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Abstract: In the present work, we used five different versions of the quark-meson coupling (QMC) model to com-
pute astrophysical quantities related to the GW170817 event and the neutron star cooling process. Two of the mod-
els  are  based  on  the  original  bag  potential  structure  and  three  versions  consider  a  harmonic  oscillator  potential  to
confine  quarks.  The  bag-like  models  also  incorporate  the  pasta  phase  used  to  describe  the  inner  crust  of  neutron
stars.  With a simple method studied in the present work,  we show that  the pasta phase does not  play a significant
role. Moreover, the QMC model that satisfies the GW170817 constraints with the lowest slope of the symmetry en-
ergy exhibits a cooling profile compatible with observational data.

Keywords: equation of state, compact star, cooling in stars, quark-meson coupling models, tidal deform-
ability, neutron star merger

DOI: 10.1088/1674-1137/abca1c

I.  INTRODUCTION

The  observation  of  the  binary  neutron  star  system
GW170817 by the LIGO-VIRGO scientific collaboration
and also in the X-ray, ultraviolet, optical, infrared, and ra-
dio bands gave rise to the new era of multimessenger as-
tronomy.  All  these  joint  observations  supported  the
GW170817 neutron star  merger event in NGC4993. The
observation  of  the  electromagnetic  counterpart  of
GW170817 by the Fermi Gamma-ray observatory corrob-
orated the notion that binary neutron star mergers are as-
sociated with  short  gamma-ray  bursts  (sGRB),  and  kilo-
nova emissions  are  probably  powered by the  radioactive
decay  of r-process  nuclei  synthesized  in  the  ejecta  (Ab-
bott et  al.  (2017) [1]). Therefore multi-messenger obser-
vations are  an  excellent  tool  to  extract  information  re-
garding  compact  stars  under  extreme  conditions.  In  the
next few years, further upgrades of dubbed A+ and LIGO

Voyager (Abbott et al. (2016) [2] and the collaboration of
KAGRA  and  LIGO  India  (Aasi et  al.  (2014)  [3];
Acernese et al. (2014) [4]; Aso et al. (2013) [5]) will al-
most  certainly  report  new  results.  Moreover,  planned
third-generation observatories  such  as  Einstein  Tele-
scope (ET) and Cosmic Explorer (CE) may eventually al-
low us to detect binary neutron stars at cosmological dis-
tances  (Essick et  al.  (2017)  [6];  Chamberlain  &  Yunes
(2017) [7]; Punturo et al. (2010) [8]).

The observation  of  binary  systems  in  different  chan-
nels is  of  great  importance  in  the  establishment  of  reli-
able constraints  on  neutron  star  physics.  For  many  dec-
ades, neutron  stars  have  been  objects  of  intense  astro-
physical  research.  Electromagnetic  observations  have
been  used  to  establish  limits  on  the  mass  and  radius  of
neutron stars. Considering recent developments, the grav-
itational  wave  channel  has  become  a  new  tool  to  infer
neutron star (NS) properties. The dimensionless tidal de-
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formability/polarizability  (TP)  and/or  Love  number  are
related to the induced deformation that a neutron star un-
dergoes due to the influence of the tidal field of its neut-
ron  star  companion  in  a  binary  system  (Kokkotas et  al.
(1995)  [9]). It  is  expected  that  this  influence  will  be  de-
tected  in  the  low  frequency  range  of  the  inspiral  stage,
where  the  effect  is  a  small  correction  in  the  waveform
phase. Given that the composition of each different neut-
ron elicits  a  characteristic  response  to  the  tidal  field,  the
TP can  be  used  to  discriminate  between  different  equa-
tions of state (EOS). In addition, thermal evolution stud-
ies are a complementary way of examining the properties
of  EOS  that  describe  neutron  stars  using  existing  data.
The  investigation  of  the  cooling  of  compact  stars  has
proven to be a promising method for exploring the prop-
erties of neutron stars, as it is strongly connected to both
micro  and  macroscopic  features  (Tsuruta  &  Cameron
(1965) [10]; Maxwell (1979) [11]; Page & Reddy (2006)
[12];  Weber et  al.  (2007)  [13];  Negreiros et  al.  (2010)
[14];  (2018)  [15]).  There  is  a  wealth  of  literature  on  the
cooling  of  neutron  stars  and  related  phenomena  such  as
magnetic  field  (Aguilera et  al. (2008)  [16];  Pons et  al.
(2009)  [17];  Niebergal et  al.  (2010)  [18];  Franzon et  al.
(2017)  [19]),  deconfined  quark  matter  (Horvath et  al.
(1991) [20]; Blaschke et al. (2000) [21]; Shovkovy & El-
lis (2002) [22]; Grigorian et al. (2005) [23]; Alford et al.
(2005) [24]), superfluidity (Levenfish & Yakovlev (1994)
[25];  Schaab  &  Voskresensky  (1997)  [26];  Alford et  al.
(2005b) [27]; Page et al.  (2009) [28]),  rotation (Negreir-
os et  al.  (2012)  [29];  (2013)  [30];  (2017)  [31]),  among
others (Negreiros et  al.  (2010) [14];  Alford et  al.  (2010)
[27]; Gusakov et al. (2005) [32]; Weber (2005) [33]).

