatives  with
the covariant ones,

D(ρ)
α̂
= eµ

α̂
D(ρ)
µ = ∂̂α̂+

i
2
ρ(S β̂ ·

· γ̂) Γ̂γ̂
α̂β̂
, (2)

which  depend  on  the  connection  coefficients  in  local
frames (or spin connections),

Γ̂σ̂µ̂ν̂ = eαµ̂eβ
ν̂
(êσ̂γΓ

γ
αβ− êσ̂β,α) , (3)

Γ
γ
αβwhere  denote the Christoffel symbols.

(M,g) x→ x′ = ϕg(x)When  has  isometries ,  these are,
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g→ ϕg
I(M) ϕg ◦ϕg′ = ϕgg′
∀g,g′ ∈ I(M) id = ϕe

e ∈ I(M) ϕ−1
g = ϕg−1

g = g(ξ) e = g(0)

generally,  non-linear  reps.  of  the  isometry  group
 complying with the composition rule ,

.  Denoting  the  identity  function  by  ,
corresponding to the unit ,  we deduce .
In  a  given  parametrization,  (with ),  the
isometries

x→ x′ = ϕg(ξ)(x) = x+ ξaka(x)+ ... (4)

ka = ∂ξa
ϕg(ξ)|ξ=0

ξa a,b, ... = 1,2...N
lay  out  the  Killing  vectors  associated  to
the parameters  ( ).

(Ag,ϕg)

ω̃(x′) = Λ[Ag(x)]ω̃(x)

In general, the isometries may change the relative po-
sition of  the  local  frames,  thus  affecting the  physical  in-
terpretation. For this reason, we propose the theory of ex-
ternal  symmetry  [26], in  which  we  introduce  the  com-
bined  transformations  that can  correct  the  posi-
tions of the local frames. These transformations must pre-
serve not only the metric but also the tetrad-gauge, trans-
forming the 1-forms as . Hereby, we
deduce [26]

Λα̂ ·· β̂ [Ag(x)] = êα̂µ[ϕg(x)]
∂ϕ

µ
g (x)
∂xν

eν
β̂
(x) , (5)

Ag=e(x) = 1 ∈ S L(2,C)
(Ag,ϕg)

assuming,  in  addition,  that .  Then,
the combined transformations  preserve the gauge,

(Ag,ϕg) :
e(x)→ e′(x′) = e[ϕg(x)],
ê(x)→ ê′(x′) = ê[ϕg(x)],

(6)

transforming the covariant fields according to the rule

(Ag,ϕg) : ψ(ρ)(x)→ ψ′(ρ)(x′) = ρ[Ag(x)]ψ(ρ)(x) , (7)

T (ρ) : (Ag,ϕg)
→ T (ρ)

g ρ

which  defines  the  operator-valued  rep. 
, induced by , the operators of which act as

(T (ρ)
g ψ(ρ))[ϕg(x)] = ρ[Ag(x)]ψ(ρ)(x) , (8)

Ag(x)where  is defined by Eq. (5).
(Aξ,ϕξ)

(M,g) S (M)
I(M)

S (M)
ρ S L(2, ,C)

We  have  shown  that  the  pairs  constitute  a
well-defined Lie  group  we  refer  to  as  the  external  sym-
metry group of ,  denoted by , noting that this
is  just  the  universal  covering  group  of  [26].  Thus,
we discuss the covariant reps. of the group  induced
by  the  reps.  of  the  group .  Note  that,  in  the
case  of  the  integer  spins,  all  the  covariant  fields  are  in
fact vectors or tensors of different ranks transforming ac-
cording to the established rules of general relativistic cov-
ariance [27].

kaFor each Killing vector  defined by Eq. (4) there exi-
sts a corresponding generator of the rep. (8) that reads [26]

X(ρ)
a = i∂ξa T (ρ)

g(ξ) |ξ=0

= −ikµa D(ρ)
µ +

1
2

kaµ;ν eµ
α̂

eν
β̂
ρ(S α̂β̂) , (9)

ρwhich is the generalization for any rep.  of the formula
given by Carter and McLenaghan for the Dirac field [29].
These  operators  are  the  principal  conserved  observables
in  the  sense  that  they  commute  with  the  operator  of  the
field equation  resulting  from  the  gauge-invariant  Lag-
rangian theory [30].

⟨ψ,ψ′⟩ U(1)

⟨T (ρ)
g ψ,

T (ρ)
g ψ′⟩ = ⟨ψ,ψ′⟩

⟨X(ρ)
a ψ,ψ′⟩ = ⟨ψ,X(ρ)

a ψ′⟩

Another  advantage  of  the  Lagrangian  theory  is  the
possibility  of  introducing  the  relativistic  scalar  product

 related  to  the  natural  symmetry  of  the  free
Lagrangian  [1, 30].  We  have  shown  that  the  relativistic
scalar  product  is  invariant  under  isometries 

,  while  all  the  conserved  observables  (9)
are  self-adjoint  with  respect  to  this  scalar  product,

 [30].

ψ

C[X] = ⟨ψ,Xψ⟩

ψ

In this  framework,  for  any conserved operator X and
field  satisfying the  field  equation  resulting  from  Lag-
rangian,  we  can  construct  the  conserved  quantity

,  which  is  interpreted  as  the  expectation
value at the level of relativistic quantum mechanics. After
the second quantization, when the field  becomes a field
operator, these quantities become the corresponding one-
particle operators of the QFT [30],

C[X] → X =: ⟨ψ,Xψ⟩ : (10)

calculated respecting the normal ordering of the field op-
erators [31].

