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Abstract: Recently, an action principle for the  limit of Einstein-Gauss-Bonnet gravity has been proposed. It
is a special scalar-tensor theory that belongs to the family of Horndeski gravity. It also has well defined  and

 limits. In this work, we examine this theory in three and four dimensions in the Bondi-Sachs framework. In
both three and four dimensions, we find that there is no news function associated with the scalar field, which means
that there is no scalar propagating degree of freedom in the theory. In four dimensions, the mass-loss formula is not
affected by the Gauss-Bonnet term. This is consistent with the fact that there is no scalar radiation. However, the ef-
fects of the Gauss-Bonnet term are quite significant in the sense that they arise just  one order after the integration
constants and also arise in the quadrupole of the gravitational source.
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I.  INTRODUCTION

Einstein-Gauss-Bonnet  (EGB) gravity  is  the  simplest
case of Lovelock's extension of Einstein gravity [1]. The
theory exists naturally in higher dimensions and becomes
important with the development of string theory. Its black
hole  solutions  [2-5]  play  an  important  role  in  studying
anti-de Sitter/conformal  field  theory  (AdS/CFT)  corres-
pondence. In four dimensions, the Gauss-Bonnet combin-
ation  is  a  topological  invariant  and  does  not  affect  the
classical equations  of  motion.  Einstein's  general  relativ-
ity is widely believed to be the unique Lagrangian theory
yielding second order equations of motion for the metric
in four dimensions. The Lovelock type of construction re-
quires  additional  scalar  or  vector  fields,  giving  rise  to
Hordenski  gravities  [6]  or  generalized  Galilean  gravities
[7-9].

α→ α
D−4 D→ 4

However, this has been recently challenged by a nov-
el four dimensional EGB solution [10], which is encoded
in the dimensional regularization. After a rescaling of the
coupling constant , the  limit can be taken
smoothly  at  the  solution  level,  yielding  a  nontrivial  new
black  hole.  This  created  a  great  deal  of  interest  [11-40],
as  well  as  controversy  [41],  as  one  would  expect  that
higher-derivative  theories  of  finite  order  that  are  ghost

D = 4

(D− p) p ⩽ 4

D→ p

D→ 2

free  in  four-dimensions  cannot  be  pure  metric  theories
but  are  of  the  Hordenski  type.  In  fact,  the  resolution  of
the divergence at the action level is far less clear, and the
action  principle  for  the  solution  is  not  given  in
[10]. One consistent approach is  to consider a compacti-
fication  of D-dimensional  EGB  gravity  on  a  maximally
symmetric  space  of  dimensions,  where ,
keeping  only  the  breathing  mode  characterizing  the  size
of  the  internal  space  such  that  the  theory  is  minimum.
The  limit can then be smoothly applied [42], lead-
ing to an action principle admitting the four dimensional
EGB solution [10, 43, 44] (see also [45, 46]). In fact, the
analogous  limit  of  Einstein  gravity  was  proposed
many years ago [47] (see also the recent work in [48, 49]).
It  turns  out  that  the  resulting  theory  is  indeed  a  special
Horndeski theory. The action contains a Horndeski scalar
that  coupled  to  the  Gauss-Bonnet  term,  as  well  as  the
metric field. The lower dimensional action is given by [42]1)

S p =

∫
dpx
√−g

[
R+αϕG+α(4Gµν∇µϕ∇νϕ

−4(∇ϕ)2∇2ϕ+2(∇ϕ)2(∇ϕ)2)], (1)

Gµνwhere  is the Einstein tensor, and
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G ≡ RµνρσRµνρσ−4RµνRµν+R2 (2)

is the Gauss-Bonnet term.

ϕ = 0
ϕ = log r

r0

α

There are several  interesting features in the new the-
ory (1.1). First, there is no scalar kinematic term; thus, a
scalar propagator should be absent.  Second, the classical
solution of the Minkowski vacuum admits two independ-
ent  scalar  solutions,  namely, ,  which we refer  to  as
the ordinary vacuum, and , which we refer to as
the logarithm vacuum.1) Last but not the least, the  cor-
rection is inherited from the higher-dimensional counter-
parts.  Hence,  it  includes  not  only  the  four  dimensional
Gauss-Bonnet  term  coupled  with  a  scalar  field  but  also
scalar  terms  that  are  non-minimally  coupled  to  gravity.
The latter seems to be more significant than the former in
the corrections to the classical  solution of  Einstein grav-
ity.

