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Kinemaitcs in spatially flat FLRW spacetimes
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Abstract: The kinematics on spatially flat FLRW spacetimes is presented for the first time in local charts with
physical coordinates, i.e., the cosmic time and proper Cartesian space coordinates of Painlevé-type. It is shown that
there exists a conserved momentum that determines the form of the covariant four-momentum on geodesics in terms
of physical coordinates. Moreover, with the help of this conserved momentum, the peculiar momentum can be
defined, thus separating the peculiar and recessional motions without ambiguity. It is shown that the energy and pe-
culiar momentum satisfy the mass-shell condition of special relativity while the recessional momentum does not pro-
duce energy. In this framework, the measurements of the kinetic quantities along geodesics performed by different
observers are analyzed, pointing out an energy loss of the massive particles similar to that producing the photon red-
shift. The examples of the kinematics on the de Sitter expanding universe and a new Milne-type spacetime are ex-
tensively analyzed.
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I. INTRODUCTION

The geodesic motion in general relativity can be de-
scribed in various local charts (called here frames) as
each observer may choose its proper frame with pre-
ferred coordinates. According to general relativity, these
frames are equivalent as their coordinates are related
through diffeomorphisms under which the mathematical
objects transform covariantly [1, 2]. However, the gener-
al diffeomorphisms are not able to produce conserved
quantities such that we must focus mainly on the isomet-
ries, which may give rise to conserved quantities via No-
ether's theorem [3-5]. Therefore, it is convenient to re-
strict ourselves to a class of observer's frames related
through isometries where we have to apply the methods
of special relativity in studying the relative motion;
however, we use the specific isometry group instead of
the Poincaré one, as in our recent de Sitter relativity [6, 7].

Under such circumstances, it is crucial to understand
the significant physical quantities and how they may re-
late to the conserved quantities generated by isometries.
Another challenge is to determine how the measurement
depends on the choice of observer's frame, considering
that the isometries transform the conserved quantities
among themselves such that different observers measure
different values of these quantities. In this paper, we ana-
lyze these problems in the simple case of the spatially flat
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Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
times. We focus on the kinetic quantities on time-like or
null geodesics in frames with proper coordinates called
here the physical coordinates.

Apparently, these are trivial problems and have long
been solved. However, they are still relevant because the
physical space coordinates of the Painlevé type were used
in static problems but were never used in proper frames
of the spatially flat FLRW spacetimes. Here we intro-
duce these coordinates obtaining the physical frames with
a time-dependent metric but with spatially flat sections
whose Cartesian coordinates give the physical distances
as in Minkowski's specetime. The measured quantities are
the components p* of the energy-momentum four-vector
in physical frames, formed by energy, p°, and covariant
momentum, 7, which, in general, are functions of the
cosmic time ¢.

Moreover, the spatially flat FLRW spacetimes have
the Euclidean isometry group E(3) formed by space rota-
tions and space translations, giving the conserved angu-
lar momentum and conserved momentum, P. The angu-
lar momentum is related to the symmetry under rotations
which is global when we use Cartesian coordinates. The
conserved momentum that does not coincide with the co-
variant momentum is important because it generates three
prime integrals helping us to derive the energy and cov-
ariant momentum we need to integrate the geodesic equa-
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tion as determined by the initial condition and the con-
served momentum. Moreover, the conserved momentum
helps us separate the peculiar momentum, proportional
with B, from the recessional momentum, finding that the
energy and peculiar momentum in the physical frame sat-
isfy the mass-shell condition of special relativity. All
these results concerning the kinematics in physical frames
are presented in the first part of the next section.

It remains to be explored how different observers
measure the energy and covariant momentum provided
that in the FLRW geometries under consideration the
translations are isometries transforming the covariant
four-vectors and the conserved quantities. In the last part
of the next section, we investigate how these quantities
are measured by two observers staying in two different
points of the same geodesic showing that, in contrast with
the Minkowski spacetime, the observer position determ-
ines the form and meaning of the measured quantities.
Thus, we deduce that the massive or massless particles
lose some energy during propagation, which is related to
the redshift in the massless case. The energy loss of the
massive particles is derived here for the first time.