B.    Covariant fields on the de Sitter expanding universe
(1+3)

M,g 1
ω

(1+4)
(M5,η5) zA

A, B, ... = 0,1,2,3,4 η5 = diag(1,−1,−1,−1,−1)
{x}

(M,g) zA(x)

The -dimensional de Sitter space-time, denoted
hereon by , is the hyperboloid of radius  embedded
in  the -dimensional  pseudo-Euclidean  space-time

 of  coordinates  (labeled  by  the  indices
) and metric 

[1].  The local  charts  of  coordinates  can be  easily  in-
troduced  on ,  giving  the  set  of  functions ,
which solve the hyperboloid equation

η5
ABzA(x)zB(x) = − 1

ω2 . (11)

(M,g)
S O(1,4)

η5

I(M)

In this manner  is defined as a homogeneous space
of the pseudo-orthogonal group , which is, at the
same time, the gauge group of the metric  and the iso-
metry group  of the de Sitter space-time.

S (M) = Spin(η5) =
S p(2,2) s(M) = sp(2,2) ∼ so(1,4)

ξAB = −ξBA

The  group  of  external  symmetry, 
, has the Lie algebra , for

which  we  use  the  covariant  real  parameters .
Then,  the  orbital  basis-generators  of  the  natural  rep.  of
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s(M)
M5

the  algebra (carried by the space of the scalar func-
tions over ) have the standard form

L5
AB = i

[
η5

ACzC∂B−η5
BCzC∂A

]
= −iKC

(AB)∂C , (12)

k(AB) k(AB)µdxµ = K(AB)CdzC
which allows us to derive the corresponding Killing vec-
tors  by  using  the  identities .
Thus, we obtain the components

ξ(AB) → k(AB)µ = −zA(x)
↔
∂µ zB(x), (13)

f
↔
∂ g = f∂g−g∂ fwith  the  notation .  These  components

will give rise to basis-generators of the covariant reps. ac-
cording to Eq. (9).

M ∼ S O(1,4)/L↑+
S (M)

L↑+

Exploiting the  special  coset  structure  of  the  de Sitter
manifold, , for the first time, Nachtmann
constructed  the  covariant  reps.  of  the  group  in-
duced  by  the  finite-dimensional  reps.  of  the  Lorentz
group  [2]. We have shown that these are equivalent to
our induced  reps.  presented  above,  thus  proving  the  co-
herence  of  this  theory  in  assuring  the  gauge  invariance
and giving rise to the conserved operators required [32].

{tc, x⃗} x0 = tc
xi

The hyperboloid equation is solved simply in the con-
formal  chart  with  the  conformal  time  and
Cartesian space coordinates  defined as

z0(x) = − 1
2ω2tc

[
1−ω2(tc2− x⃗2)

]
,

zi(x) = − 1
ωtc

xi ,

z4(x) = − 1
2ω2tc

[
1+ω2(tc2− x⃗2)

]
, (14)

giving the conformal flat line element

ds2 = η5
ABdzA(x)dzB(x) =

1
ω2tc2

(
dtc2−dx⃗ ·dx⃗

)
. (15)

M+
M−
t ∈ (−∞,∞)

In  this  chart,  the  de  Sitter  manifold M can  be  split  into
two parts: an expanding portion and a collapsing one

,  each  with  its  own  proper  (or  cosmic)  time
 defined as

M+ : −∞ < tc = −
1
ω

e−ωt < 0 , (16)

M− : 0 < tc =
1
ω

eωt <∞ . (17)

M+

M+
M−

Physically speaking, the portion  is a convenient mod-
el  of  our  actual  universe  called  the  de  Sitter  expanding
universe.  Moreover,  if  one  considers  physical  processes
on  the  whole  de  Sitter  manifold,  the  effects  on  and

 compensate  each  other,  leading  to  null  results  [33].

M+ tc < 0
{t, x⃗}

For this reason, in the following, we restrict ourselves to
the  expanding  portion ,  restricting  such  that  in
the  chart  of  proper  time,  the  line  element  takes  the
FLRW form

ds2 = dt2− e2ωtdx⃗ ·dx⃗ , (18)

a(t) = eωtwith the scale factor .
I(M+)

S O(1,4)

P⃗

The  isometry  group  of  the  expanding  portion
includes  all  the  continuous  transformations  of  the

 group but only the discrete transformations pre-
serving this portion. On this manifold, the basis-generat-
ors  of  the  covariant  reps.  with  a  well-defined  physical
meaning  are  the  energy H and  momentum  operators,
which read [30, 34]

H = ωX(ρ)
(04) = −iω(tc∂tc

+ xi∂i) = i∂t − iωxi∂i , (19)

Pi = ω(X(ρ)
(4i)−X(ρ)

(0i)) = −i∂i , (20)

J(ρ)
i =

1
2 ϵi jkX(ρ)

( jk)

Q(ρ)
i = ω(X(ρ)

(4i)+X(ρ)
(0i))

ρ

with no spin terms. In contrast, the components of angu-
lar momentum  and those of the dual mo-
mentum  have  spin  parts  determined
by the rep.  as in Ref. [34], but here, we do not use these
operators.