To  test  the  above  interesting  features,  we  will  study
the  asymptotic  structure  of  the  lower  dimensional  EGB
theory (1.1) in the Bondi-Sachs framework [50, 51] in the
present work. In 1960s, Bondi et al. established an eleg-
ant  framework  of  asymptotic  expansions  to  understand
the gravitational  radiation  in  axisymmetric  isolated  sys-
tems in the Einstein theory [50]. The metric fields are ex-
panded in inverse powers of a radius coordinate in a suit-
able  coordinate  system,  and  the  equations  of  motion  are
solved  order  by  order  with  respect  to  proper  boundary
conditions.  In this  framework [50], the radiation is  char-
acterized by a single function from the expansions of the
metric fields,  which  is  called  the  news  function.  Mean-
while, the mass of the system always decreases whenev-
er  there  is  a  news  function.  Sachs  then  extended  this
framework to asymptotically flat spacetime [51]. This is a
good  starting  point  to  study  the  asymptotic  structure  of
the  theory  (1.1)  in  three  dimensions.  We  obtain  the
asymptotic  form of the solution space.  There is  no news
function in three dimensions. This is a direct demonstra-

α

α

α

tion that there is no scalar propagating degree of freedom.
Next,  we  turn  to  the  four  dimensional  case.  Two  scalar
solutions  of  the  vacuum  lead  to  two  different  boundary
conditions  for  the  scalar  fields.  The  solution  spaces  are
obtained  in  series  expansions  with  respect  to  different
boundary  conditions.  For  both  cases,  there  is  no  news
function in the expansion of the scalar field, which means
that a scalar propagating degree of freedom does not ex-
ist  in  four  dimensions.  In  addition,  the  corrections are
transparent in the solution space.  They arise just  one or-
der  after  the  integration  constants  and  also  arise  in  the
quadrupole, i.e.,  the  first  radiating  source  in  the  multi-
pole  expansion.  In  the  logarithm  vacuum,  the  correc-
tions even live  at  the  linearized level.  We show the pre-
cise  formula  of  the  corrections  in  the  quadrupole.
Hence, the two different vacua are indeed experimentally
distinguishable.

α

The organization of this paper is  quite simple.  In the
next  section,  we  study  the  asymptotic  structure  in  three
dimensions. We perform the same analysis in four dimen-
sions  in  Section  II,  with  special  emphasis  on  correc-
tions in the gravitational solutions and the classical radi-
ating source. After a brief conclusion and a discussion on
some  future  directions,  we  complete  the  article  with  an
appendix, where some useful relations are listed.

II.  ASYMPTOTIC STRUCTURE OF EINSTEIN-
GAUSS-BONNET THEORY IN THREE

DIMENSIONS

As a toy model, it is worthwhile to examine the EGB
theory  (1.1)  in  three  dimensions  to  determine  if  the
Bondi-Sachs  framework  is  applicable  to  this  theory.  In
three  dimensions,  the  Gauss-Bonnet  term  is  identically
zero. Applying the relations in Appendix A, the variation
of the action is obtained as

δS 3 =

∫
d3x
√−g

{
− 1

2
gτγδgτγ

[
R+α

(
4Gµν∇µϕ∇νϕ−4(∇ϕ)2∇2ϕ+2(∇ϕ)2(∇ϕ)2)]+Rµνδgµν+∇µ

(
gαβ∇µδgαβ−∇νδgµν

)
+α

[
2
(
gρσ∇µ∇νδgρσ−∇ρ∇µδgρν−∇ρ∇νδgρµ+∇2δgµν

)
∇µϕ∇νϕ+4Rµρ∇µϕ∇νϕδgνρ+4Rνρ∇µϕ∇νϕδgµρ

−2
(
R∇µϕ∇νϕδgµν+ (∇ϕ)2Rρσδgρσ+gρσ(∇ϕ)2∇2δgρσ− (∇ϕ)2∇ρ∇σδgρσ

)
−4δgµν∇µϕ∇νϕ∇2ϕ

−4(∇ϕ)2∇ρ∇σϕδgρσ+4δgµν∇µϕ∇νϕ(∇ϕ)2+2(∇ϕ)2gµν∇ρϕ∇ρδgµν−4(∇ϕ)2∇ρϕ∇µδgρµ
]