The third section is devoted to a well-studied ex-
ample, namely the de Sitter expanding universe whose
geodesics we studied in different frames, including the
physical one, without paying attention to the energy and
covariant momentum [8]. The de Sitter manifold has ten
independent conserved Killing vectors, which generate
conserved quantities. Among them, we extract the con-
served momentum relating the conserved quantities to the
measured ones for understanding the role of the con-
served quantities in the de Sitter kinematics. The conclu-
sion is that the conserved energy coincides with the meas-
ured energy in some points of geodesics while the other
conserved quantities, including the conserved mo-
mentum, work together for closing the mass-shell condi-
tion. The mentioned problem of two observers is also dis-
cussed for time-like and null geodesics pointing out the
energy loss and redshift.

A new example whose kinematics were never studied
is presented in Sec. IV. This is a spatially flat FLRW
spacetime with a Milne-type scale factor which, in con-
trast to the genuine Milne universe, has gravitational
sources determining its expansion. We inspect the kin-
ematics briefly on this manifold, observing that this be-
haves somewhat complementary with respect to the de
Sitter one. Finally, we present some concluding remarks.

In what follows, we use the Planck natural units and
denote the conserved quantities with capital letters.

II. SPATIALLY FLAT FLRW SPACETIMES

The FLRW spacetimes are the most plausible models
of our universe in various periods of evolution. The actu-
al universe is observed as being spatially flat with a reas-

onable accuracy. For this reason, we focus here on such
manifolds for which we consider many types of frames
with Cartesian or spherical coordinates searching for
measurable quantities expressed in terms of physical co-
ordinates of Painlevé type.

A. Physical frames

The Painlevé - Gullstrand coordinates [9, 10] were
proposed for studying the Schwarzschild black holes.
Similar coordinates can be introduced in any isotropic
manifold (M,g) having frames {x} = {¢, ¥} with flat space
sections. In these frames, the coordinates, x* (@, u,v, - =
0,1,2,3), may be formed by the cosmic time ¢ and either
Cartesian space coordinates ¥ = (x!,x%,x%) or associated
spherical ones (r,0,¢) with Euclidean metric ds% =dx
dX=dr? +r2dQ?, where dQ? =d6? +sin’6d¢?. For ex-
ample, the line element

2 pnar— 8
ds® = f(r)ds; 70

- r2dQ?, (1)
of any static frame, {¢y,r,0,¢}, with static time #;, can be
put in Painlevé-Gullstrand form,

ds? = f(nd? +2+/1- f(r)ddr—dr? = 7dQ?;  (2)

substituting this in Eq. (1),

tS:t+fdr—‘l_f(r) 3)

fn

where ¢ is the cosmic time.

Similar space coordinates, known as proper coordin-
ates, called here more intuitively the physical Cartesian
space coordinates and denoted by ¥, are associated with
the cosmic time, ¢, defining the physical frame {t,x}.
These coordinates can be introduced in any spatially flat
FLRW spacetime through those of the conformal Euc-
lidean frame {z.,X.}, i.e., the conformal time, 7., and the
comoving Cartesian coordinates, X., giving the line ele-
ment

ds? = a(t,)* (dr - d¥, - d%.) (4)

Substituting the physical coordinates {r,x} as
dr X
te= — > _)c = - 5
f at)’ 7 a) ®
we obtain the line element of the physical frame,

ds —(l a(t)zf)dt +2a(t)f d¥dr—dx-d%, (6)
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where a(t) = a[t.(1)] is the usual FLRW scale factor while

ary 1 da( _ 1 da(t,)
a(t) a(t) dt  a@.)? dt. °

(7

is the Hubble function for which we do not use a special
notation. The inverse transformation {r, ¥} — {¢., X.} is ob-
vious,

t= f a(t)dt., X¥=a(t)x.. ®)

We suppose that the function a(¢) is smooth such that the
transformations (8) and (5) are diffeomorphisms.

The metric (6) is of an observer at rest in origin
(#=0) and having a dynamic apparent horizon,

a(n)

'x’h(t)} =30

©

This particularity makes this metric less popular in cos-
mology; however, it is useful in astrophysics for study-
ing how different observers record the relative geodesic
motion measuring directly the physical coordinates. An-
other advantage of this metric is that this is approaching
to the Minkowski one in a neighbourhood of ¥=0.
However, in cosmology one prefers the FLRW coordin-
ates {r,%.} with the well-known line element

dS2 = dtz - a(t)zd)_c)c . dfc 5 (10)

because the comoving space coordinates comply with the
homogeneity of the universes with flat space sections. In
what follows we use mainly physical frames resorting to
the conformal ones as an auxiliary tool when these offer
technical advantages.