M+

S p(2,2)

(p,q)

Respecting ad litteram the principles of  the quantum
theory, we assume that the quantum states of  are pre-
pared  or  measured  by  a  global  apparatus  represented  by
the operator  algebra freely generated by the basis-gener-
ators  of  the  covariant  reps.  This  apparatus  prepares
quantum  modes  described  by  the  fundamental  solutions
of the field  equation which,  in  addition,  are  common ei-
genfunctions of a system of commuting conserved operat-
ors. Thus, the quantum modes are defined globally inde-
pendent of  the  local  coordinatization.  Moreover,  we  re-
quire these fundamental solutions to form a basis (i.e., an
orthonormal  and  complete  system)  with  respect  to  the
specific relativistic scalar product resulting from the Lag-
rangian theory [30]. The covariant quantum field can then
be  expanded  in  terms  of  fundamental  solutions  and
particle  and  antiparticle  operators.  We  have  shown  that
these  operators  transform  under  isometries  according  to
the  unitary  irreducible  reps.  of  the  group  of  the
principal  series  exclusively  [35, 36],  for  which  the
weights  depend on spin and rest energy [30, 34].

S p(2,2)
M5

Finally,  we  note  that  another  attempt  using  de  Sitter
space-times considers only the unitary and irreducible lin-
ear reps. of the  group, transforming invariant fields-
defined  first  on  and  then  projected  on M [37-40].
In this manner, one obtains a framework leading to differ-
ent results, which cannot be related to those of the theory
of covariant fields presented here.
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III.  PLANE WAVES IN ADIABATIC AND REST
FRAME VACUA

so(1,4)

{P1,P2,P3}

As mentioned,  the fundamental  solutions of  the field
equations  can  be  determined  as  common  eigenfunctions
of  a  system  of  commuting  operators,  the  eigenvalues  of
which play  the  role  of  integration  constants  with  a  pre-
cise physical meaning. When all the integration constants
are determined in  this  manner,  one  can  say  that  the  sys-
tem  is  complete.  Unfortunately,  the  algebra  can
offer us  only  incomplete  systems,  for  example,  the  sys-
tem  of plane waves. Thus, an integration con-
stant remains arbitrary depending on the criterion of fre-
quency separation we adopt, thus defining the vacuum.

M+

M+

On ,  we  have  so  far  the  adiabatic  Bunch-Davies
vacuum  type  and  the  r.f.v.  we  introduced  recently  [22,
23]. Our principal objective is to study how the flat limit
depends  on  the  choice  of  these  vacua,  focusing  on  the
Klein-Gordon and Dirac fields on .

A.    Klein-Gordon field

{t, x⃗} Φ : M+→ CIn the chart , the scalar field  of mass
m, minimally coupled to the de Sitter gravity, satisfies the
Klein-Gordon equation,(

∂2
t − e−2ωt∆+3ω∂t +m2

)
Φ(x) = 0 , (21)

for which the general solutions can be expanded as

Φ(x) =Φ(+)(x)+Φ(−)(x)

=

∫
d3 p

[
fp⃗(x)a( p⃗)+ f ∗p⃗ (x)b†( p⃗)

]
, (22)

a( p⃗) b( p⃗)
p⃗

f p⃗ f ∗p⃗ (x)

Pi fp⃗ = pi f p⃗

in  terms  of  field  operators  and ,  depending  on
the conserved momentum  and plane wave fundamental
solutions  and  of positive  and  negative  frequen-
cies,  respectively.  These  solutions  are  eigenfunctions  of
the  momentum operators , which  must  be  or-
thonormal in the momentum scale,

⟨ fp⃗, fp⃗′⟩KG = −⟨ f ∗p⃗ , f ∗p⃗′⟩KG = δ
3( p⃗− p⃗′) , (23)

⟨ f p⃗, f ∗p⃗′⟩KG = 0 , (24)

satisfying a completeness condition with respect to the re-
lativistic scalar product [1]

⟨ f , f ′⟩KG = i
∫

d3xa(t)3 f ∗(x)
↔
∂t f ′(x) . (25)

⟨ f , f ⟩KG
f ∈ H ⊂ K

This gives the "squared norms"  of the square in-
tegrable  functions ,  which  may have  any  sign

Kwhen splitting the space of mode functions  as

f ∈


H+ ⊂ K+ if⟨ f , f ⟩KG > 0,

H0 ⊂ K0 if⟨ f , f ⟩KG = 0,

H− ⊂ K− if⟨ f , f ⟩KG < 0.

(26)

K±
K0

From  a  physical  perspective,  the  mode  functions  of 
are of positive/negative frequencies, whereas those of 
do not have a physical meaning.

The fundamental mode functions can be expressed as

fp⃗(t, x⃗) =
eix⃗·p⃗

[2πa(t)]
3
2

Fp(t) , (27)

Fp : Dt→ C
p = |p⃗|

in  terms  of  the  time  modulation  functions ,
which depend on  satisfying the equation[

d2

dt2 +
p2

a(t)2 +m2− 9
4
ω2

]
Fp(t) = 0 , (28)

and the normalization condition

(
Fp,Fp

)
≡ iF ∗p (t)

↔
∂ t Fp(t) = 1 , (29)

which guarantees condition (23).

{tc, x⃗}
The general solution of Eq. (28) can be derived easily

in the chart  obtaining [6, 22]

Fp(tc)= c1ϕp(tc)+c2ϕ
∗
p(tc) , ϕp(tc)=

1
√
πω

Kν(iptc) , (30)

Kνwhere  is the modified Bessel function of the index

ν =


√

9
4
−µ2 for µ <

3
2

iκ,κ =

√
µ2− 9

4
for µ >

3
2

, (31)

µ =
m
ω

ϕp(tc)
(ϕp,ϕp) = 1

where .  The  particular  solution  is normal-
ized, i.e., , such that condition (29) is fulfilled
only if we take

|c1|2− |c2|2 = 1 . (32)