+α
[
8Gµν∇µδϕ∇νϕ−8gµν∇µδϕ∇νϕ∇2ϕ+8gµν∇µδϕ∇νϕ(∇ϕ)2−4(∇ϕ)2∇2δϕ

]}
. (3)

After  dropping  many  boundary  terms,  one  obtains  the

Einstein equation

Gµν−αTµν = 0, (4)

where
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Tµν =gµν
[
4Rρσ∇ρϕ∇σϕ+2∇σ∇ρϕ∇ρ∇σϕ−2(∇2ϕ)2+ (∇ϕ)2(∇ϕ)2+4∇ρ∇σϕ∇ρϕ∇σϕ

]
+4∇µ∇νϕ∇2ϕ−4∇ρ∇µϕ∇ρ∇νϕ+4∇µϕ∇νϕ∇2ϕ−4∇ρ∇µϕ∇νϕ∇ρϕ−4∇ρ∇νϕ∇µϕ∇ρϕ
−4∇µϕ∇νϕ(∇ϕ)2−4Rρν∇µϕ∇ρϕ−4Rρµ∇νϕ∇ρϕ+2R∇µϕ∇νϕ+2Gµν(∇ϕ)2−4Rµρνσ∇ρϕ∇σϕ, (5)

and the scalar equation

Gµν∇µ∇νϕ+Rµν∇µϕ∇νϕ+∇2ϕ(∇ϕ)2− (∇2ϕ)2+2∇ρ∇σϕ∇σϕ∇ρϕ+∇ρ∇σϕ∇σ∇ρϕ = 0. (6)

A.    Bondi gauge
In order to study three dimensional Einstein theory at

future null infinity, the Bondi gauge was adapted to three
dimensions with the gauge fixing ansatz [52, 53]

ds2 =
V
r

e2βdu2−2e2βdudr+ r2(dϕ−Udu)2, (7)

(u,r,φ) β,U,V (u,r,φ)in  coordinates, and  are functions of .
Suitable fall-off conditions that  preserve asymptotic flat-
ness are

U = O(r−2), V = O(r), β = O(r−1), ϕ = O(r−1). (8)

β,U,V

1/r

Grr −αTrr = 0 Grφ−αTrφ = 0 Gru−αTru = 0

Guφ−αTuφ = 0 Guu−αTuu = 0
Gφφ−αTφφ = 0

One of the advantages of the Bondi gauge is encoded
in the organization of the equations of motion [50, 51, 53]
(also see [54, 55] for the generalization to matter coupled
theories).  There  are  four  types  of  equations  of  motion,
namely the  main  equation,  standard  equation,  supple-
mentary  equation,  and  trivial  equation.  The  terminology
characterizes their special properties. The main equations
determine  the  r-dependence  of  the  unknown  functions

,  while  the  standard  equation  controls  the  time
evolution of the scalar field. Because of the Bianchi iden-
tities, the supplementary equations are left with only one
order  in  the  expansion  undetermined,  and  the  trivial
equation is  fulfilled  automatically  when  the  main  equa-
tions and the standard equation are satisfied.  In three di-
mensional  EGB  theory  (1.1),  the  components

, ,  and  are  the
main equations. The scalar equation is the standard equa-
tion;  and  are the  supple-
mentary  equations.  Finally,  is  the  trivial
equation.

B.    Solution space
Once  the  scalar  field  is  given  as  initial  data  in  the

series expansion

ϕ(u,r,φ) =
∞∑

a=1

ϕa(u,φ)
ra , (9)

β,U,Vthe unknown functions  can be solved explicitly. In
asymptotic form, they are

β =
3αϕ1∂uϕ1

4r3 +
α

2r4

[
2Mϕ2

1+4(∂φϕ1)2−2ϕ1∂
2
φϕ1

+5ϕ2
1∂uϕ1+6ϕ2∂uϕ1+2ϕ1∂uϕ2

]
+O(r−5), (10)

U =
N(u,φ)

r2 − α
6r4

[
20∂uϕ1∂φϕ1+ϕ1

(
3∂φM∂uϕ1

−∂uN∂uϕ1−4∂u∂φϕ1
) ]
+O(r−5), (11)

V =− rM(u,φ)− 1
r

[
N2−2α∂uϕ1(2∂uϕ1−ϕ1∂uM)

