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Abstract: Recently, a de-Sitter epoch has been found in the new model of loop quantum cosmology, which is gov-

erned by the scalar constraint with both Euclidean and Lorentz terms. The singularity free bounce in the new LQC

model and the emergent cosmology constant strongly suggest that the effective stress-energy tensor induced by

quantum corrections must violate the standard energy conditions. In this study, we perform an explicit calculation to

analyze the behaviors of specific representative energy conditions, i.e., average null, strong, and dominant energy

conditions. We reveal that the average null energy condition is violated at all times, while the dominant energy con-

dition is violated only at a period around the bounce point. The strong energy condition is violated not only at a peri-

od around the bounce point but also in the whole period from the bounce point to the classical phase corresponding

to the de Sitter period. Our results will shed some light on the construction of a wormhole and time machine, which

usually require exotic matter to violate energy conditions.
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I. INTRODUCTION

As the origin of our universe predicted by the stand-
ard cosmology model based on classical general relativ-
ity (GR), the singular big bang point strongly indicates
that it is necessary to introduce a quantum gravity theory
to describe the spacetime of the early universe at a small
scale. Background independent and nonpertubative loop
quantum gravity (LQG) is constructed as one of the can-
didates for the quantum gravity theory, and it predicts
that the spatial geometry is discrete at the Planck scale [1-
4]. This discrete geometry feature is inherited in loop
quantum cosmology (LQC), which is given by studying
the loop quantum states of homogeneous and isotropic
geometry [5-7]. The LQC model reproduces the standard
Wheeler-DeWitt theory for cosmology at a large scale,
while it leads to notable deviations at a small scale be-
cause it involves the discreteness of geometry. More ex-
plicitly, by applying techniques developed in the full the-
ory of LQG, the classical Hamiltonian constraint in LQC
can be reformulated in terms of a new set of variables.
Then, the loop quantization procedure is performed to
give the quantum Hamiltonian constraint, which takes the
formulation as a quantum difference equation so that it
evolves non-singularly through the big bang point. Also,

it has been pointed out that the metric signature-change at
high density is a possible consequence of deformed
space-time structures in LQG, which provides a new
scenario regarding how singularity-resolution can take
place in LQG [8, 9].

The LQC model takes various formulations by fol-
lowing different regularization processes with respect to
the Hamiltonian constraint. In standard LQC, the quantiz-
ation of the Hamiltonian constraint follows a standard
method [6]. Note that the Hamiltonian constraint in the
full theory of the connection formulation of GR contains
the so-called Euclidean term and Lorentzian term, which
are classically proportional to each other in the spatial-
flat cosmology model. Usually, based on this classical
equivalence, the Hamiltonian constraint in standard LQC
is simplified before quantization, so that it only contains
the quantized Euclidean term [6]. With this simplifica-
tion, the dynamics governed by the quantum Hamiltoni-
an constraint predicts that the big bang is replaced by a
big bounce, which divides the evolution of the universe
into two symmetry periods. However, it has been shown
that the Euclidean term and Lorentzian term in the
Hamiltonian constraint are not proportional to each other
in the full theory of LQG [10-12]. By dealing with these
two terms separately through Thiemann regularization, a
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new model of LQC is obtained [10-14]. In this model,
quantization of the Hamiltonian constraint gives a new
fourth-order difference equation, rather than the second-
order one in standard LQC. A remarkable prediction of
the dynamics given by the new effective Hamiltonian
constraint is that the big bounce divides the evolution of
the universe into two non-symmetric periods, with one of
the periods being consistent with the evolution described
by standard cosmology at a large scale, while the other
period is described by a standard cosmology with the
presence of a large cosmological constant at a large scale
[10, 11].