The observation  of  binary  systems  in  different  chan-
nels  is  of  significance in establishing reliable constraints
on  neutron  star  physics.  Moreover,  neutron  stars  have
been  objects  of  astrophysical  interest  for  many  decades.
Electromagnetic observations have been used to establish
limits on the mass and radius of neutron stars. Consider-
ing  recent  developments,  the  gravitational  wave  channel
has become a new tool to infer neutron star (NS) proper-
ties.  The  dimensionless  tidal  deformability/polarizability
(TP) and/or  Love  number  are  related  to  the  induced  de-
formation that  a neutron star  undergoes due to the influ-
ence of the tidal field of its neutron star companion in the
binary system (Kokkotas et al. (1995) [9]). It is expected
that  this  influence  will  be  detected  in  the  low frequency
range of the inspiral stage, where the effect is a small cor-
rection in  the  waveform  phase.  Given  that  the  composi-
tion  of  each  different  neutron  star  elicits  a  characteristic
response to the tidal field, the TP can be used to discrim-
inate between different equations of state (EOS). In addi-
tion, thermal evolution studies are a complementary way
of investigating the properties of EOS that describe neut-
ron  stars  using  existing  data.  The  investigation  of  the
cooling  of  compact  stars  has  proven  to  be  a  promising

method for exploring the properties of neutron stars, giv-
en that it is strongly connected to both micro and macro-
scopic  features  (Tsuruta  &  Cameron  (1965)  [10]; Max-
well (1979) [11]; Page & Reddy (2006) [12]; Weber et al.
(2007)  [13];  Negreiros et  al.  (2010)  [14];  (2018)  [15]).
There  is  a  wealth  of  literature  on  the  cooling  of  neutron
stars  and  related  phenomena  such  as  magnetic  field
(Aguilera et  al.  (2008)  [16];  Pons et  al.  (2009)  [17];
Niebergal et al.  (2010) [18]; Franzon et al.  (2017) [19]),
deconfined  quark  matter  (Horvath et  al.  (1991)  [20];
Blaschke et  al.  (2000)  [21];  Shovkovy  &  Ellis  (2002)
[22];  Grigorian et  al.  (2005)  [23];  Alford et  al.  (2005)
[24]),  superfluidity  (Levenfish  &  Yakovlev  (1994)  [25];
Schaab  &  Voskresensky  (1997)  [26];  Alford et  al.
(2005b) [27]; Page et al.  (2009) [28]),  rotation (Negreir-
os et  al.  (2012)  [29];  (2013)  [30];  (2017)  [31]),  among
others (Negreiros et  al.  (2010) [14];  Alford et  al.  (2010)
[27]; Gusakov et al. (2005) [32]; Weber (2005) [33]).

ω ρ

In  the  present  work,  we  investigated  five  different
versions  of  the  quark-meson  coupling  (QMC)  model
equations  of  state  to  describe  neutron  star  (NS)  matter.
The first  two were the original  QMC model  with an un-
derlying bag structure and its counterpart  with the inclu-
sion of an interaction between the meson  and  fields.
In both cases, the pasta phase was also considered in the
description of  the  NS  inner  crust.  The  other  three  ver-
sions were  modified  QMC  (MQMC),  wherein  the  para-
meters were adjusted so that the constituent quarks were
confined to a  flavor-independent  harmonic oscillator  po-
tential  (Frederico et al.  (1989) [34]; Batista et al.  (2002)
[35]). These  models  were  evaluated  using  recent  astro-
physical  constraints,  including  those  obtained  from  the
detection of GW170817. We also performed cooling sim-
ulations for all models and compared the results with ob-
served data. This study will allow us (in conjunction with
the aforementioned studies) to better evaluate the quality
of the underlying adopted microscopic models.

In this study, we analyzed the macroscopic properties
obtained  using  a  relativistic  model  by  considering  quark
degrees of freedom; this model is the modified version of
a model commonly used in quantum hadrodynamics (also
referred  to  as  a  Walecka-type  model).  Furthermore,  the
inclusion of other internal phase transitions and their con-
sequences on the thermal evolution of neutron stars were
also investigated.

The formalism used for the EOS is shown in Sec. II,
the equations required to estimate the quantities related to
the gravitational wave (GW) constraints are given in Sec.
III, and those for the cooling process are given in Sec. IV.
We present  and  discuss  our  results  in  Sec.  V  and  in  the
last section, the main conclusions are presented.

ωρII.  QMC AND QMC  MODELS

ωρ
In this section, we present the formalism of the QMC

model, its counterpart with the inclusion of the  inter-
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action, and the MQMC model.