]
+
α

3r2

[
4(1−M)ϕ2

1∂uM−8ϕ2∂uϕ1∂uM−4ϕ1∂uϕ2∂uM

+∂φM∂φϕ1∂uϕ1−2∂φϕ1∂uN∂uϕ1−4∂2
φϕ1∂uϕ1

+24∂uϕ1∂uϕ2+16∂φϕ1∂u∂φϕ1+ϕ1

(
16M∂uϕ1

−3∂φM∂uϕ1+8(∂uϕ1)2+6∂uϕ1∂u∂φN +∂φM∂u∂φϕ1

−2∂uN∂u∂φϕ1−4∂u∂
2
φϕ1

)]
+O(r−3), (12)

N(u,φ) M(u,φ)
α

where  and  are integration constants. Com-
pared to the pure Einstein case [53], the  corrections are
at  least  two  orders  after  the  integration  constants.  The
solution space is no longer in a closed form.

The time evolution of every order of the scalar field is
controlled  from  the  standard  equation.  This  means  that
there is no news function from the scalar field. We list the
first two orders of the standard equation

2(∂uϕ1)2+ϕ1(∂uM+4∂2
uϕ1) = 0, (13)

4∂u(ϕ1∂uϕ2)+8∂φϕ1∂u∂φϕ1+12ϕ2∂
2
uϕ1+2ϕ2

1∂
2
uϕ1−4∂2

φϕ1∂uϕ1+ϕ1
(
∂2
φM+8M∂uϕ1+10(∂uϕ1)2−2∂u∂φN

)
−2∂φM∂φϕ1+4∂φϕ1∂uN +

5
2
ϕ2

1∂uM+3ϕ2∂uM = 0. (14)

Asymptotic structure of Einstein-Gauss-Bonnet theory in lower dimensions Chin. Phys. C 45, 013110 (2021)
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The constraints from the supplementary equations are

∂uM = 0, (15)

∂uN =
1
2
∂φM, (16)

α

which  are  the  same as  in  the  pure  Einstein  case.  This  is
well  expected,  as  the  corrections are  in  the  higher  or-
ders. In  the  end,  there  is  no  propagating  degree  of  free-
dom at all  in this theory in three dimensions.  The whole
effect of the higher dimensional Gauss-Bonnet terms is a
kind of deformation of Einstein gravity.

III.  ASYMPTOTIC STRUCTURE OF EINSTEIN-
GAUSS-BONNET THEORY IN FOUR DIMEN-

SIONS

p = 4
We now turn to the more realistic case of four dimen-

sions. The action is given by (1.1) with . The deriva-
tion  of  the  equations  of  motion  is  quite  similar  to  the
three  dimensional  case,  with  the  additional  contribution
from the  Gauss-Bonnet  term,  which  is  detailed  in  Ap-
pendix A. The Einstein equation is obtained as

Gµν−αTµν = 0, (17)

Tµνwhere the modification to  (5) from the Gauss-Bonnet
term is

−4Rµρνσ∇ρ∇σϕ+4Gµν∇2ϕ−4Rρµ∇ν∇ρϕ−4Rρν∇µ∇ρϕ
+4gµνRρσ∇ρ∇σϕ+2R∇µ∇νϕ, (18)

and the scalar equation is

Gµν∇µ∇νϕ+Rµν∇µϕ∇νϕ+∇2ϕ(∇ϕ)2−(∇2ϕ)2+2∇ρ∇σϕ∇σϕ∇ρϕ

+∇ρ∇σϕ∇σ∇ρϕ−
1
8

(
RµνρσRµνρσ−4RµνRµν+R2

)
= 0.

(19)

A.    Bondi gauge
In four  dimensions,  we  choose  the  Bondi  gauge  fix-

ing ansatz [50]

ds2 =

[V
r

e2β+U2r2e2γ
]
du2−2e2βdudr

−2Ur2e2γdudθ+ r2
[
e2γdθ2+ e−2γ sin2 θdϕ2

]
, (20)

(u,r, θ,φ)
(V,U,β,γ) (u,r, θ)

φ
∂φ

(β,γ,U,V)

in  coordinates.  The metric ansatz involves four
functions  of  that  are  to  be  determined
by the equations of motion. These functions and the scal-
ar  field  are -independent,  and  hence,  the  metric  has
manifest global Killing direction . This is the “axisym-
metric  isolated  system ”  introduced  in  [50].1) Following
[50]  closely,  the  falloff  conditions  for  the  functions

 in the metric for asymptotic flatness are given
by

β=O(r−1), γ =O(r−1), U =O(r−2), V =−r+O(1). (21)