B. Kinematics

Our principal objective is to derive the equations of
the time-like and null geodesics and the associated kinet-
ic quantities in the physical frame {z,X}o of an observer
staying at rest in the origin O. We search for the compon-

doH
ents p“:i of the four-momentum (p°,7) formed

by the measured energy p° and covariant momentum 7.
Here A is an affine parameter related to the mass m of a
particle moving freely along a geodesic as ds = mdA.

We start with an intermediate step, focusing first on
the components p, = —< of the four-momentum in the

conformal frame {¢.,%.}o of our observer where we meet
the simple prime integral,

a(te) [Pt = Pette?] = m?, (1)

resulted from the line element (4). In other respects, we
may exploit the fact that the spatially flat FLRW space-
times have E(3) isometries formed by global rotations,

X — lexf (i, j.k,--- = 1,2,3), and space translations
to=tg, t=r,
xi= x4+ & X =xi+Ea(). (12)

The associated Killing vectors k; have the components
k?i) =0 and ké) = §;; in the frame {z,,%.}o giving rise to the

conserved quantities
dx

. j dx!
Pz:_ki__C: tcz c,
0igy =4

(13)

representing the components of the conserved mo-
mentum P which is different from the covariant mo-
mentum pF(¢). Then, by using the prime integrals (11) and
(13) we derive the energy and covariant momentum in
this frame as

0y Y _ 1 2, P
POTT o \N" aw M

. dxi P
)= =——, 15
pe(te) - ai? (15)

where we denote P =|B|. The geodesic results from in-
tegrating the equation

dxé _ pé(tc) (16)
dtC Pg(fg) '

that yields

(17

; . Pt il7
Xt =2y + — f .
m Ji, P
a(tc)2+_2
m

We may conclude that any time-like geodesic is de-
termined completely by its conserved momentum
P=iipP and the initial condition #.(z) = %.o. However,
this equation must be integrated in each particular case,
but for the massless particles (with m =0), we have the
universal solution

fc([c) = )?L*O + ﬁP(tc —10), (1 8)

giving the null geodesics on any FLRW spacetime.
The corresponding physical quantities measured by
the observer O in his proper frame, {¢,%}p, may be ob-

105101-3



Ion I. Cotaescu

Chin. Phys. C 45, 105101 (2021)

tained by substituting the physical coordinates according
to Eq. (5). Thus we obtain the covariant components,

P=—= m2+P—2 (19)
a()?’

YO

P=—r= ot x'(1) 20 +a([)2, (20)

which represent the measured energy and covariant mo-
mentum in the point [z, ¥(r)] of the time-like geodesic,

X = —)

atty) (\f r————
a(t) [ a(t)? + —

which is passing through the space point x(zy) = X at the
initial time fy. In the physical frame {7, ¥}o the equation of
the null geodesics,

21)

a(r)

X
Xt = 0 20

+itpa(t)[1c(t) = te(t0)] (22)

results from Eq. (18).

A special and delicate problem is that of the tachyons
whose kinetic quantities on space-like geodesics can be
obtained by substituting m*> — —m? in the above equa-
tions. Then the energy

P ()= —m2+P—2 (23)
tach Cl([)z ?

. P . .
is real valued only when a(r) < —. This means that, in ex-

m
panding universes, a tachyon with conserved momentum

Lo P .
P disappears when a(¢) reaches the value —. This may

survive only in collapsing universes for sma’ﬁer values of
the scale factor. As here we focus only on expanding geo-
metries, we ignore the space-like geodesics remaining to
study the time-like and null ones.

The covariant momentum defined by Eq. (20) can be
split as p(r) = ﬁ(r) + p(f) where

NG
o PR, 24

are the peculiar and respectively recessional momenta.
We must stress that this splitting can be performed only
in the physical frames where the prime integral derived
from the line element (6) gives the familiar identity

PO = pay =n, (25)
which is just the mass-shell condition of special relativity
satisfied by the energy and peculiar momentum. There-
fore, we may conclude that the peculiar momentum pro-
duces the entire energy of the geodesic motion as in spe-
cial relativity. Thus for P=0 and p°(r) = m, the particle

a)

remains at rest in the point x(z) = Txo but moving with
a

the recessional momentum j with respect the observer O.