{ f p⃗ | p⃗ ∈ R3
p}∪ { f ∗p⃗ | p⃗ ∈ R

3
p}

K+∪K−

Thus, we  remain  with  an  undetermined  integration  con-
stant that may be fixed by giving a criterion of frequency
separation, thus  setting  the  vacuum.  Each  pair  of  con-
stants satisfying this condition determines a (generalized)
basis  of  the  physical  space  of
mode functions  corresponding to the fixed vacuum.
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c1 = 1 c2 = 0

Kiκ(iptc)

The  most  popular  vacuum  is  the  adiabatic  Bunch-
Davies type [21], with  and , which holds for
any mass, regardless of the real or imaginary value of the
index (31). Despite this advantage, here we face the prob-
lem of the rest limit, which cannot be defined as long as
the functions  have an ambiguous behavior,

Kiκ(iptc) ∝ 1

Γ

(
1
2
− iκ

) (
iptc

2

)−iκ

− 1

Γ

(
1
2
+ iκ

) (
iptc

2

)iκ

, (33)

p→ 0
iκ→ iκ± ϵ

for , as  it  results  from  Eq.  (A6).  A  possible  solu-
tion is to redefine these functions by replacing 
to  eliminate  one  of  the  above  terms  and  introducing  a
convenient  phase  factor  for  the  remaining  one  [2, 4, 7].
However,  this  procedure  is  palliative  as  this  affects  the
physical meaning of the mass, which gains an imaginary
part.

To  avoid  these  difficulties,  we  recently  defined  the
r.f.v., separating the frequencies in the rest frames just as
in special relativity [22]. Thus, we found that the rest en-
ergy,

M = κω =

√
m2− 9

4
ω2 , m >

3
2
ω, (34)

µ >
3
2

µ <
3
2

which  plays  the  role  of  a  dynamical  mass,  makes  sense
only  for ,  as  for ,  the  mode  functions  do  not
have  a  physical  meaning,  being  of  tachyonic  type  but
with null norms. We have shown that in the tardyonic do-
main, this vacuum is stable, corresponding to the integra-
tion constants

c1 = −i
( p
2ω

)−iκ eπκ
√

e2πκ −1
, (35)

c2 = i
( p
2ω

)−iκ 1
√

e2πκ −1
, (36)

determining the time modulation functions of positive en-
ergy as [22]

Fp(tc) =
√
π

ω

( p
2ω

)−iκ Iiκ(iptc)
√

e2πκ −1
. (37)

We must  specify  that  the  above  phase  factor  is  intro-
duced to ensure the correct rest limit

lim
p→0
Fp(tc) =

1
√

2M
e−iMt , (38)

calculated according to Eqs. (16) and (A6).

m > 3
2ω

α ∝ c1 β ∝ c2

Finally,  we  must  specify  that  the  adiabatic  and  rest
frame  vacua  are  different  from  a  physical  perspective.
First,  they  differ  because  in  the  adiabatic  vacuum,  the
scalar particles may have any mass,  whereas in the r.f.v.
only the particles with  (in minimal coupling) can
survive.  Moreover,  when this  condition is  accomplished,
the basis of the adiabatic vacuum can be related to that of
the r.f.v.  through  a  non-trivial  Bogolyubov  transforma-
tion [1] for which the coefficients,  and , de-
pend on the constants (35) and (36).

B.    Dirac field

ρD = ( 1
2 ,0)⊕ (0, 1

2 )
S L(2,C)

γ γα̂

The Dirac  field  transforms  under  isometries  accord-
ing to a rep. induced by the Dirac rep. 
of  the ,  the  generators  of  which  depend  on  the
point-independent Dirac -matrices, ,  labeled by local
indices as

ρD(S α̂β̂) =
i
4

[
γα̂,γβ̂

]
. (39)

M+To express the covariant derivatives on , we chose the
diagonal tetrad-gauge defined as

e0 = ∂t =
1

a(tc)
∂tc
, ω0 = dt = a(tc)dtc , (40)

ei =
1

a(t)
∂i =

1
a(tc)

∂i , ωi = a(t)dxi = a(tc)dxi , (41)

S O(3)
S O(3)

ψ
(Dx −m)ψ(x) = 0

to  preserve  the  global  symmetry,  allowing  us  to
systematically use the  vectors. In this tetrad-gauge,
the  covariant  massive  Dirac  field  of  mass m satisfies
the equations  given by the Dirac operat-
or

Dx = iγ0∂t + ie−ωtγi∂i+
3iω
2
γ0 , (42)

ψ→ [a(t)]−
3
2ψ

resulting from the Lagrangian theory [16, 30]. It is known
that the last  term of this operator can be removed at any
time by substituting . Similar results can be
written in the conformal chart.

The  general  solution  of  the  Dirac  equation  may  be
written as a mode integral,

ψ(x ) = ψ(+)(x )+ψ(−)(x )

=

∫
d3 p

∑
σ

[U p⃗,σ(x)a( p⃗,σ)+Vp⃗,σ(x)b†(p⃗,σ)] , (43)

U p⃗,σ Vp⃗,σ

p⃗

in terms of the fundamental spinors  and  of pos-
itive  and  negative  frequencies,  respectively,  which  are
plane wave solutions of the Dirac equation depending on
the conserved momentum  and an arbitrary polarization
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σ. These spinors satisfy the eigenvalue problems

PiU p⃗,σ(x) = piU p⃗,σ(x) , PiVp⃗,σ(x) = −piV p⃗,σ(x) , (44)
and form an orthonormal basis related through the charge
conjugation,

Vp⃗,σ(t, x⃗) = Uc
p⃗,σ(t, x⃗) =C

[
U p⃗,σ(t, x⃗)

]∗
, C = iγ2 , (45)

(see Appendix A); they also satisfy the orthogonality re-
lations

⟨U p⃗,σ,U p⃗ ′,σ′⟩D = ⟨Vp⃗,σ,Vp⃗ ′,σ′⟩D = δσσ′δ3( p⃗− p⃗ ′) (46)

⟨U p⃗,σ,Vp⃗ ′,σ′⟩D = ⟨Vp⃗,σ,U p⃗ ′,σ′⟩D = 0 , (47)

with respect to the relativistic scalar product [16]

⟨ψ,ψ′⟩D =
∫

d3xa(t)3ψ̄(x)γ0ψ(x) , (48)

ψ̄ = ψ+γ0 ψ

(a,a†) b,b†)

where  is  the  Dirac  adjoint  of .  This  basis  is
complete [16], defining the momentum rep. in which the
particle  and antiparticle (  operators satisfy the
canonical anti-commutation relations [16].