σ ω ρ

ψqN

In the QMC model, the nucleon in a nuclear medium
is treated as a collection of non-overlapping static spher-
ical MIT  bags.  The  interactions  arise  through  the  coup-
ling  of  quarks  to  various  meson  fields.  Here,  we  have
considered  the  quark-mesons  interactions  for  the  scalar
( ), vector ( ), and iso-vector vector ( ) fields, and they
are treated as classical fields in the mean-field approxim-
ation  (MFA)  (Guichon  (1988)  [36];  Saito  &  Thomas
(1994)  [37];  Panda et  al.  (1997)  [38]).  The  quark  field

 satisfies the equation of motion within the bag, and is
given by,{

iγ.∂−(mq−gq
σσ)−gq

ωωγ
0

+
1
2

gq
ρτzρ03γ

0
}
ψqN

(x) = 0. q = u,d (1)

mq τz
rd gq

σ gq
ω

gq
ρ σ− ω− ρ−

where  stands for the current quark mass, and  is the
3  component of the iso-spin. The constants , , and

 are the quark-meson coupling for , , and the 
field,  respectively.  The  normalized  ground  state  for  a
quark in the bag is given by,

ψqN
(r, t) =NqN

exp
(
−iϵqN

t/RN

)
×

 j0N

(
xqN

r/RN

)
iβqN

σ⃗ · r̂ j1N

(
xqN

r/RN

)  χq√
4π
, (2)

j0 j1 χq
ϵqN

where,  and  are spherical Bessel functions and  is
the quark spinor. The quantity  is given by:

ϵqN
= ΩqN

+RN

(
gq
ωω+

1
2

gq
ρτzρ03

)
, (3)

where

βqN
=

√
ΩqN
−RN m∗q

ΩqN
+RN m∗q

, (4)

with the normalization factor reading,

N−2
qN
= 2R3

N j20(xq)
[
Ωq(Ωq−1)+RNm∗q/2

] /
x2

q, (5)

ΩqN
≡

√
x2

qN
+ (RN m∗q)2 m∗q = mq−gq

σσ RN

xqN

and , ,  is the bag
radius  of  nucleon N.  The  eigenvalue  for  the  nucleon N
( ) is determined by

j0N
(xqN

) = βqN
j1N

(xqN
), (6)

xqN q

which  is  the  boundary  condition  at  the  bag  surface.  The
value of  depends on the flavor through the mass m ,
and satisfies the boundary condition given in Eq. (6) for a

converged solution.
The  energy  of  a  static  bag  that  describes  nucleon N,

which in turn consists of three quarks in the ground state,
is expressed as:

Ebag
N =

∑
q

nq
ΩqN

RN
− ZN

RN
+

4
3
πR3

N BN , (7)

ZN BN

nq

µn

where , and  are respectively the zero-point motion
of the nucleon and the bag constant. The quark density is

. Hereafter, we choose the symbol n to denote a gener-
ic density,  with  two  exceptions.  The  first  is  when  it  ap-
pears as a subscript of a certain quantity. For these cases,
the quantity refers to the neutron case, for instance, in 
(neutron  chemical  potential).  The  second  case  concerns
the appearance of n in the definitions of the direct  Urca,
modified  Urca,  and  Bremssthralung  processes  (see  Sec.
IV). For these cases, n refers to the neutron.

M∗N = Ebag
N

M∗N

The set of parameters used in the present work is de-
termined  by  enforcing  the  stability  of  the  nucleon  (the
"bag"), as was the case in (Guichon (1988) [36], and San-
tos et  al.  (2009)  [39])  for  identical  proton  and  neutron
masses.  The  effective  mass  of  a  nucleon  bag  at  rest  is
then  given  by  and  the  equilibrium  condition
for the bag is obtained by minimizing the effective mass,

 , with respect to the bag radius, i.e.,

d M∗N
dR∗N

= 0, (8)

1/4
N

q
σ ω

q
ω

ρ
q
ρ

σ ω

ρ

ρ
RN

σ ω

RN

where N denotes  the  protons  or  neutrons.  The  unknown
parameters  ZN =  4.0050668 and B  = 210.85 MeV are
determined by fixing the bag radius RN = 0.6 fm and the
bare  nucleon  mass  MN =  939  MeV.  The  desired  values
for  the  binding  energy  and  saturation  density  shown  in
Table 1 are obtained for g  = 5.9810, g  = 3g  = 8.9817,
and  g  =  g .  The  last  one  is  also  given  in Table  1.  The
meson masses  are  m  = 550 MeV, m  = 783 MeV and
m  = 770 MeV. At this point, it is important to note that
the  QMC  model  was  developed  such  that  it  describes
both finite nuclei and nuclear matter properties. An excel-
lent review can be found in Guichon et al. (2018) [40]. In
the  present  work,  we  used  a  mean  field  approximation
(RMF), which is the simplest variation of the model. Oth-
er parametrizations with larger values of RN are found in
the literature and in the aforementioned review, Guichon
(1988)  [36]  and  Stone et  al. (2007)  [41].  In  Guichon
(1988)  [36],  a  simpler  version  of  the  model  is  used  (
mesons are not included) and  is left to vary from 0.6
to 1.0 fm, wherein the lower values (0.6 and 0.7 fm) are
the ones that can better reproduce  and  coupling val-
ues fitted using the Bonn potential. Moreover, with these
low  values,  the  fraction  of  volume  occupied  by  the
bags  is  small,  indicating  that  the  overlap  between  the
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RN

bags  is  negligible.  However,  in  Stone et  al.  (2007)  [41],
the authors  demonstrated  that  the  nucleon  magnetic  mo-
ments  cannot  be reproduced using values lower than 0.8
fm. Nevertheless, there is a consensus that the equation of
state, observed by plotting the binding energy in Guichon
(1988) [36] and the pressure as a function of energy dens-
ity in Stone et al. (2007) [41], is insensitive to the chosen