We must emphasize that these properties hold only in
physical frames because, in the conformal frames with
comoving space coordinates, this separation is not pos-
sible, and the recessional momentum remains hidden,
provided that the whole covariant momentum (15) is pro-
portional to the conserved one. Moreover, in these
frames, the momenta satisfy inappropriate dispersion re-
lations, depending explicitly on time, as in Eq. (11) or the
identity

PUO? —a(t) pet)* = m?, (26)

that holds in FLRW comoving frames {z, %.}.

In physical frames, other interesting kinetic quantit-
ies can be derived as, for example, the velocity

po(t) a(t) ’mz +IZ)’(I)2

where the first term is the recessional velocity due to the
space evolution, complying with the velocity law, which
is sometimes confused with the Hubble one [11, 12]; the
second term is the peculiar velocity, which depends on
the peculiar momentum as in special relativity.

The covariance under rotations, which behave here as
a global symmetry, gives rise to the conserved angular
momentum, which depends only on the peculiar mo-
mentum

() = 27)

IOANP _ TAP
a(t) a(ty) *

L=R1) Aty = R0) A p@) = (28)

and it can be related to the initial condition. Obviously,
this vanishes when the observer O stays at rest in a space
point of the measured geodesic.

C. Two observers problem

The physical quantities p°(r), p(r) and j(r) are func-
tions of time; however, the last one depends explicitly on
coordinate such that the experimental results will depend
on the relative position between the detector and the
source of the measured particle. However, this does not
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impede as the peculiar and recession contributions can be
separated at any time without ambiguities. Nevertheless,
to avoid confusions, we take care of this dependence,
searching for suitable positions of the observer's proper
frames to obtain intuitive results.

The example we would like to discuss here is of two
observers measuring the motion of a massive particle on a
time-like geodesic which is passing through the origins O
and O’ of their proper frames, {z,%}o and {t,¥'}o . We as-
sume that at the initial time 7y the origin O’ is translated
with respect to O as )?(to):)?’(to)ﬂf(to) where J(to) =
da(ty) depends on the translation parameters of Eq. (12)
denoted now by & =d'. Then it is convenient to intro-
duce the unit vector 7 of the direction OO’ such that
d=itd.

Our experiment starts in this layout at #, when the ob-
server O’ launches a particle of mass m, momentum

p = —iip and energy
P’ = \Jm2+p?, (29)

on the geodesic O’ — O. The problem is to obtain which
are the energy and momentum of this particle measured
in the origin O at the final time ¢, when the particle
reaches this point. For solving this problem we first con-
sider for the conserved momentum that can be derived in
O’ as

P =P =itpP = palty), (30)

such that P = pa(ty) and 7ip = —ii. Then by substituting
these results in Egs. (19) and (20) we obtain the energy
and momentum in O,

2
Ptp) = w/mmﬂ%, 31)

(32)

where ¢, solves the equation #-¥(tf) =0 with ¥(f) given
by Eq. (21) that can be written as

P (Y d
o
mJi, P?
a(t) yfat)* + —
m

where d is the time-independent translation parameter
defined above. Solving the integral (33) we obtain an al-
gebraic equation that can be solved in term of the final
time obtaining the function #,(P,7p). We observe that this
function must be singular in P =0 for preventing the left

(33)

handed term of this equation on vanishing in this limit.
Once we have the value of 7;, we can calculate the
propagation time 7 — 19, the distance d(ty) between O and
O’ at t;, and the final peculiar velocity #(z;) of the
particle arriving in O. According to Egs. (12) and (31),
we obtain

B B a(ty)
d(ty) = dal(ty) = d(t) )’ (34)
. ~ m2 Ll(lf')Z ’%
Hen = (1 Wz a(to)z) G

completing thus the collection of the kinetic quantities re-
lated to this problem.

Eq. (31) shows that, in expanding universes, a part of
energy is lost during the propagation. This can be meas-
ured by the relative energy loss we define here for the
first time as

Ot 1
P(f)_l__ 2+

B _ , alto)?
PO(to) p°

a(ty)?’