Considering the metric of the Minkowski vacuum

ds2 = −du2−2dudr+ r2(dθ2+ sin2 θdϕ2), (22)

we have two branches of the scalar solution

ϕ = 0, or ϕ = log
r
r0
. (23)

The first gives the true vacuum with the maximal space-
time  symmetry  preserved;  the  second  solution  is  nearly
Minkowski,  since  the  scalar  does  not  preserve  the  full
symmetry. Both are valid solutions, with one not encom-
passing  the  other.  Analogous  emergence  of  logarithmic
dependence for the scalar also occurs in the AdS vacuum
for  some  critical  Einstein-Horndeski  gravity,  where  the
scalar breaks the full conformal symmetry of the AdS to
the subgroup of the Poincare together with the scaling in-
variance  [56].  However,  ours  is  the  first  example  in  the
Minkowski  vacuum.  The  necessary  falloff  condition  of
the scalar field consistent with the metric falloffs is either

ϕ = O(r−1), or ϕ = log
r
r0
+O(r−1). (24)

Grr −αTrr = 0
Grθ −αTrθ = 0 Gθθgθθ +Gφφgφφ−αTθθgθθ −αTφφgφφ =
0
Gθθ −αTθθ = 0 Guθ −αTuθ = 0

Guu−αTuu = 0 Gru−αTru = 0
Grφ−αTrφ = 0 Gθφ−αTθφ = 0

Guφ−αTuφ = 0 φ

Similar  to  the  three-dimensional  case,  the  equations
of  motion  are  organized  as  follows: ,

,  and 
 are  the  main  equations.  The  scalar  equation  and

 are  the  standard  equations; 
and  are supplementary; and 
is  trivial. , ,  and

 are  trivial  because  the  system  is -inde-
pendent.

B.    Solution space with an ordinary vacuum
γ ϕSuppose that  and  are given in a series expansion

as initial data2)

H. Lü, Pujian Mao Chin. Phys. C 45, 013110 (2021)

1) In the present work, our main purpose is to demonstrate the effects of the Gauss-Bonnet term in the asymptotic analysis. For simplicity, we adopt the axisymmet-
ric condition. However we do not expect any principle difficulties in the study of the general four dimensional asymptotic flatness solutions by choosing Sachs' gauge
fixing ansatz.

O(r−2) γ2) To avoid logarithm terms in the metric, we turn off the order  in .
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γ =
c(u, θ)

r
+

∞∑
a=3

γa(u, θ)
ra , (25)

ϕ =

∞∑
a=1

ϕa(u, θ)
ra . (26)

β,U,VThe  unknown  functions  are  solved  in  asymptotic
form as

β = − c2

4r2 +
4αϕ1∂uϕ1

3r3 +O(r−4), (27)

U =− 2cotθc+∂θc
r2 +

N(u,φ)
r3 +

1
2r4

[
5cotθc3−3cN

+6cotθγ3+
5
2

c2∂θc+3∂θc+α
(
16cotθϕ1∂uc

−20
3
∂θϕ1∂uϕ1+8ϕ1∂u∂θc+

4
3
ϕ1∂u∂θϕ1

) ]
+O(r−5),

(28)

V=− r+M(u, θ)+
1
2r

[
cotθN−1

2
c2(5+11cos2θ)csc2 θ

−5(∂θc)2+∂θN − c(19cotθ∂θc+3∂2
θc)

+8α(∂uϕ1)2
]
+O(r−2), (29)

N(u, θ) M(u, θ)
α

where  and  are  integration  constants.
Clearly,  the  coupling  emerges  just  one  order  after  the
integration  constants.  They  are  from  the  non-minimal
coupled  scalar  rather  than  the  four  dimensional  Gauss-
Bonnet term.