 value.
Λv

ρ−ω

K0
L0

Mmax RMmax

⊙
ωρ

Λv
ω−ρ

Λv

Λv

ω−ρ
−3

gρ

The quantity  in Table 1, and also in Eqs. (9)-(10),
is the nonlinear cross-coupling between the isoscalar-vec-
tor and isovector-vector mesons ( ). The detailed ex-
pressions for this cross-coupling can be found in Dutra et
al.  (2014)  [42] and the  references  therein.  The most  im-
portant saturation properties of nuclear matter (i.e., com-
pressibility ,  symmetry energy J,  and the  slope of  the
symmetry  energy ),  stellar  matter  observables  (i.e.,
maximum  star  mass ,  maximum  radius ,  and
the  star  radius  corresponding  to  1.4 M )  for  QMC  and
QMC  are listed in Table 1. It is worth mentioning that
the  parameter  that  characterizes  the  strength  of  the

 interaction plays an important role in the symmetry
energy value and its  related quantities (see e.g.,  Dutra et
al.  (2014)  [42];  Oertel et  al.  (2017)  [43];  Providência et
al. (2014) [44]; Panda et al. (2012) [45]; Cavagnoli et al.
(2011)  [46]).  In  this  respect,  the  larger  the  value  of ,
the  lower  the  value  of  the  symmetry  energy  and  vice-
versa  (Panda et  al.  (2012)  [45];  Cavagnoli et  al.  (2011)
[46]). In the present work,  = 0.03, as listed in Table 1.
We  followed  the  calculations  presented  in  Grams et  al.
(2017)  [47],  where  a  interaction strength  that  res-
ults  in  a  symmetry energy equal  to  22 MeV at  0.1  fm
was  used,  with  a  consequent  change  in  the  coupling
constant, for which the values are shown in Table 1. The
new values of the symmetry energy and its slope at satur-
ation are also given in Table 1.  The total  energy density
of  the  nuclear  matter  within  the  relativistic  mean  field
(RMF) approach is given by,

ε =
1
2

m2
σσ

2+
1
2

m2
ωω

2
0+

1
2

m2
ρρ

2
03+3Λvg2

ωg2
ρω

2
0ρ

2
03

+
∑

N

1
π2

∫ kN

0
k2dk[k2+M∗2N ]1/2. (9)

The pressure is also expressed as,

p =− 1
2

m2
σσ

2+
1
2

m2
ωω

2
0+

1
2

m2
ρρ

2
03+Λvg2

ωg2
ρω

2
0ρ

2
03

+
∑

N

1
π2

∫ kN

0
k4dk/[k2+M∗2N ]1/2. (10)

ω0 ρ03The vector mean field  and  are determined as,

ω0 =
gω(np+nn)

m∗2

ω

, ρ03 =
gρ(np−nn)

2m∗2

ρ

, (11)

where

nB = np+nn =
∑

N

2k3
N

3π2 (12)

np nnis  the  baryonic  density  (  and  are  the  proton  and
neutron densities,  respectively),  and the effective masses
of the meson fields are

m∗
2

ω = m2
ω+2Λvg2

ωg2
ρρ

2
03 (13)

and

m∗
2

ρ = m2
ρ+2Λvg2

ωg2
ρω

2
0. (14)

σFinally,  the  mean  field  is fixed  by  imposing  the  con-
straint that

∂ε

∂σ
= 0. (15)

β µp = µn−µe
µe = µµ np = ne+nµ
In  stellar  matter,  the -equilibrium,  i.e., ,

,  and  the  charge  neutrality  conditions
are  enforced.  These  conditions  imply  that  a  free  gas  of
leptons (electrons and muons) must be included in the en-
ergy density and pressure of the system.

ωρ

nB

Pasta phases: The pasta phases are constructed with-
in the QMC and QMC  models by using the coexisting
phases method (Maruyama et al. (2005) [48]; Avancini et
al.  (2008)  [49]).  Although  extensively  used  in  quantum
hadrodynamical models, it was obtained for the first time
for the QMC model in Grams et al.  (2017) [47], and the
main steps and equations are  discussed in the following.
For a given total density, , the pasta structures are built
with  different  geometrical  forms,  usually  called  sphere
(bubble), cylinder (tube), and slab, in three, two, and one

ωρ

B/A = −16.4 n0
−3

Table 1.    Nuclear matter  and stellar  properties  obtained us-
ing the QMC and QMC  models. For all characterizations,

 MeV,  = 0.15 fm .