The amazing result of the new LQC model indicates
that the quantum geometry corrections are not only intro-
duced near the region where the singularity appears, but
also emerge as an additional cosmology constant in the
dynamics equation at a large scale. According to the sin-
gularity theorem proved by Hawking and Penrose, singu-
larity is inevitable in GR if the Universe satisfies some
energy conditions. Therefore, the bounce in the new LQC
model strongly suggests the violation of energy condi-
tions with respect to some effective matter field. In addi-
tion, the emergent positive cosmology constant in the de
Sitter epoch also contributes to the behavior of energy
conditions. It is then natural to ask the following. Which
specific energy condition is violated in the new model of
LQC? Where does this occur? In the current study, we
choose some representative energy conditions, such as
average null, strong, and dominant energy conditions, and
perform an explicit calculation to analyze the behaviors
of the energy conditions with respect to the effective
stress-energy tensor given by the effective dynamics
equation in the new model of LQC. This task has been
discussed in standard LQC as well as in the quantum cor-
rected Schwarzschild-Kruskal space-time [15-19]. It has
been shown that, with respect to the effective stress-en-
ergy tensor, the average null energy condition is violated
in the massless scalar field coupled model, while the
strong energy condition is violated only at a small scale
in standard LQC. With the new model of LQC introdu-
cing the cosmology constant at a large scale as a new fea-
ture compared with the standard one, we hope this fea-
ture can also be reflected in the behaviors of energy con-
ditions with respect to the effective stress-energy tensor.
This is the main goal of this paper.

The following sections of this paper are organized as
follows. In Sec. II, we review some basic building blocks
of the new LQC model and fix the notations we use in
this study. Then, we discuss the violation of energy con-
ditions in Sec. III; we analyze the average null, strong,
and dominant energy conditions in different subsections.
Conclusions and outlook are provided in the last section.

II. EFFECTIVE DYNAMICS OF THE

NEW MODEL OF LQC

Classically, the flat, homogenous, and isotropic uni-
verse that we focus on in this paper is described by the
Friedman-Lemaitre-Robertson-Walker (FLRW) metric

ds? = —d? + d*(dx® + dy? + d2), (1)

with a being the scale factor of the universe, which only
depends on ¢, based on the homogeneity assumption of
the universe. The dynamics of this system is governed by
the Hamiltonian, given by [5-7]

o = \/ﬁcz + Hmalter(pdh ®), 2

 81Gy2

where we use the conjugate variables (c,p) defined by
c:=vya, p:=ad’, where y represents the Barbero-Immirzi
parameter, and Hmaer(py, @) is the Hamiltonian of a mat-
ter field, with ¢ and p, representing the matter field and
its conjugate momentum, respectively. The pair (c,p) is
usually used to coordinatize the phase space of LQC with

. &G .
the Poisson bracket {c,p}= % The dynamics equa-

tion of classical cosmology is described by the following
Friedmann and Raychaudhuri equations as

8nG
H = = P A3)
a . 4nG
- =H+H2=—T(p¢+3P¢), 4)

where H := = is the Hubble parameter; p; and Py are the
a
energy density and pressure of matter, defined as follows:

Py = a_3Hmalter, 4)

1 2 0H, matter

P¢:—§a Ja (6)

with the stress-energy tensor of the matter field taking the
form
Ty =pg U, Uy + Py(guy + U, U,)
=py(d1),(d1), +a* Py [ (dx),,(dx),
+ (dy)(dy)y + (d2)u(d2)y (7)
where (df),, (dx),, (dy),, (dz), are the dual coordinate basis

vector fields of the FLRW coordinate with p,v=
0,1,2,3, and U, = (d?), is the natural comoving observer
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of the matter field in the universe.

The new LQC model involving the Lorentzian term
with Thiemann regularization gives a different effective
Hamiltonian constraint [10, 11]. To simplify the specific
equations, we use the new canonical variables (b,V),
which are given by

32 2a

b:=cp, V:=p’'-, {b,V}=7, (3

with @ = 227Gy VA and [ being the regularization that is
used in the so-called i-scheme and defined by

A
0= i, A :=27\V3yGh ~ 2.61¢p, )

Vipl

where ¢p; is the Planck length and A is the smallest non-
vanishing area eigenvalue from the full theory. In terms
of phase space conjugated variables (b,V) and (¢, py)
with {¢, ps} = 1, the equations of motion of the new mod-
el with the Lorentzian term given by Thiemann's regular-
ization (TR) can be derived by Hamilton's equation of the
effective constraint [10, 11, 13], which reads