γ0
In the standard rep. of the Dirac matrices (with diag-

onal ),  the general  form of  the fundamental  spinors  in
momentum rep.,

U p⃗,σ(t, x⃗ ) =
eip⃗·x⃗

[2πa(t)]
3
2


u+p(t)ξσ

u−p(t)
piσi

p
ξσ

 , (49)

Vp⃗,σ(t, x⃗ ) =
e−ip⃗·x⃗

[2πa(t)]
3
2

 v+p(t)
piσi

p
ησ

v−p(t)ησ

 , (50)

u±p(t)
v±p(t) p = |p⃗|
ξσ ησ = iσ2(ξσ)∗

ξ+σξσ′ = η
+
σησ′ = δσσ′

is determined by the time modulation functions  and
 that depend only on t and . The Pauli spinors

 and  have to be correctly normalized, i.e.,
,  satisfying  a  natural  completeness

equation.
u±p(tc) v±p(tc)The time modulation functions  and  in the

conformal chart satisfy the system

[
i∂tc
∓ma(tc)

]
u±p(tc) = pu∓p(tc) , (51)

[
i∂tc
∓ma(tc)

]
v±p(tc) = −pv∓p(tc) , (52)

the  prime  integrals  of  which  allow  us  to  impose  the
charge conjugation symmetry (45) assuming that [23]

v±p =
[
u∓p

]∗
, (53)

and the normalization conditions

|u+p |2+ |u−p |2 = |v+p |2+ |v−p |2 = 1 (54)

which guarantee  that  Eqs.  (46)  and  (47)  are  accom-
plished. As  mentioned,  these  conditions  cannot  com-
pletely  determine  the  solutions  that  have  the  general
forms [23]

u+p(tc) =

√
− ptc
π

[
c1Kν− (iptc)+ c2Kν− (−iptc)

]
, (55)

u−p(tc) =

√
− ptc
π

[
c1Kν+ (iptc)− c2Kν+ (−iptc)

]
, (56)

Kν ν± =
1
2
± iκ κ =

m
ω

c1 c2

which are  expressed  in  terms  of  modified  Bessel  func-
tions  of indices , where now , and de-
pend on the integration constants  and ,  which must
satisfy

|c1|2+ |c2|2 = 1 , (57)

v±p
to accomplish the normalization condition (54). The func-
tions  result from Eq. (53).

a( p⃗,σ)
b( p⃗,σ)

(
1
2
, ν±)

C1 = m2+
3
2
ω2

C2 =
3
4

(
m2+

1
4
ω2

)

Thus, we derive the general structure of the covariant
Dirac field (43), for which the field operators  and

 transform  according  to  the  unitary  irreducible
reps. of the principal series ,  which are equivalent

with  the  same  Casimir  invariants  and

 [30, 34].

c1 = 1
c2 = 0

Kν

p→ 0
p⃗ · σ⃗

p

To completely  determine  our  solutions  we  must  ad-
opt  the  criterion  of  frequency  separation.  The  adiabatic
vacuum  may  be  defined  simply  by  choosing  and

 as in Refs. [2, 16]. The major problem of this vacu-
um  is  that  in  the  momentum-spin  rep.,  we  cannot  reach
the  rest  frame  limit  even  though  the  functions  now
have defined limits for . This is because of the term

, for which the limit is undefined [23]. Moreover, if
we force the limit vanishing this term by hand, we affect
the normalization [16, 18].

The solution is to adopt the r.f.v., imposing the condi-
tions [23]

lim
p→0

u−p(t) = lim
p→0

v+p(t) = 0, (58)

which  remove  the  contribution  of  the  aforementioned
terms  in  rest  frames.  These  conditions  are  accomplished
only if we take
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c1 =
eπκp−iκ

√
1+ e2πκ

, c2 =
i p−iκ

√
1+ e2πκ

, (59)

determining the  definitive  form  of  the  modulation  func-
tions of positive frequencies as [23]

u±p(tc) = ±
√−πtc pν−
√

1+ e2πκ
I∓ν∓ (iptc) . (60)

The modulation functions of the negative frequencies
have to be calculated according to Eq. (53). Thus, we ob-
tain fundamental spinors for which the rest limits

lim
p⃗→0

U p⃗,σ(t, x⃗) =
e−imt

[2πa(t)]
3
2

(
ξσ
0

)
, (61)

lim
p⃗→0

Vp⃗,σ(t, x⃗) =
eimt

[2πa(t)]
3
2

(
0
ησ

)
, (62)

indicate that the rest energy of the Dirac field is m, as in
special relativity.

In contrast to the Klein-Gordon field, the r.f.v. of the
Dirac field  holds  for  any  mass,  separating  the  frequen-
cies just as in special relativity. Nevertheless, its relation
with the adiabatic vacuum is similar  to that  in the scalar
case because the basis of the adiabatic vacuum is related
to  that  of  the  r.f.v.  through  a  non-trivial  Bogolyubov
transformation, the coefficients of which are proportional
to the constants (59).