γ ϕ

The standard  equations  control  the  time  evolution  of
the initial  data  and .  In particular,  the time evolution
of  every  order  of  the  scalar  field  has  been  constrained.
That  means  there  is  no  news  function  associated  to  the
scalar  field.  Hence,  the  scalar  field  does  not  have  a
propagating degree of freedom similar to the three dimen-
sional case. We list the first two orders of the scalar equa-
tion

(∂uϕ1)2+ϕ1∂
2
uϕ1 = 0, (30)

2ϕ1∂
2
uϕ2+6∂uϕ1∂uϕ2−∂2

θϕ1∂uϕ1− cotθ∂θϕ1∂uϕ1+4∂θϕ1∂u∂θϕ1+ϕ
2
1∂

2
uϕ1+6ϕ2∂

2
uϕ1+6ϕ1∂uϕ1+4ϕ1(∂uϕ1)2

+ϕ1
[
∂u∂

2
θc+3cotθ∂u∂θc−2∂uc−2(∂uc)2−∂uM

]
= 0. (31)

The first order of the standard equation from the Einstein
equation is

∂uγ3 =
1
8

[
3(∂θc)2+ c(5cotθ∂θc+3∂2

θc)−2c2 csc2 θ

× (3+ cos2θ)+2cM+ cotθN −∂θN −16αϕ1∂
2
uc

]
.

(32)
γ3 Ψ0

0
Ψ̄0

0 α

In the Newman-Penrose variables,  is  related to  or
 [57]. Since its time evolution involves , the effect of

the higher  dimensional  Gauss-Bonnet  term  arises,  start-
ing from the first radiating source, i.e., quadrupole, in the
multipole  expansion  [58]. This  can  be  seen  more  pre-
cisely  on  a  linearized  level  from  the  logarithm  vacuum
case, which we will present in the next subsection.

The supplementary equations yield

∂uN =
1
3

[7∂θc∂uc+ c(16cotθ∂uc+3∂u∂θc)−∂θM] . (33)

∂um=−2(∂uc)2, m≡M− 1
sinθ
∂θ(2cosθc+sinθ∂θc). (34)

The latter is the mass-loss formula in this theory. It is the
same as that in the pure Einstein case [50] , which is ex-
pected, as the corrections from the Gauss-Bonnet term are
in the higher orders.

C.    Solution space with the logarithm vacuum

γ ϕ

One intriguing feature of the theory is that the scalar
admits a logarithmic dependence in the Minkowski vacu-
um, such that the full Lorentz group breaks down for any
matter coupled to the scalar. We would like to analyze its
solution  space  here.  Suppose  that  and  are  given  in
series expansions as initial data:

γ =
c(u, θ)

r
+

∞∑
a=3

γa(u, θ)
ra , (35)

ϕ = log
r
r0
+

∞∑
a=1

ϕa(u, θ)
ra . (36)

β,U,VWe can solve the unknown functions  in asymptot-
ic form as

Asymptotic structure of Einstein-Gauss-Bonnet theory in lower dimensions Chin. Phys. C 45, 013110 (2021)
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β =− c2

4r2 +
1

4r4

[
−3cγ3+α

(
4ccotθ(∂θc+∂θϕ1)+ c2(csc2 θ+3cot2 θ)−ϕ2

1−2ϕ2+ (∂θc)2+2∂θc∂θϕ1

+ (∂θϕ1)2+2α∂uϕ1−8α(∂uϕ1)3
)]
+O(r−5), (37)

U =− 2cotθc+∂θc
r2 +

N(u,φ)
r3 +

1
2r4

{
5cotθc3−3cN +6cotθγ3+

5
2

c2∂θc+3∂θc+α
[
14∂θc∂uc∂uϕ1

−4∂θc∂uc−4∂θϕ1∂uc−4∂θc∂uϕ1−2∂θM∂uϕ1−6∂uN∂uϕ1

−2c (4cotθ∂uc−16cotθ∂uc∂uϕ1+4cotθ∂uϕ1−3∂u∂θc∂uϕ1)
]}
+O(r−5), (38)

V = −r+M(u, θ)+
1
2r

[
cotθN − 1

2
c2(5+11cos2θ)csc2 θ−5(∂θc)2+∂θN − c(19cotθ∂θc+3∂2

θc)−2α+8α(∂uϕ1)2
]
+O(r−2).

(39)

α

α2 β

The coupling  emerges again one order after the integra-
tion constants. At this order, it is from the non-minimally
coupled scalar.  The  terms in  indicate  the  nonlinear
scalar-gravity coupling.