Quantity
Model

QMC ωρQMC

Λv 0.00 0.03

gρ 8.6510 9.0078

M∗N/MN 0.77 0.77

J /MeV 34.50 30.92

L0  /MeV 90.00 69.17

K0  /MeV 295 295

Mmax ⊙ (M ) 2.14 2.07

RMmax  /km 11.51 10.96

R1.4  /km 13.55 12.83
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dimension, respectively. Following Gibbs conditions, this
requires  that  both  phases  should  have  the  same  pressure
and  chemical  potentials  for  protons  and  neutrons.  For
stellar  matter,  the  following  equations  must  be  solved
simultaneously,

PI = PII , (16)

µI
p = µ

II
p , (17)

µI
n = µ

II
n , (18)

f (nI
p−nI

e)+ (1− f )(nII
p −nII

e ) = 0, (19)

II npwhere I ( )  represents the high (low) density region, 
is the global proton density and f is the volume fraction of
the phase I, that reads

f =
nB−nII

B

nI
B−nII

B

. (20)

The total hadronic matter energy reads:

εmatter = f εI + (1− f )εII +εe. (21)

The total  energy  can  be  obtained  by  adding  the  sur-
face and Coulomb terms to the matter energy in Eq. (21),

ε = εmatter+εsurf +εCoul. (22)

εsurf +εCoul

εsurf = 2εCoul

Minimizing  with respect to the size of the
droplet/bubble,  cylinder/tube  or  slabs,  we  obtain
(Maruyama et al. (2005) [48])  where

εCoul =
2α
42/3 (e2πΦ)1/3

[
σsurf D(nI

p−nII
p )

]2/3
, (23)

α = f α = 1− f
Φ

with  for droplets, rods and slabs, and  for
tubes and bubbles. The quantity  is given by

Φ =


(

2−Dα1−2/D

D−2
+α

)
1

D+2
, D = 1,3

α−1− lnα
D+2

, D = 2

(24)

σsurfwhere,  is  the  surface  tension,  which  measures  the
energy  per  area  required  to  create  a  planar  interface
between the two regions. The surface tension is a crucial
quantity in the pasta calculation and in this work, we fol-
low  the  procedure  used  in  Grams et  al.  (2017)  [47],
wherein it is calculated by using an adapted geometric ap-
proach that relies on the fitting of the energy per unit area

β
−3

that  is  needed  to  create  a  planar  interface  between  two
phases.  In  this  approach,  the  pasta  phase  obtained  for
matter  in -  equilibrium consists  of  only  droplets  and at
zero temperature is below 0.07 fm  at zero temperature,
as seen in Fig. 6 of Grams et al.  (2017) [47]. Hence, the
pasta phase is  only present  in the low-density regions of
the  neutron  stars.  In  this  region,  muons  are  not  present,
although  they  are  present  in  the  EOS  that  describes  the
homogeneous region.

There  are  many  properties  of  the  pasta  phase  that
need to be investigated more thoroughly for astrophysic-
al  scenarios.  For  example,  its  transport  properties,  in
terms  of  the  electron  conductivity  and  its  consequences
on the shear and bulk viscosities related to the instability
of  rotating  compact  stars.  However,  to  the  best  of  our
knowledge, the present analysis is the first work that con-
siders  a  pasta-phase  structure  in  the  calculation  of  both
tidal deformability and NS cooling. Hence, the phase co-
existence  method  may  be  considered  to  be  the  first  step
towards  more  sophisticated  treatments.  The  presented
procedure provides only a limited overview of a real sys-
tem,  which  has  many coexisting  geometries,  such  as  the
those  obtained  in  Skyrme-Hartree-Fock  plus  BCS
treatment  (Pais  &  Stone  (2012)  [50]),  and  in  molecular
dynamics  simulations  (Schneider et  al.  (2016)  [51]
(2018)  [52]).  Recently,  they  have  also  been  reproduced
by allowing statistical fluctuations on the pasta composi-
tion  (Barros et  al.  (2020)  [53]).  Other  even  more  exotic
structures  include  the  proposed  triple  periodic  minimal
surface  pasta  configurations  (Schuetrumpf et  al.  (2019)
[54]). These extremely sophisticated pasta configurations
can only be obtained at a high computational cost. Ther-
fore, they are beyond the scope of the present work. The
most viable  approaches  for  future  investigations  that  in-
volve high  computational  cost  and  cannot  currently  ex-
ploit  other  heavy codes  as  inputs  are  those  that  consider
coexisting pasta shapes based on the equilibrium distribu-
tion of the different geometries mentioned in Barros et al.
(2020) [53].

A.    MQMC model
In this subsection, we present the improved version of

the modified quark-meson coupling (MQMC) model giv-
en  in  Barik et  al.  (2013)  [55],  Mishra et  al.  (2015)  [56]
and (2016) [57]. The Lagrangian density is given by,

LMQMC =ψq[iγµ∂µ−mq−U(r)]ψq+gq
σσψqψq

−gq
ωψqγ

µωµψq−
gq
ρ

2
ψqγ

µρ⃗µτ⃗ψq+
1
2
∂µσ∂µσ

− 1
2

m2
σσ

2− 1
4

FµνFµν+
1
2

m2
ωωµω

µ

− 1
4

B⃗µνB⃗µν+
1
2

m2
ρρ⃗µρ⃗

µ. (25)
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Fµν B⃗µν
Fµν = ∂νωµ−∂µων B⃗µν = ∂νρ⃗µ−∂µρ⃗ν

U(r) =
1
2 (1+γ0)V(r) V(r) = ar2+V0

V0

All  the  quantities/parameters  are  defined  as  usual  in  the
literature  and some of  them were  already defined earlier
in  Sec.  II.  The  field  tensors  and  are  given  by

 and . It is worth men-
tioning that the MQMC model contains the same type of
nucleon interactions as in the original  QMC model from
Guichon  (1988)  [36].  However,  the  interaction  between
quarks inside the nucleon is taken into account via a con-
fining  harmonic  oscillator  potential  given  by 

, with , instead of the bag-like
treatment. The potential intensity and depth are related to
the constants a and , respectively.