IV.  FLAT LIMITS

The time modulation functions studied above depend
on the variable

x = −ptc =
p
ω

e−ωt (63)

0
ω→ 0 −ωtc→ 1

Jiκ+λ(κx) κ > 0
x > 0 λ = 0,± 1

2
λ = 0

which  in  the  rest  limit,  tends  to  but  in  the  flat  limit,
when  and ,  tends  to  infinity.  Therefore,
to analyze the behavior of the time modulation functions
in  the  flat  limit,  we  need  to  use  a  uniform expansion  of
the Bessel function  for large values of , any

,  and .  Unfortunately,  we  have  a  rigorous
proof only for  such that we are forced to generalize
this case based on analytical and numerical arguments.

A.    Approximation method

Jiκ+λ(κx)
κ iκ→ iκ+λ

κx κ
√

1+ x2

We propose a generalization of  the standard uniform
asymptotic  expansion  (A8)  to ,  observing  that
this  is  analytic  in  such  that  we  can  replace 
without affecting the variable x or expressions containing
it, such as  or . Therefore, we assume that the
following approximation,

Jiκ+λ(κx) ≃ J(κ,λ, x) =
e

πκ

2
− iπλ

2

√
2κπ

× eiκ
√

1+x2− iπ
4

(1+ x2)
1
4

1
x
+

√
1+

1
x2

−iκ−λ

,

(64)

O(κ−1)
λ ∈ R

J

in  which  we  neglected  the  terms  of  the  order ,
holds  even  for  non-vanishing  values  of .  However,
the crucial point is to verify whether this approximation is
numerically  satisfactory,  comparing  the  functions J and

.

x = 0 p , 0
0.1 ⩽ x ⩽ 10

κ
J

κ κ = 1 λ = 0,± 1
2

κ κ > 4

We  start  with  the  observation  that,  in  our  case,  the
variable  (63)  is  positively  defined  without  reaching  the
value  if , such that we can restrict our graphic-
al  study  to  the  interval .  Then,  we  may  ask
what  it  means  by  "large  values  of " plotting  the  func-
tions J and  on  this  interval.  Thus,  we  see  that  their
graphs tend to approach each other even for modest val-
ues of  as in Fig.  1,  where  and . For lar-
ger values of  (e.g., ), the graphs of these functions
overlap such that we need to resort to the function

E(κ,λ, x) = 1− |J|(κ,λ, x)|
|Jiκ+λ(κx)| , (65)

κ 5 10
to discern the errors of  our approximation.  In Fig.  2,  we
see how the errors diminish as  increases from  to .

 

ℜ Jiκ+λ(κx)
ℜJ(κ,λ, x) κ = 1 λ = − 1

2 ,0,
1
2

Fig.  1.    (color  online)  Functions  (red)  and
 (blue) for  and .

 

E(κ,λ, x) κ = 5
κ = 10

Fig. 2.    (color online) Function  for  (upper pan-
els) and  (lower panels).
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λ , 0
κx→ x

The conclusion is that our approximation is numeric-
ally satisfactory even for . In practice, it is conveni-
ent to substitute  to obtain the more homogeneous
approximation

Jiκ+λ(x) ≃ e
πκ

2
− iπλ

2

√
2π

ei
√
κ2+x2− iπ

4

(κ2+ x2)
1
4

 κx +
√

1+
κ2

x2

−iκ−λ

, (66)

which is useful in investigating the flat limits of the scal-
ar and spinor fields.

B.    Flat limit of the Klein-Gordon field in r.f.v.
ω→ 0

κ > 3
2

Let us briefly analyze the flat limits, for , of the
mode functions in the r.f.v. for , starting with rewrit-
ing the time modulation functions (37),  according to Eq.
(A7), as

Fp(t) = eiδKG(p)
( p
2ω

)−iκ
√
π

ω

e
1
2
πκ

√
e2πκ −1

Jiκ

( p
ω

e−ωt
)
. (67)

δKG(p)
ω = 0

p→ 0

Here,  we  introduce  the  auxiliary  phase  required
for removing the pole in  of the general phase. Note
that the second phase factor ensures the correct rest frame
limit  for  [22]. The  flat  limit  can  be  evaluated  us-
ing the uniform expansion of this Bessel function (66) in
which we substitute x as  in Eq.  (63).  Then,  according to
Eq. (66), we may approximate

Fp(tc) ≃ ρ(p, t)eiθ(p,t) , (68)

where

ρ(p, t) =
1

√
2(M2+ p2e−2ωt)

1
4

eπκ
√

e2πκ −1
, (69)

θ(p, t) =δKG(p)− π
4
− M
ω

ln
(

1
2ω

)
−Mt

− M
ω

ln
(
M+

√
M2+ p2e−2ωt

)
+

1
ω

√
M2+ p2e−2ωt . (70)

θ(p, t)
ω = 0
Furthermore,  we  compute  the  series  of  around

, where  this  function  has  a  pole  that  can  be  re-
moved by setting

δKG(p) =
π

4
+

M
ω

ln
M+

√
M2+ p2

2ω
−

√
M2+ p2

ω
. (71)

In this manner, we generate the phase factor

eiδKG(p) = e
iπ
4

 M+
√

M2+ p2

2ω


iM
ω

e−i
√

M2+p2

ω , (72)

without  physical  significance  but  necessary  for  deriving
the convenient approximation that can be used in applica-
tions,

Fp(t) ≃ eπκ
√

e2πκ −1

eiθKG(p,t)

√
2(M2+ p2e−2ωt)