2
w_Po

eﬁ_z

coa VS ®[1- 1+ y)si’ @), (10)
aGAy

2
with Hpaer := ﬁ. Then, we have the equations of mo-

tion
v={v.cltl= yf/ZVsin(b)cos(b)[l =2(1+9%)sin*(b)],
(11)
p2
b={b.CIR} = -21Gy \/Zv—‘z
3 ,
Vi \/Zsmz(b)[l —(1+9?)sin (b)) (12)
and
b={o.CIR) =T Bo={paCiR}=0.  (13)

Using the constraint equation C1} ~ 0, we have

1+ \1-py/pI®

.2
b= , 14
sin 2070 (14)
2
p 3 . ..
where py = —% and piR= —— = s the critic-
212 322GAY2 (1 +92)

al energy density of the new model. Now, we can give the
modified Friedmann equation and Raychaudhuri equa-
tion as

AN
H2=( )=ﬁf@¢)(l—f@¢))[l—p¢/pgR], (15)

3V
and
i . 3
S =H+H)=——— — (ps+P
a 8y2ApcR(1 +72)(p¢ 2

X (2f(pg) = D(1=2(1+9*) f(0g))

1 3 1
+ yz—Af(;%)(l —flog) |1+ §P¢/pER + 5p¢/pZR], (16)

1+ \[1-py/pi®

2(1+93)
ity equation ps+3H(ps+Py) =0 has been used in the
above derivation. These equations are regarded as the ef-
fective dynamic equations of the new model of LQC [10,
11], where the quantum geometry correction and the true
matter field (the massless scalar field ¢)can be com-
bined as effective matter fields in the GR background.
Comparing with the standard Friedmann equation and
Raychaudhuri equation, we can give the effective energy
density and pressure as

where f(py) := sin?b = , and the continu-

3

pett = gGyan o)1 =1 wo[1=polp®]. (D)
po__ 3 ((p¢+P¢)(2f(P¢)—1)(1—2(1+72)f(10¢))
T 8rGy?A 4pIR(1+52)

+ flop)1 = flpp)) |1+ P¢/pIR]),
(18)

where the stress-energy tensor of the effective matter
field takes the form

waﬁ =pefr (A1), (d1), + @* Pe[(dx),(dx),
+ (dy)u(dy)v + (dZ),u(dZ)v]- (19)

Moreover, let us combine the equations of rrzlotion, Le.,
. p

(12), (13), and (14), and noting that p, = Z_\fz’ we can

write sin’ b as a function of ¢ as

1
1472 cosh?( V127G (¢ — o))

sin?(b(¢)) = (20)
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Then, the evolution of the variables with respect to the
physical time ¢ reads

3 sinh( V127G (¢ - ¢o))
Py = pp(P) = 2 » @D
87GA | 1452 cosh? (VI22G(6 - b))

47GAp2 1+ cosh? (VI2nG(¢ - do))
V=V =\ — - . (2)
|smh( V127G(¢p - ¢0))|
where the coordinate time 7 and physical time ¢ are re-

lated by j—; = V/ps, and hence given by

47GA 1 +72cosh? (V127G (4 — o))
3 |sinh( V127G (¢ — ¢0))‘ '

dr
i =sgn(py)

The integration of this equation is performed independ-
ently in two domains, i.e., ¢ > ¢g or ¢ < ¢, with the res-
ult being given by

A
1(¢) =to+ \/;)’ngn(l%((ﬁ - ¢0))[005h( V127G (¢ - ¢o))

2
- @ In ‘coth( V3rG(p— ¢0))‘].
Y
(24)

From this equation, it is clear that the physical time in the
two domains, i.e., ¢ > ¢ and ¢ < @y, gives a double cov-
er of the cosmic time ¢, and these two covers are linked
by time reflection symmetry. Hence, we can focus on the
domain ¢ > ¢¢ without loss of generality. In this chart,
from the point of view of a comoving observer (whose
proper time is cosmic time ¢), the infinite past and infin-
ite future correspond to ¢ — ¢; and ¢ — +oco, respect-
ively. A more explicit discussion shows that for such an
observer, the far past consists of a quantum region in
which the Universe is undergoing a de Sitter contracting
phase dominated by an emergent cosmological constant,
while the far future is given by a classically expanding
phase dominated by the matter (scalar field).