(36)

because p°(1p) = p° as it results from Egs. (19) and (30).
This phenomenon is similar to the redshift of the photons
with m =0 for which we recover the Lemaitre equation
[13, 14] of Hubble's law [15] as

Loy, P _atp)

+2z= - s
I-e po(ty)  alto)

(37

where z is the usual redshift defined as the relative dila-
tion of the wave length. As expected, for m =0, the final
velocity 9(¢7) = 1 is the speed of light.

All the results presented here can be exploited effect-
ively only in concrete geometries where the geodesic, Eq.
(21), can be integrated. In what follows, we discuss two
such examples starting with one of the most studied geo-
metries.

III. DE SITTER EXPANDING UNIVERSE

The first example is the expanding portion of the de
Sitter spacetime defined as the hyperboloid of radius
l/wy in the five-dimensional flat spacetime (M>,7°) of
coordinates z* (labelled by the indices A, B,---=0,]1,
2,3,4) having the metric 7’ = diag(1,—1,—1,—1,-1). The
coordinates {x} can be introduced giving the set of func-
tions z4(x), which solve the hyperboloid equation,

1
Map? (0 () = ——-. (38)
Wy
where wy is the Hubble de Sitter constant in our nota-
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tions.

There are conformal frames, {z.,%.} [16], associated to
physical ones, {t,X}, having the conformal and cosmic
times related as

1
to=——e (39)
WH
and the scale factors
wyt 1
a(t) =e™" — a(t)) = -——, (40)
wt,

defined for r e R and 1. <0 corresponding to the expand-
ing portion. In this case, the Hubble function becomes the
constant wy. In addition, this manifold allows even a
static frame {¢;,%} with the line element (1) where
f(r)=1-w}r* and t; = t—In f(r).

A. Conserved quantities

The de Sitter manifold has a rich isometry group
which is the gauge group S O(1,4) of the embedding man-
ifold (M°,°) that leave invariant its metric and impli-
citly Eq. (38). Therefore, given a system of coordinates
defined by the functions z=z(x), each transformation
g€ S0(1,4) defines the isometry x — x" = ¢4(x) derived
from the system of equations

Z[pg(0)] = g2(x) 41)

that holds for any type of coordinates because these iso-
metries are defined globally. The set of frames related
through these isometries play the role of the inertial
frames similar to those of special relativity.

Given an isometry x — x’ = ¢y (x) depending on the
group parameter ¢ there exists an associated Killing vec-
tor, k=0gpele=o (which satisfy the Killing equation
ky,y + k., = 0). Thus, in a canonical parametrization of the
SO(1,4) group, with real skew-symmetric parameters
&AB = —¢PA | any infinitesimal isometry can be written as
¢’q’(f)(x) =x“+§ABk’(‘A () +---. Starting with the general
definition of the Killing vectors in the pseudo-Euclidean
spacetime (M?>,7°), we may consider the following iden-
tity

K&PdzC = 4dP - 2Bdt = kP, (42)

giving the covariant components of the Killing vectors in
an arbitrary frame {x} of the de Sitter manifold as

ks = MacTapki ) = 2028 — 280,24 (43)

where z4 = napz®.
The classical conserved quantities along the time-like

geodesics have the general form Kap)(x, P) = wrkupyuP”,
where pt are the components of the covariant four-vec-
tor defined above. The conserved quantities with physic-
al meaning [17] are the energy, E = wukos),p", the angu-
lar momentum components, L; = %Si ik(up, and the
components K; = kq;up" and R; = k(,z% p* of two vectors
related to the conserved momentum P and its associated
dual momentum §:

P=-wyR+K), O=wnK-R). (44)
satisfying the identity
E?—wi[*-P-0=m", (45)

corresponding to the first Casimir invariant of the so(1,4)
algebra [17]. In the flat limit, wg — 0 and —wynt. — 1, we
have 0 — P such that this identity becomes just the usual
null mass-shell condition E%— P2 = m? of special relativ-
ity.

Note that the conserved quantities transform among
themselves under de Sitter isometries including the
simple translations, which in this case transform the en-
ergy and dual momentum as we have shown recently [6].