1
4

. (73)

The regularized phase

θKG(p, t) =−Mt− M
ω

ln

 M+
√

M2+ p2e−2ωt

M+
√

M2+ p2


+

1
ω

(√
M2+ p2e−2ωt −

√
M2+ p2

)
, (74)

δKG
ω

is  obtained  by  substituting  into  Eq.  (70)  the  phase 
defined by Eq.  (71).  For small  values of ,  we may use
the Taylor series

θKG(p, t) =−
√

M2+ p2 t+
ωp2t2

2
√

M2+ p2

− ω
2 p2(2M2+ p2)t3

6(M2+ p2)
3
2

+O(ω3) , (75)

limω→0 M = mfinding that in the flat limit, when , and

lim
ω→0
Fp(t) =

e−iE(p)t√
2E(p)

, E(p) =
√

m2+ p2 , (76)

we recover  just  the  Minkowskian time modulation func-
tions.

C.    Flat limit of the Dirac field in r.f.v.

{t, x⃗}

To  analyze  how  the  flat  limit  can  be  reached  in  the
case of the Dirac field, it is convenient to rewrite the time
modulation functions (60) in the chart  as

u±p(t) =± eiδD(p)± iπ
4 p−iκ

× e
πκ

2

√
e2πκ +1

√
π

ω
pe−ωt Jiκ∓ 1

2

( p
ω

e−ωt
)
, (77)

δD(p)

λ = ± 1
2

after introducing the phase , which should take over
the  singularities  of  the  general  phase  as  in  the  previous
case. The uniform expansion (66) with  helps us to
approximate

u±p(t) ≃ ρ±(p, t)eiθ(p,t) , (78)
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where

ρ+(p, t) =
eπκ

√
e2πκ +1

√√
m2+ p2e−2ωt +m

√
2(m2+ p2e−2ωt)

1
4

, (79)

ρ−(p, t) =
eπκ

√
e2πκ +1

× pe−ωt

√
2(m2+ p2e−2ωt)

1
4

√√
m2+ p2e−2ωt +m

,

(80)

θ(p, t) =δD(p)+
π

4
−mt

− m
ω

ln
(
m+

√
m2+ p2e−2ωt

)
+

1
ω

√
m2+ p2e−2ωt . (81)

We observe that the obvious identity

pe−ωt =

√√
m2+ p2e−2ωt +m

√√
m2+ p2e−2ωt −m (82)

θ(p, t) ω = 0

can be substituted into Eq. (80) to obtain a more symmet-
ric and compact form. Furthermore, we expand the func-
tion  around  and choose

δD(p) = −π
4
+

m
ω

ln(
√

m2+ p2+m)− 1
ω

√
m2+ p2 , (83)

ω = 0
κ

ω→ 0

to eliminate the effects of the pole in . Thus, we ar-
rive  at  the  final  expansion  for  large  values  of  (when

), which reads

u±p(t) ≃ e
πm
ω

√
e2 πm

ω +1

√√
m2+ p2e−2ωt ±m

√
2(m2+ p2e−2ωt)

1
4

eiθD(p,t) . (84)

The regularized phase

θ(p, t) =−mt− m
ω

ln

m+
√

m2+ p2e−2ωt

m+
√

m2+ p2


+

1
ω

(
√

m2+ p2e−2ωt −
√

m2+ p2), (85)

δDobtained after substituting  into Eq. (81), can be expan-
ded as

θD(p, t) =−
√

m2+ p2 t+
ωp2t2

2
√

m2+ p2

− ω
2 p2(2m2+ p2)t3

6(m2+ p2)
3
2

+O(ω3) , (86)

taking a similar form to the phase (74) of the scalar field
but with the usual mass m instead of the dynamical one.

Finally, we verify that, in the flat limit, we obtain the
usual Minkowskian time modulation functions

lim
ω→0

u±p(t) =

√
E(p)±m

2E(p)
e−iE(p)t . (87)

D.    Physical consequences
Solving the problem of the flat  limit,  we derive suit-

able phases that complete the phases we introduced previ-
ously  to  define  the  r.f.v.  We  thus  obtain  the  definitive
form of the scalar time modulation functions,

Fp(t) = eiαKG(p)
√
π

ω

e
1
2
πκ

√
e2πκ −1

Jiκ

( p
ω

e−ωt
)
, (88)

κ =
M
ω

where , while the global phase

αKG(p) =δKG(p)− κ ln
( p
2ω

)
=
π

4

+
M
ω

ln
M+

√
M2+ p2

p
−

√
M2+ p2

ω
, (89)

depends on the dynamical mass (34).
For  the  Dirac  time  modulation  functions,  we  may

write a similar result,

u±p(t) = ±eiαD(p)± iπ
4

e
πκ

2

√
e2πκ +1

√
π

ω
pe−ωt Jiκ∓ 1

2

( p
ω

e−ωt
)
, (90)

κ = m
ωwhere now  and

αD(p) =δD(p)− κ ln p

=− π
4
+

m
ω

ln

 √
m2+ p2+m

p

− √
m2+ p2

ω
, (91)

which  is  very  similar  to  the  scalar  phase  but  with  the
genuine mass m instead of the dynamical one M.