Using  Euler-Lagrange  equations  for  the  Lagrangian
density in Eq. (25), the Dirac equation for the quarks can
be written as,{

α⃗ · k⃗+γ0
[
mq−Vσ+

V(r)
2

]
+

V(r)
2
+Vω+

τzVρ
2

}
ψq = εqψq (26)

with

α⃗ · k⃗ =
 0 σ⃗ · k⃗
σ⃗ · k⃗ 0

 , ψq =

(
φ
χ

)
, (27)

and

Vσ = gq
σσ, Vω = gq

ωω0, Vρ = gq
ρρ03, (28)

σ ω0 ρ03
χ

φ

where ,  and  are the classical meson fields in the
mean-field  limit.  By  replacing  the  small  component  ( )
of the Dirac field in terms of the larger one ( ), the equa-
tions can be rewritten as:[

k2

2(ε∗q+m∗q)
+

a
2

r2
]
φ(⃗r) =

ε∗q−m∗q−V0

2
φ(⃗r), (29)

with

ε∗q = εq−Vω−
1
2
τzVρ (30)

and

m∗q = mq−Vσ. (31)

The Schrödinger equation of the tridimensional harmonic
oscillator in Eq. (29) with the lowest order energy in the
right-hand-side satisfies,

ε∗q−m∗q−V0 = 3
√

a
ε∗q+m∗q

, (32)

3
2
ω =

ε∗q−m∗q−V0

2

ω =

√ a
ε∗q+m∗q

h̄ = c = 1

by  taking  into  account  that  with

, in units of .

We  next  follow  the  procedure  used  in  Batista et  al.
(2002) [35] to extract the center of mass corrections from
the  nucleon  observables.  The  center  of  mass  energy  is
given by,

εcm =
3
2

α

(ε∗q+m∗q)
(3+23β/6)
(1+3β/2)2 , (33)

with

α =
√

a(ε∗q+m∗q)1/2 (34)

and

β =
α

(ε∗q+m∗q)2 =
√

a(ε∗q+m∗q)−3/2. (35)

The  effective  nucleon  mass  in  the  medium as  the  center
of mass correction energy of the three independent quarks
is  considered  and  expressed  as  in  Batista et  al.  (2002)
[35],

M∗N = 3ε∗q−εcm, (36)

and  the  mean  squared  nucleon  radius,  also  corrected  for
center of mass effects, is written as in Batista et al. (2002)
[35],

⟨
r2

N

⟩
=

1+5β/2
α(1+3β/2)

. (37)

V0

M∗N
⟨
r2

N

⟩
M∗N(nB = 0) = 939

⟨
r2

N

⟩
(nB = 0) =

0.82 2

The harmonic oscillator parameters a and  are determ-
ined  by  imposing  the  vacuum  values  for  and .
Here, we adopt  MeV and 

 fm .

Λv = 0

ω0 ρ03 σ

Λv

Gq2
σ ≡ (gq

σ/mσ)2 G2
ω ≡ (gω/mω)2

nB = n0 = 0.15 −3 B/A = −16.4
G2
ρ ≡ (gρ/mρ)2

J ≡ S(nB = n0)

The  equations  of  state  (EoS)  and  the  field  equations
of  the  MQMC model  are  given  as  in  the  QMC case,  by
taking .  More  specifically,  the  energy  density  and
pressure of the MQMC model are given by Eqs. (9) and
(10), respectively. The mean fields ,  and  are ob-
tained as indicated by Eqs. (11) and (15), with the restric-
tion  that  the  parameter  is  set  equal  to  zero.  The  free
parameters  and  are  found
by  imposing  the  nuclear  matter  saturation  at

 fm  with a binding energy of 
MeV.  Finally,  is  determined  by  fixing  a
value  for , with  the  symmetry  energy  giv-
en by Mishra et al. (2015) [56] and (2016) [57],
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S =
k2

F

6(k2
F +M∗2N )1/2

+
1
8

G2
ρnB, (38)

kF mq

K0 = K(nB = n0) K = 9∂p/∂nB

K0

J = 25
25MeV ⩽

J ⩽ 35MeV

K0 = 295
mq = 210.61 K0

250MeV ⩽ K0 ⩽ 315MeV

where  is the Fermi momentum. The quark mass  is
used to fix the incompressibility at the saturation density

,  with . In  this  case,  we  re-
strict the MQMC model to present the same J and  val-
ues as those from the QMC models in Sec. II,  see Table
1.  These  parametrizations  are  called  MQMC1  and
MQMC2.  We  also  generate  a  third  one  called  MQMC3
for  which  MeV.  It  should  be  noted  that  all  these
parametrizations  present J inside  the  range  of 

 (Dutra et al. (2014) [42]). With regard to the
incompressibility,  all  parametrizations  present  the  same
value  of  MeV,  obtained  by  using  the  quark
mass  MeV. Notice that  is within the lim-
its of  (Stone et al. (2014) [58]).