B. Time-like geodesics

The coordinates of the physical frame {z, ¥}o are intro-
duced by the functions

ZO(X) — ﬁ [ewHt _ e—w,.,t(l _a)IZ_I)?Z)] i
) =x,

2= 2# e + e (1-whi )] (46)

WH
giving the line element
ds? = (1 - w3, )dr + 2wy %+ dRdr —dx-d¥,  (47)

with observer's horizon at || = “’1_{1 , such that the condi-
tion wyld < 1 is mandatory. In this frame, the equation of
a time-like geodesic can be obtained by solving the integ-
ral of Eq. (21) that yields [8]

wyt

e
( Vi2 + P2e—2wuts
P

WH

— V2 +P2e—2“’H’), (48)

R(r) =Zpe ) + 77

which is determined by the conserved momentum
P =1#pP and the initial condition ¥(7y) = X, fixed at time
1o.
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The conserved quantities in an arbitrary point (¢, %(z))
of this geodesic can be expressed as [6, 8]

E = wy X(t)- Pe " + \m? + P2e~2wut | (49)
L= #(t) A Be ", (50)

J =20 X(NEe™" + Pe 2 [1 - ®0?].  (51)

satisfying the identity (45). Moreover, Egs. (19) and (20)
give the energy and covariant momentum components,

dr
PU(t) = — = Vm? + P2e~2wut | (52)

da

. dx . .
PO = o= P (0 N Pe o, (53)

that can be measured by the observer O in its proper
frame {7,%}o. The conserved quantities are related to the
measured ones as

E = wu X0 p(6)+ (1), (54)
L=3%0)Ap0), (55)
P = pt)e” (56)
d=c " RonOE+pO w21} (57)

Hereby we conclude that the conserved quantities de-
pend only on position and peculiar momentum. Among
them, only £ and L can be measured while P and  are
not accessible directly, with their role pertaining to only
closing the invariant (45) as

E? =i [*-B-0=p(1) - p(ty’ =m”. (58)

For example, a measurement in observer's origin O
gives E=p°, L=0, P=pe“, and §=pe ' such that
B-0= 52. Note that there is a natural choice of the ini-
tial moment, 7y = 0, for which we have 5(0) =P=0, and
the calculations become simpler.

Now we can revisit the problem presented in Sec.
I1.C, searching for the value of 7, that solves Eq. (33).
Taking into account that now P = fe®h = —Zpe@h and
% = dl(ty) = #d(ty), we obtain the identity

2

1)? 1 2
A _ g2ont) = L (0~ opdtg)p) =2, (59)
p p

a(tf)z

which may be substituted in Eq. (31) leading to the final
result

PU(tp) = p°—wnd(to)p = p° + wnd(t)- . (60)

Blep) = pley) = =it [ pOtp)> —m?, 61)

expressed exclusively in terms of physical quantities with
p° given by Eq. (29). Hereby we deduce the relative en-
ergy loss

e= de(ml% = wnd(to)v, (62)

proportional to the initial velocity v of the particle
lunched by O’. In the case of the massless photons, v=1
recovering the energy loss producing the redshift. It re-
mains to derive the final distance and velocity, which
take the form

p
d =d _ 63
1) =) 50 (63)
m2 -3
) =11 s 64
wer) (+|ﬁ<rf>|2) (&)

as it results from Egs. (34), (35), and (59).

For understanding the role of the conserved quantit-
ies in this experiment we must specify that the observers
O and O’ record different conserved quantities because
the translation is an isometry, which changes the compon-
ents of the conserved quantities apart from the conserved
momentum that is not affected by these isometries [6].
Moreover, as the origins of these frames are on the
geodesics, both the angular momenta measured in O and
O’ vanish. We denote by E, @ the remaining conserved
quantities measured in O and by E’, ' those recorded in
O’ bearing in mind that

P = P = e (65)

The values observed in O’ can be deduced from Egs. (49)
and (51) for ¥ = 0 obtaining the previous mentioned res-
ult, £/ = p° and @’ = pe . The observer O prefers to
search for the conserved quantities at # because he
knows that these do not change along the geodesic. Thus,
he records
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E=p’y), (66)
g =c " 2wndt)E +p(1-widwo?)],  (67)

as it results from Egs. (49) and (51) for & = d(to), verify-
ing that -0 = p(t7)* for closing again the identity (45).
Note that the relation among the conserved quantities
E.B,--- and E',P,--- can be derived directly according to
the transformation rule under isometries we have dis-
cussed recently [18, 19].