These phases are so important in the de Sitter space-
time  because  they  do  not  affect  the  scalar  products  or
contribute to  the  expressions  of  the  transition probabilit-
ies.  A  specific  feature  of  the  de  Sitter  QFT  is  that  the
forms of  some  one-particle  operators,  including  the  en-
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ergy one, are strongly dependent on the phases, which are
functions of p. We remind the reader that, after canonical
quantization,  the  one-particle  energy  operator  is  (19).  In
the case of  the Klein-Gordon field,  we consider  the nor-
malized  mode  functions  (27)  with  the  time  modulation
functions (88). Then, it is not difficult to verify the iden-
tity

(H f p⃗) =
[
−iω

(
pi∂pi

+
3
2

)
−ωpi∂piαKG(p)

]
fp⃗, (92)

which allows us to derive the form of the one-particle en-
ergy operator, according to Eq. (10), as

HKG = : ⟨Φ,HΦ⟩KG :

=

∫
d3 p

√
M2+ p2

[
a†( p⃗)a( p⃗)+b†( p⃗)b( p⃗)

]
+

iω
2

∫
d3 p pi

{[
a†(p⃗)

↔
∂ pi

a( p⃗)
]

+

[
b†( p⃗)

↔
∂ pi

b( p⃗)
]}
, (93)

because

ωpi∂piαKG(p) = −
√

M2+ p2 . (94)

We  thus  reach  a  favorable  result  wherein  by  fixing  the
correct phases requested by the rest and flat limits, we ob-
tain an operator for which the flat limit,

lim
ω→0
HKG =

∫
d3 p

√
m2+ p2

[
a†(p⃗)a(p⃗)+b†( p⃗)b( p⃗)

]
, (95)

is  the  well-known  energy  operator  of  the  Minkowskian
QFT. A similar result can be obtained for the Dirac field.
Therefore,  the  flat  limit  of  the  entire  de  Sitter  QFT  is
simply the QFT of special relativity.

V.  CONCLUDING REMARKS

We  derived  here,  for  the  first  time,  the  definitive
forms  of  the  fundamental  solutions  of  the  Klein-Gordon
and  Dirac  fields  for  which  the  frequencies  are  separated
in the rest frames as in special relativity with, in addition,
suitable Minkowskian flat limits.

Similar  results  concerning the  phase  factors  or  mode
expansions as the second term of Eq. (93) were obtained
for  the scalar  and spinor  fields previously in Ref.  [2],  in
which the adiabatic vacuum was considered.  Subsequent
studies  refined  these  results  [4, 7, 18]  such  that  we  can
now  conclude  that  the  regularized  phases  derived  so  far
are very similar to those obtained here in the r.f.v. This is

p−iκ

because in the adiabatic vacuum, where the rest limits are
undefined,  before  performing  the  flat  limit,  one  must
force the rest limit to change ad hoc the form of the time
modulation functions  to  introduce  phase  factors  propor-
tional to  similar to those arising naturally in the r.f.v.
[7], as indicated in Section III.

Apart from the regularized phases recovered here, we
report important new results such as the final forms of the
time modulation functions (88) and (90) in the r.f.v.  and
the approximations (73) and (84) that can be used in ap-
plications  for  deriving  transition  amplitudes  between
states, defined in this vacuum instead of the adiabatic one
that has been considered previously [41-50].

However, the principal new result is that, in the r.f.v.,
the flat limit occurs naturally without the forced artifices
used  in  the  case  of  the  adiabatic  vacuum  we  presented
above. In our opinion, this result is a crucial argument in
favor of the hypothesis that the r.f.v. could be the princip-
al  candidate  for  applying  Feynman rules  in  the  de  Sitter
expanding universe.

APPENDX A: SOME PROPERTIES OF BESSEL
FUNCTIONS

Iν(z) Kν(z)The modified Bessel functions  and  are re-
lated as [51]

Kν(z) = K−ν(z) =
π

2
I−ν(z)− Iν(z)

sinπν
, (A1)

I±ν(z) = e∓iπνI±ν(−z)

=
i
π

[
Kν(−z)− e∓iπνKν(z)

]
. (A2)

ν = iκ
Their Wronskians give the identities that we need to nor-
malize the mode functions. For , we obtain

iIiκ(is)
↔
∂s I−iκ(is) =

2sinhπκ
πs

, (A3)

while the identity

iKν(−is)
↔
∂s Kν(is) =

π

|s| , (A4)

νholds for any .
|z| → ∞ νFor  and any , we have

Iν(z)→
√

π

2z
ez , Kν(z)→ K 1

2
(z) =

√
π

2z
e−z . (A5)

|z| → 0 IνIn the limit of , the functions  behave as

Iν(z) ∼ 1
Γ(ν+1)

( z
2

)ν
, (A6)

Flat limit of the de Sitter QFT in the rest frame vacuum Chin. Phys. C 45, 013108 (2021)

013108-11



Kνwhile for the functions , we have to use Eq. (A1).
The modified Bessel functions I are related to the usu-

al ones as

Iν(−ix) = e−
iπν
2 Jν (x) , ∀ x ∈ R, ν ∈ C , (A7)

for which we can apply the following uniform asymptot-
ic expansion [52]

Jiκ(κx) =
e

πκ

2

√
2κπ

eiκ
√

1+x2− iπ
4

(1+ x2)
1
4

1
x
+

√
1+

1
x2

−iκ

×
n=N∑

n=0

(2i)nΓ(n+ 1
2 )

κn(1+ x2)
n
2

an(x)+O(κ−N−1)

 , (A8)

an (1+ x2)−1where  are polynomials in ,

a0(x) =1 ,

a1(x) =− 1
8
+

5
24

(1+ x2)−1 ,

a2(x) =
3

128
− 77

576
(1+ x2)−1

+
385

3456
(1+ x2)−2, ...

κ

κ, x > 0

N = 0

Γ(
1
2

) =
√
π

with coefficients less than 1 that do not depend on . This
expansion  holds  for  any .  Here,  we  consider  the
case of , in which the contribution of the above sum

reduces to .
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