The time evolution of every order of the scalar field is

also  constrained.  There  is  no  news  function  associated
with  the  scalar  field.  The  first  two  orders  of  the  scalar
equation are

∂uϕ1+ (∂uϕ1)2− (∂uc)2− 1
2
= 0, (40)

4ϕ2∂
2
uϕ1−4∂uϕ2−8∂uϕ1∂uϕ2−3M−2ϕ1+3cotθ∂θc+ cotθ∂θϕ1+∂

2
θc+∂

2
θϕ1−2cotθ∂θc∂uc+2cotθ∂θϕ1∂uc−2∂2

θc∂uc

−2∂2
θϕ1∂uc−4ϕ1(∂uc)2−6ϕ1∂uϕ1−12cotθ∂θc∂uϕ1−4cotθ∂θϕ1∂uϕ1−4∂2

θc∂uϕ1−4∂2
θϕ1∂uϕ1+8ϕ1(∂uϕ1)2

+4∂θc∂u∂θϕ1+4∂θϕ1∂u∂θϕ1−2c+8c∂uϕ1+ c∂uc(8csc2 θ−4∂uϕ1)+8cotθc∂u∂θϕ1−2c2∂2
uϕ1+2ϕ2

1∂
2
uϕ1 = 0.

(41)

The first order of the standard equation from the Einstein
equation is

∂uγ3 =
1
8

[
3(∂θc)2+ c(5cotθ∂θc+3∂2

θc)

−2c2 csc2 θ(3+ cos2θ)+2cM+ cotθN

−∂θN −8α∂uc+16α∂uϕ1∂uc
]
. (42)

The constraints from the supplementary equations are

∂uN =
1
3

[7∂θc∂uc+ c(16cotθ∂uc+3∂u∂θc)−∂θM] . (43)

∂um=−2(∂uc)2, m≡M− 1
sinθ
∂θ(2cosθc+sinθ∂θc). (44)

The  mass-loss  formula  is  the  same  as  that  for  the  pure
Einstein case [50].

αTo reveal the  correction in the radiating source, we
linearize  the  theory,  for  which  we drop  all  the  quadratic
terms in  the  solutions.  Then,  the  evolution equations  are
reduced to

∂uM =
1

sinθ
∂θ

[
1

sinθ
∂θ

(
sin2 θ∂uc

)]
, (45)

∂uN = −1
3
∂θM, (46)

∂uγ3 = −
1
8

sinθ∂θ
N

sinθ
−α∂uc. (47)

α

log r
r0

γ

γ3 = a2(u) sin2 θ

c = c2(u) sin2 θ c2(u)

The  correction is  now  only  from  the  scalar  back-
ground  term.  The  multipole  expansion  is  encoded
in the expansion of  [58]. The quadrupole in Eq. (2.46)
of  [58]  corresponds  to , where  the  sub-
script 2  denotes  the  second  order  of  the  second  associ-
ated  Legendre  function.  The  function c can  be  solved
from  the  above  evolution  equations.  The  solution  is

, where  satisfies

c2−α∂2
uc2 = ∂

2
ua2. (48)

a2 a2 = Asinu+
Bcosu c2 α

c2 =
∂2

ua2

1+α
α = 0

c = ∂2
ua2 sin2 θ

Suppose that  is  a  periodic function,  e.g., 
.  Then  the  response  of  will  have  an  correc-

tion . By setting , we just recover the Ein-

stein gravity  result .  For  the  same  type  of
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α

gravitational source, the new theory (1.1) is indeed distin-
guishable from Einstein gravity. Since the c function has
a  direct  connection  to  the  Weyl  tensor  [57], we  can  ex-
pect a direct experimental test of the  corrections.

IV.  CONCLUSION AND DISCUSSION

α

In  this  paper,  the  asymptotic  structures  of  three  and
four  dimensional  EGB  gravity  have  been  studied  in  the
Bondi-Sachs framework. It  was shown from the solution
space that, in both dimensions, there is no scalar propag-
ator. The  corrections were discussed in detail from the
perspective of  both  the  gravitational  solution  and  radiat-
ing sources.