C. Null geodesics

The de Sitter null geodesics of the photons with m =0
that read

ewH(t_tO) -1
X(t) = Zyen =) 4 jip (68)
wh

are interesting being involved in the theory of the red-
shift. The energy and covariant momentum denoted now
by k°(¢) and k), respectively, are given by

K1) = Pe~t = [k(1)], (69)

R(t) = e P (i2p + wonR(0)) = K(D) + K(2), (70)

such that we can separate the peculiar momentum, IA:(t) =
el B, and the recessional momentum,
R(t) = wpR6)Pe " = wyROK().

Considering again the problem presented in Sec. II.C,
we assume that now the o‘tlserver O’ emits a photon of
energy k and momentum k= —7tk. Under such circum-
stances, Eq. (59) gives

alto) _

~enlt=h) = 1 — d(t 71
aty) e wnd(to), (71)

allowing us to derive the quantities observed by O in his
proper frame, namely the energy and covariant mo-
mentum,

Ko(tp) = k [1 - wnd(to)] (72)
k(ty) = k(tp) = -2k°t), (73)
the value of the final time

1
tp=1p— w—H In[1 - wnd(t)], (74)

the final distance between O and O’ at ¢y,

d(t)

1 — wyd(ty) ’ (75)

d(ty) =

and the redshift z related to the relative energy loss e ob-
served by O,

1
l—e= — =1 -wyd(t), 76
=1 wud(ty) (76)

resulted from Eq. (37). We recall that the condition
wyd(to) < 1 is mandatory.

On the null geodesics, the conserved quantities have
simpler forms as

E=Kt;)=k[1-wndto)], (77)
P =Fkewh , (78)
0 = ke [1 - wud(t)? , (79)

such that P-0 =E?, satisfying the identity (45) with
m = 0. We observe again that for the special choice 7 =0
we have B=F and cf(to) = d which simplifies the calcula-
tions and their interpretation.

IV. MILNE-TYPE UNIVERSE

Let us finish with an example of a manifold whose
kinematics was never studied. This is the spatially flat
FLRW manifold M with the Milne type scale factor
a(t) = wyt defined on the domain 7 € (0, 0), whose con-
stant (frequency) wy is introduced from dimensional
reasons [20, 21]. Then, after substituting the Hubble func-

. 1. P
tion % =-in Eq. (6), which is independent of wy,, we
a

may write the line element in the physical frame {z, ¥} as
1 dr
ds® = (1 - t—sz)dﬂ +2%- d)?7 —dx-dx. (80)

The conformal time ¢, € (—o0, 00) is defined as

dr 1
t. = f@ = mll’l(&)Ml‘) (81)
We obtain
a(te) = e, (82)

a function of the line element (4) of the conformal frame

105101-8
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{te, X}

Here, the constant wy, is a useful free parameter rep-
resenting the expansion speed of M. We remind the read-
er that in the case of the genuine Milne universe (of neg-
ative space curvature but globally flat), one must set
wy =1 for eliminating the gravitational sources [2]. In
contrast, our spacetime M is produced by isotropic gravit-
ational sources, i.e., the density p and pressure p,
evolving in time as [20] a

3 1 11

P G L RGE 2
and vanishing for ¢ — co. These sources govern the ex-
pansion of M that can be better observed in the frame
{r, ¥} where the line element (80) lays out an expanding
horizon at |%,| =¢. For t — oo, M tends to the Minkowski
spacetime and the gravitational sources vanish.

We deduce first the equation of the time-like
geodesics, solving the integral of Eq. (21), which leads to

the final form
; Py |P? +wi4m2t(2)

t
)_C'(l‘) = I—X’0+r‘z’ptln —
0

opy A/ P? +w[2‘4m2t2

for m = 0, we obtain the equation of the null geodesics

(84)

t t
X(t) = —y?o+ﬁptln(—). (85)
Io 0]

The energy, momentum, and velocity need to be derived
according to Egs. (19), (15), and (27). These are complic-
ated formulas that can be manipulated in applications by
using algebraic codes on computer.