The de Sitter epoch and the bounce in the new LQC
model strongly suggest violation of the energy condi-
tions, i.e., the effective stress-energy tensor Teg given by
the effective dynamic equation of the new model of LQC
must violate some energy conditions. It is then natural to
ask the following. Which specific energy condition is vi-
olated in the new model of LQC? Where does it occur?
We now discuss these issues in detail. To simplify specif-
ic expressions, let us first provide some new notations, as

follows:

() = sinh ( V122G(p - o).
Qy(9) := cosh( V127G(¢ - ¢0)). (25)

where we then have

3
8TGA

Qi(¢) ]2
1+y203(p) |

AnGAp; 1+7203(9)
VEVOEN"3 T;e) @7

Py = pp(P) = (26)

dr 47GA 1 +7*Q3(9)

dr _ , 28

a ~EPIN T3 o ) (28)
1

Flog) = (29)

1+920%(¢)

Here, we note that the energy density p, takes the
14292
2
conventions and noting that ps = Py, gvhich can be veri-

value py=pl® when Q3(¢)= . Based on these

.. . p
fied by definition (5) with Hyager := ﬁ, we can reformu-

late the effective energy density and pressure as

3 Y2Q%(9) _p¢]
fell = 8nGy2A(<1+y293<¢>>2(1 pER) > G0

and

B ( po(1 =7 Q3(¢))
87Gy?A ( 20IR (1 +2)(1 +72Q2(9))

_ pe(1-2y°Q5(9) Y’ Q3(9) ]
PR +7202(¢)?  (1+72Q%($)? )

Peg =

€2))

III. ENERGY CONDITIONS OF THE
NEW MODEL OF LQC

Before turning to a specific calculation, we note that
the value of y used in numerical calculations is determ-
ined by the consistency of the black hole entropy calcula-
tion, resulting in a value of y ~ 0.2375 in the Ashtekar-
Baez-Corichi-Krasnov (ABCK) and Domagala-Lewan-
dowski (DL) approaches [20-22], or y~0.2740 in the
Ghosh and Mitra (GM) as well as Engle, Noui, and Perez
(ENP) approaches [23-25]. Then, at the critical point
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1 +2y?
where pgs =pl®, we have Q3(¢)= 27 =6.210 for
1+2y2

y =0.2375 and Q2(¢) = =5.650 for y = 0.2740.
Y

=
A. The average null energy condition

The average null energy condition for the effective
model is given by

f Tk kdl > 0, (32)

where the integral is along the arbitrary complete and
achronal null geodesic o. k* denotes the geodesic tan-
|

gent vector, and [ is an affine parameter. Following the
analysis in [15], for the homogeneous and isotropic uni-
verse considered here, we choose the tangent vector k* of
o with affine parameter / as

oY 1(aY 1/(aV\
v (Z) 22 B
k (61) a((?t) +a2 (Ox) ’ (33)
u u u u
where (g) (;) (62) (62) is again the coordinate
X y Z

basis vector fields of the FLRW coordinate. Then, we can
immediately give the average null energy condition as

f To kK dl = f " %(peﬂv+Peff)dt (34)
3 ( (1-yQ¢) (- 37293(@)]
+00 2 TR 2 202 202 2
:f 8nGy-Ap: ™ \ 2(1+y2)(1 Tv Q(9)  (1+y°Q5(¢)) gd¢ >0, (35)
&0 Vv d¢

where V =a® and Egs. (30) and (31) have been used. Let us further substitute Egs. (26), (27), and (28) into (35). Then,

the integrand of Eq. (35) can be simplified as

(-7
21+ +P%@)  (1+7°5@)7

81Gy2ApIR

(1- 37295(05)))
@

W g

Hence, we can focus on the integral

2
~ 9sgn(py) [4nGA?
322G plR A2 Ipgl L V3

4
[ 17’59 1-3’Q03¢) J( 21(@)l )*
A1+ +y2Q5(9) 201 +y2Q(e)* \1+72Q5(9) )
(36)
+00 1= ZQZ 1-— ZQZ 4/3
f TR di = C f ( re) 1270 )( <0 (@) ) dg, 37)
- 6 AL+ +7205(9) 201 +72Q(9)* )\ 1+y2Q3(¢)

2/3
9sgn(py) ( /47rGA] .
being a
32ﬂ2G272p;FRA2\J/w 3
constant. Let us take ¢o = 0 without loss of generality; the
result of the above integral is then

with C:=-

f Tk kY dl = 0.05843C <0, (38)

for v =0.2740, or

f Tk kY dl = 0.06749C <0, (39)

for v = 0.2375.