α

α

α

There  are  several  open  questions  in  the  theory  (1.1)
that should be addressed in the future. There is no scalar
propagator in  the  theory,  but  there  are  differential  coup-
lings between gravity and the scalar field. The absence of
the scalar propagator is likely to be consistent with obser-
vations; thus, it is of interest to know how to construct a
gravity-scalar  vertex without  a  scalar  propagator  [59].  A
second interesting point is  from the holography. In three
dimensions, asymptotically flat gravitational theory has a
holographic  dual  description  [53, 60].  It  would  be  very
meaningful to explore the dual theory of the three dimen-
sional  EGB gravity.  Another  question  worth  mentioning
is from the recent proposal of a triangle equivalence [61].
Since  the  change  in  the c function  has  corrections  for
the  same  type  of  gravitational  source,  the  gravitational
memory receives the  correction [62]. In the context of
the triangle relation, it is a very interesting question as to
whether  the  soft  graviton  theorem  and  the  asymptotic
symmetry have  corrections as well.
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APPENDIX A: USEFUL RELATIONS

We  list  some  useful  relations  that  may  help  readers
who are  less  familiar  with  the  variational  principle  in-
volving the Gauss-Bonnet term.

The Bianchi identity is given by

∇µRνσρν+∇νRσµρν+∇σRµνρν = 0. (A1)

∇The commutator of :

(∇µ∇ν−∇ν∇µ)S ρσ = RρτµνS τσ+RστµνS ρτ. (A2)

Variations of some relevant quantities are as follows:

δ
√−g = −1

2
√−ggµνδgµν, (A3)

δΓσµν = −
1
2
∇σδgµν−

1
2

gµτ∇νδgστ−
1
2

gντ∇µδgστ, (A4)

gµνδΓσµν =
1
2

gµν∇σδgµν−∇µδgσµ, (A5)

δRσµρν = ∇ρδΓσµν−∇νδΓσµρ, (A6)

δRµν =
1
2

(
gσρ∇µ∇νδgσρ−gσν∇ρ∇µδgρσ

−gσµ∇ρ∇νδgρσ−∇2δgµν
)
, (A7)

δR = Rµνδgµν+∇µ
(
gσρ∇µδgσρ−∇νδgµν

)
, (A8)

δGµν =
1
2

(
gσρ∇µ∇νδgσρ−∇σ∇µδgσν−∇σ∇νδgσµ+∇2δgµν

)
+Rµσδg

νσ+Rνσδg
µσ− 1

2
Rδgµν− 1

2
gµνRσρδgσρ

− 1
2

gµνgσρ∇2δgσρ+
1
2

gµν∇ρ∇σδgρσ,
(A9)

δR2 = 2RRρσδgρσ+2R
(
gσρ∇2δgσρ−∇µ∇νδgµν

)
, (A10)

δ(RσµρνRσµρν) = 4Rσµρν∇ν∇µδgρσ+2RσµρνRστ
ρνδgµτ,

(A11)

δ(RµνRµν) =Rρσ∇2δgρσ−Rµρ∇σ∇µδgρσ

+gρσRµν∇µ∇νδgρσ−Rµσ∇µ∇ρδgρσ

+RµνRνσδg
µσ+RσµρνRµνδgσρ, (A12)

gµνδ(∇µ∇νϕ) =gµν∇µ∇νδϕ−
1
2

gµν∇σϕ∇σδgµν

+∇σϕ∇µδgσµ, (A13)

δG =2RσµτνRρµτνδgσρ+2RRρσδgρσ−4RρνRνσδg
ρσ

−4RσµρνRµνδgσρ4Rσµρν∇ν∇µδgρσ+4Rνσρν∇µ∇µδgρσ

+4Rµνρν∇σ∇µδgρσ−4gρσGµν∇µ∇νδgρσ

+4Gµρ∇µ∇σδgρσ.
(A14)

1
2

gσρGδgσρThe first  line  of  (A14)  equals  in four  di-
mensions. Thus, they will not contribute to the equations
of  motion.  When  performing  integration  by  parts,  the
second line and the third line vanish automatically for the
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ϕG

pure  Gauss-Bonnet  term.  However,  it  will  contribute
when  the  scalar  field  is  coupled  to  the  Gauss-Bonnet
term, e.g., .  The second line and the third line can be
reorganized as follows:

4Rσµρν∇ν∇µδgρσ+4Rνσρν∇µ∇µδgρσ+4Rµρ∇σ∇µδgρσ

−4gρσGµν∇µ∇νδgρσ+4Rµρ∇µ∇σδgρσ

−2R∇σ∇ρδgρσ.
(A15)

The point  of  such  reorganization  is  to  make  the  in-

dexes of the two covariant derivatives in every term sym-

metric.  When  integrating  by  parts  for  the  pure  Gauss-

Bonnet  term,  both  covariant  derivatives  are  identically

zero.
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