β

For the stellar matter calculations, we proceed as de-
scribed  in  Sec.  II  concerning  the -equilibrium condi-
tions on the chemical potentials and densities. In particu-
lar, the nucleon chemical potentials for the MQMC mod-
el are given by,

µp,n =(k2
F +M∗2N )1/2+G2

ω(np+nn)

± 1
4

G2
ρ(np−nn) (39)

with  the  upper  (lower)  sign  for  protons  (neutrons).  The
nuclear  matter  and stellar  properties,  along with  the  free
parameters  obtained  from  the  parametrizations  of  the
MQMC model, are given in Table 2.

III.  GW170817 CONSTRAINTS

The  gravitational  Love  number  depends  directly  on
the detailed structure of the neutron star (NS). Therefore,
the calculation  of  these  numbers  can  offer  important  in-
formation  on  the  NS  composition.  This  concept  has
triggered intense  recent  research  interest  (see  e.g.,  Fat-
toyev et  al.  (2013)  [59];  Malik et  al.  (2018)  [60]; Horn-
ick et  al.  (2018)  [61];  Kumar et  al.  (2017)  [62]).  When
one of  the  neutron stars  in  a  binary system gets  close  to
its companion just before merging, a mass quadrupole de-
velops in response to the tidal field induced by the com-
panion.  This  is  known as tidal  polarizability  (Damour &
Nagar  (2009)  [63];  Binnington  &  Poisson  (2009)  [64])
and  can  be  used  to  constrain  the  macroscopic  properties
of neutron star (Flanagan & Hinderer (2008) [65]), which
in  turn,  are  obtained  from  the  appropriate  equations  of
state.

Qi j Ei j

In  a  binary  system,  the  induced  quadrupole  moment
 in one neutron star due to the external tidal field 

created by a companion compact object can be written as
shown in Flanagan & Hinderer (2008) [65],

Qi j = −λEi j, (40)

λ

l = 2
k2

where,  is  the tidal  deformability  parameter,  which can
be expressed in terms of the dimensionless  quadru-
pole tidal Love number  as

λ =
2
3

k2R5. (41)

k2To obtain ,  we have  to  simultaneously  solve  the  TOV
equations and find the value of y in the following differ-
ential equation,

r
dy
dr
+ y2+ yF(r)+ r2Q(r) = 0, (42)

with its coefficients given by

F(r) =
r−4πr3(ε− p)

r−2m
(43)

and

Q(r) =
4πr

[
5ε+9p+

(ε+ p)
∂p/∂ε

− 6
4πr2

]
r−2m

−4
(

m+4πr3 p
r2−2mr

)2

, (44)

εwhere  and p are the  energy  density  and  pressure  pro-
files  inside  the  star,  respectively.  We  can  compute  the

Gq2
σ G2

ω G2
ρ 10−5 −2

B/A = −16.4 n0 = 0.15 −3

mq = 210.61 K0 = 295 M∗N/MN = 0.84

Table 2.    Nuclear matter and stellar properties obtained from
the parametrizations of the MQMC model. The free paramet-
ers  are  also given. ,  and  are  given in MeV .
For  all  parametrizations,  MeV,  fm ,

 MeV,  MeV, and .

Quantity
Model

MQMC1 MQMC2 MQMC3

J /MeV 34.50 30.92 25.00

L0  /MeV 93.20 82.46 64.70

−3a /fm 0.95 0.95 0.95

V0  /MeV −92.27 −92.27 −92.27

Gq2
σ 5.13 5.13 5.13

G2
ω 8.33 8.33 8.33

G2
ρ 14.67 12.18 8.08

Mmax ⊙ (M ) 1.97 1.97 1.97

RMmax  /km 11.43 11.34 11.18

R1.4  /km 13.55 13.32 12.94
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k2Love number , which is given by:

k2 =
8C5

5
(1−2C)2[2+2C(yR−1)− yR]

{
2C[6−3yR

+3C(5yR−8)]+4C3[13−11yR+C(3yR−2)

+2C2(1+ yR)]+3(1−2C)2

× [2− yR+2C(yR−1)]ln(1−2C)
}−1
, (45)

yR = y(R) C = M/R
M = m(R)

Λ

λ

where , and  are the compactness of the
star of radius R and the mass , respectively. The
tidal  deformability  (i.e.,  the  dimensionless  version  of

) is related to the compactness parameter C by,

Λ =
2k2

3C5 . (46)

Λ1 Λ2One can obtain the values of  and  using Eq. (46) by
using corresponding quantities for each companion neut-
ron star in the binary system.