B. Dominant and strong energy conditions
Recalling the FLRW metric ds? = —df? + a?(dx? + dy*+
dz?), we can choose an orthogonal and normalized basis,
which is given by
dr =ds, d7’ = adz. (40)

dx’ =adx, dy’ =ady,

Then, the effective energy and momentum tensor takes
the formulation T&T = pe(dr’),(d), + Per ((dx),(dx'),+
(dy")(dy), + (dz’)ﬂ(dz’)v). The dominant and strong en-

ergy conditions require
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Peft = |Peg| (dominant energy condition), (41)

and

Peff + Pet = 0 and peg +3Peg > 0, (strong energy condition),
(42)

respectively.

Now, let us discuss the dominant and strong energy
conditions. First, note that the dominant energy condition
Peft = |Pesr| 1S equivalent to peg > Peft = —pefr, Which can be
expressed explicitly as

P > —perr = —y'Q3($) +6(1+y* )y’ Q3(¢) - 2y” — 1 <0,
(43)

and

Po(=v* Q3 (d) +2(1 + ¥y Q39 - 2y* - 1)
28R (1+72)

Peft >PeﬂC g

+2y20%(¢) > 0,
(44)

where Egs. (30) and (31) have been used. These two
equations can be discussed separately. First, Eq. (44) re-
quires that 3(1+y?)— (1 +y2)2—(2y2 +1) > 2Q%(¢) or
Y23 () > 3(1+9y2) + V91 +9y*2 -2y +1). For y=
0.2375, we have Q%(z{)) <3.203 or Q%((ﬁ) >109.1. For
y=0.2740, we have Q}(¢) <2445 or Q3(¢)>83.48.
Also, it can be verified that Eq. (44) always holds when
(43) is satisfied (see Figs. 1 and 2). Now, we conclude
that the dominant energy condition is satisfied if
Q2(¢) <3.203 or Q35(¢) > 109.1 for y =0.2375, while it is
satisfied if Q2(¢) < 2.445 or Q2(¢) > 83.48 for y = 0.2740.

1Q2(P=1+2) /y* Perr Py =0 P=0
i T T

3 ]
2

x ]

~ =pgr+ Pogr ]
s

= =pegr - [Ped

== Pt 3P ]

=p gy ]

=P ]

I I ‘ I ]

100 150 200

(9
Fig. 1. (color online) Behavior of peg, Pe, and energy con-
ditions for y =0.2375 and 1.000 < Q3(¢) < 250.0.

5P T Pegy
=pege - [Pegd
— = 5Pyt 3 Py
=peg
=Py

f/(3/ (8nA))

0 100 200 300 100 500
(P
Fig. 2. (color online) Behavior of pes, Pes, and energy con-
ditions for y = 0.2375 and 1.000 < Q3(¢) < 500.0.

A similar calculation can be given for the strong en-
ergy condition (42). The first equation in Egs. (42) re-
quires

3ps  Y'QHA)-6(1+y?)y Q%) +(1+2y%)
8nGy2AptR 2(1+y2)(1+y2Q3(¢))>

>0,

peff+Peff =

(45)

which holds if

3147 - A +122 -2+ )2 VB0, (46)

or

PR30 47+ 01+ -2 +1).  (@7)

For v =0.2375, we have the corresponding numerical
solution Q2(¢) <3.203 or Q3(¢) >109.1, while for y=
0.2740, we have QX(¢)<2.445 or QX(¢)>83.48. The
second equation in Egs. (42) requires

3 3ps(1-7*Q5(4))
87Gy* A\ 2pIR (1 +¥2)(1 +72Q3(¢))
peB=TY"Q5($)  2y*Q($)

— >0,
PERA+y2Q5(9)?  (1+72Q5(9))? ]
(43)

peﬁ+3Peff =

which can be solved for Q3(¢) by a numerical method.
For y = 0.2375, the above equation holds if Q%(gb) > 146.9.
For y = 0.2740, the above equation holds if Qg(qﬁ) >112.3.
Then, noting the solution of Eq. (45), we can conclude
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that the strong energy condition holds if Q3(¢) > 146.9 for
y =0.2375, or if Q2(¢) > 112.3 for y =0.2740.
Now, we are ready to have an overall look at the viol-
ation of dominant and strong energy conditions. Recall
1 2