Furthermore, coming back to the problem of two ob-
servers formulated in Sec. I1.C, we solve Eq. (33) for de-
riving the final time 74 and the ratio

aw) o _ 1 ( n
atty) "1y 2,,( g ) (50
where
v=(p" +m)e . (87)

We recall that p is the scalar initial momentum of the
particle of mass m lunched by O’ at 7, while p° is the
corresponding energy (29). Then, according to Egs. (31)
and (32), we obtain the final energy and covariant mo-
mentum

oy L[, m
P(tf)—z(v"' v), (88)

1 m?
5(tp) = —it = |v— — 89
gl
and the energy loss,
2
1—e=i(v+m—). (90)
2p %

The final distance between O and O’ when the particle ar-
rives in O,

1
d(ty) = d(to) 7 on

where d(ty) = da(ty) = wytod. As in this geometry, the ob-
server's horizon is at ¢, we must impose the restriction
d(tg) < tg = wpyd < 1 in order to keep the final distance in-
side the observer's horizon, d(ty) < ty.

When O and O’ observe a photon, then they record
ty=toe”?, KOtp) = [k(ty)| =ke ¢ and the redshift
1+z=e“ which for small values of wyd canbe con-
fused with the de Sitter redshift since the expansion

1 -
1—+Z =g @nd = | —a)Md+O(w%,1d2), 92)

is somewhat similar to Eq. (76). However, for larger dis-
tances, the discrepancy between the linear behavior of the
de Sitter redshift and the exponential one in the space-
time M becomes obvious.

Finally, we observe that the Milne-type and ds Sitter
universes behave somewhat complementary such that the
cosmic time of one of these manifolds behaves as the
conformal time of the other one. The self explanatory
Table 1 completes this image [21].

Table 1. The two complementary behaviors were observed.
M de Sitter
t 0<t<oo —00 <t <00
te —00 < 1, < 00 —oco<t. <0
a(t) wut cwH
a(t.) ewMlc - w:ﬂc
transl. wpyd<1 wpd < 1
1+z ewd [1 - wnd()]”!

The only similarity is the condition satisfied by the
translation parameter ¢ for remaining inside the
observer's horizon.

V. CONCLUDING REMARKS

We presented the complete kinematics in physical

105101-9
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frames on spatially flat FLRW spacetimes based on the
conserved quantities; among them, the conserved mo-
mentum is the central piece of our approach. In these
frames, the geodesics are determined completely by the
initial condition and conserved momentum. Moreover,
this allows us to separate the peculiar motion from the re-
cessional one such that the energy and peculiar mo-
mentum satisfy the mass-shell condition of special re-
lativity. In this framework, we discussed the problem of
two observers pointing out the relative energy loss dur-
ing propagation which in the massless case gives the
well-known redshift effect.

The first example is the kinematics of the de Sitter ex-
panding universe related to our previous results concern-
ing the geodesics of this manifold [8]. Here, we presen-
ted the measurable quantities on geodesics in physical co-
moving frames for the first time, showing how these are
related to the rich set of the conserved quantities of this
geometry. We observed that only the conserved energy is
related directly to the measured one, while the conserved
momentum and its dual momentum help each other in
closing the mass-shell relation. In addition, we pointed
out that the meaning of the conserved momentum de-
pends on the choice of the initial time that we can set
such that the conserved momentum coincides with the co-
variant initial momentum. This observation is important

because the momentum operator in the de Sitter quantum
mechanics is related exclusively to the conserved mo-
mentum [17].

The second example we present here for the first time
is the kinematics on a new manifold we considered re-
cently in quantum theory [20, 21]. This is a spatially flat
FLRW spacetime with a Milne type scale factor pro-
duced by gravitational sources proportional with 2 that
could be of interest in inflation scenarios. The geodesic
motion on this manifold is studied in physical frames de-
riving the kinetic quantities on geodesics and outlining
the results of the experiment of two observers, including
the redshift. We argued that this manifold is mathematic-
ally interesting as it behaves complementary to the de Sit-
ter one because the conformal time of one of them be-
haves as the cosmic time of the other. We have thus at
least two different examples of FLRW kinematics that
can be studied in detail.

In conclusion, we may say that the physical coordin-
ates and the conserved momentum offer a suitable frame-
work in which we can clearly distinguish between the re-
cessional motion due to the background expansion and
the peculiar one that behaves as in special relativity.
Thus, we may obtain a new perspective in interpreting the
astrophysical measurements in our actual expanding uni-
verse.
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