+2y .
- It is

easy to see that the dominant energy condition with re-
spect to the effective stress-energy tensor in the new
model of LQC is violated at the period 3.203 <
Q2(¢) <109.1 (for y=0.2375) or 2.445 < Q3(¢) < 83.48
(for y = 0.2740) around the bounce point, while the strong
energy condition is violated at the period Q3(¢) < 146.9
(for y =0.2375) or Q%(qﬁ) < 112.3 (for y = 0.2740). Hence,
we can conclude that the strong energy condition is viol-
ated not only at a period around the bounce point, but
also the whole period from the bounce point to the clas-
sical phase corresponding to the de Sitter epoch. All of
these results for y =0.2375 are illustrated in Fig. 1 and
Fig. 2. There are two branches of the evolution of the uni-
verse  divided by the bounce point at
2

Q) = % - 6210 for y=02375. The effective
pressure P.g is always negative in the branch that con-
tains the de Sitter epoch, while it is negative only in a
period near the bounce point in the other branch.

that the bounce occurs at the point Q3(¢) =

IV. CONCLUSION AND DISCUSSION

The new model of LQC gives a remarkable predic-
tion of the emergence of a de Sitter epoch [10, 11], in
which the large cosmology constant from quantum geo-
metry correction can influence the behavior of the energy
conditions. We studied the interesting violation of energy
condition problem in this model and considered the aver-
age null, dominant, and strong energy conditions with re-
spect to the effective stress-energy tensor given by the ef-
fective dynamics equations. The results show that the
quantum correction has a significant influence on the be-
haviors of the violation of energy conditions.

Based on the effective Hamiltonian constraint in the
new model of LQC, we provided the effective dynamics
equations and corresponding effective stress-energy
tensor by comparing them with the standard Friedmann
and Raychaudhuri equations. Then, the average null,
dominant, and strong energy conditions with respect to
the effective stress-energy tensor were expressed as func-
tions of the physical time ¢. The numerical calculation

showed that, with respect to the effective stress-energy
tensor in the new model of LQC, the average null energy
condition is violated, while the dominant energy condi-
tion is violated only at a period around the bounce point.
Last but not least, the strong energy condition is violated
not only at a period around the bounce point, but also the
whole period from the bounce point to the classical phase
corresponding to the de Sitter period. Such a result is con-
sistent with the appearance of the de Sitter epoch in the
new model of LQC, in which the large effective cosmo-
logy constant is inversely proportional to the smallest
non-zero area in LQG.

In fact, the violation of the average null and strong
energy conditions with respect to the effective stress-en-
ergy tensor has been approved in the standard LQC [15,
16], in which the strong energy condition is only violated
near the bounce point compared with the new model of
LQC. The new model of LQC introduces a de-Sitter
epoch with a large effective cosmology constant coming
from the loop quantum effects, which additionally con-
tributes to the violation of energy conditions. However,
the de-Sitter epoch is an asymptotic approximation in the
large scale limit, and the period between the small and
large scale is still difficult to describe in an intuitive for-
mulation. Our study reveals the behaviors of the energy
conditions with respect to the effective stress-energy
tensor in the whole period of the evolution in this new
model of LQC. More explicitly, we show that the strong
energy condition is violated not only at a period around
the bounce point, but also the whole period from the
bounce point to the classical phase corresponding to the
de Sitter epoch. This result indicates that the cosmology
constant in our true universe may have a quantum grav-
ity origin. Although the new model of LQC does not pre-
dict the correct cosmology constant, it still provides a
new perspective for describing the origin of the cosmo-
logy constant, and it is expected to extend the core idea of
this new model to other loop quantum gravity theories,
i.e., loop quantum f(R) theory and higher dimensional
LQG [26-30], to find a proper quantum gravity theory
that can predict the accurate cosmology constant in fur-
ther research. Moreover, by sharing the same quantum
geometry nature, our result is expected to be inherited in
the full LQG, so that some light is shed on the construc-
tion of a wormhole and time machine, which usually re-
quire exotic matter to violate energy conditions.
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