A.    The inner and outer crust effects on the tidal
polarizability

It is expected that the crust thickness and constitution
would affect  the second Love number and consequently,
the  tidal  polarizability.  The  neutron  star  crust  is  usually
divided into two different parts: the outer crust and the in-
ner crust. Piekarewicz and Fattoyev (2008) [66], investig-
ated the impact of the crust by considering simple expres-
sions.  For  the  outer  crust,  the  region  where  all  neutrons
are bound to finite nuclei, a crystal lattice calculation that
depends on the masses of different nuclei was performed.
For the inner crust,  where the pasta phase is expected to
exist,  the authors used a polytropic EoS that  interpolates
between the homogeneous core and the outer crust. They
concluded  that  for  fixed  compactness,  the  second  Love
number  is  sensitive  to  the  inner  crust,  but  given that  the
tidal polarizability  scales  as  the  fifth  power  of  the  com-
pactness  parameter,  the  overall  impact  is  minor.  In  the
present  work,  we  use  the  BPS  EoS  from  Baym et  al.
(1971) [67] for the outer crust and the pasta phase for the
inner crust, and investigate their effects on the deformab-
ility of  the  NS.  The  difference  between  the  total  equa-
tions  of  state  (outer  crust  +  inner  crust  +  liquid  core)
presented  here  and  that  used  in  Piekarewicz  &  Fattoyev
(2008) [66] is evident in Fig. 1. One can see that the out-
er crusts are coincident and the liquid cores of all the EoS
are similar. It should be noted that since the QMC model
is  not  used  to  calculate  the  outer  crust,  we  employ  EoS
found in the literature for this region. A more robust pre-
scription  of  the  outer  crust  is  given  in  Fantina et  al.
(2020)  [68],  and  we  discuss  the  difference  compared  to
our  work  when  the  results  are  presented  in  Section  V.

ωρ

nB = (0.40−6.2)×10−2 −3

nB = (0.45−6.6)×10−2 −3 ωρ

Hence,  most  of  the differences observed in Fig.  1 reside
in the inner crust and around the crust-core transition re-
gion.  Notice  that  the  pasta  phase  is  present  only  in  the
QMC and QMC  models. An inset showing the details
of  the  inner  crust,  where  the  pasta  phase  lies,  and  the
transition  region  from  the  pasta  to  the  homogeneous
phase is also included. Specifically, the pasta region is in-
side  the  ranges  of  fm  (QMC
model), and  fm  (QMC  mod-
el).  In  the  next  section,  we  obtain  results  for  the  second
Love  number  and  the  tidal  deformability.  These  results
are subsequently discussed.

IV.  NEUTRON STAR COOLING

We  consider  the  thermal  evolution  of  neutron  stars
with a composition described by the models discussed in
this manuscript. The cooling of neutron stars is governed
by the emission of neutrinos from their core, and photons
from  the  surface.  All  thermal  properties  of  the  neutron
star  from  neutrino  emission  to  heat  transport  depend  on
their  microscopic  composition.  This  is  because  different
compositions lead to different cooling processes, or alter
the  rate  at  which  certain  processes  occur.  The  global
properties  of  stars  such  as  size,  mass,  and  rotation  also
play  an  important  role  in  thermal  evolution  (Franzon et
al. (2017) [19]; Negreiros et al. (2012) [29]; (2013) [30];
Yakovlev et al.  (2000) [69]; Page et al.  (2004) [70]). As
such,  cooling  studies  are  ideal  in  terms  of  bridging  the
gap between the  micro  and  macroscopic  realms  of  neut-
ron stars.

In  recent  years,  there  have been significant  advances
in  the  observation  of  the  thermal  properties  of  compact
objects  (see  e.g.,  Beloin et  al.  (2018)  [71];  Safi-Harb  &
Kumar  (2008)  [72];  Zavlin  (1999)  [73],  (2007)  [74],

 

Fig.  1.    (color  online)  Stellar  matter  EoSs  described  by  the
QMC and MQMC models in comparison with the FSUGarnet
model  [66].  The  region  between  the  two  stars  on  the  orange
curve represents the inner crust. Before (after) that region, we
have the outer crust (liquid core).
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G = c = 1

(2009)  [75];  Pavlov et  al.  (2001)  [76],  (2002)  [77];
Mereghetti et al. (1996) [78]; Gotthelf et al. (2002) [79];
MvGowan et  al.  (2003)  [80],  (2004)  [81],  (2006)  [82];
Klochkov et  al.  (2015)  [83];  Possenti et  al. (1996)  [84];
Halpern et  al.  (1997)  [85];  Pons et  al.  (2002)  [86]; Bur-
witz et al.  (2003) [87]; Kaplan et al.  (2003) [88]; Zavlin
et  al.  (2009);  Ho et  al.  (2015)  [89]).  The  equations  that
describe  thermal  energy  balance  and  transport  inside  a
spherically  symmetric  general  relativistic  star  have  been
reported  by  Page et  al.  (2006)  [90],  Weber  (1999)  [91]
and Schaab et al. (1996) [92], with ( )

∂(le2ϕ)
∂m

= − 1
ε
√

1−2m/r

(
ϵνe2ϕ+ cv

∂(Teϕ)
∂t

)
, (47)

∂(Teϕ)
∂m

= − (leϕ)
16π2r4κε

√
1−2m/r

, (48)

ϕ

ϵν cv κ

In  Eqs.  (47)-(48) l is  the  luminosity,  is  the  metric
function, m is the  mass  as  a  function  of  the  radial  dis-
tance r and T is the temperature. In addition to the macro-
scopic properties  obtained  from  the  solution  of  the  Tol-
man-Opphenheimer-Volkoff  (TOV)  equations,  it  is  also
necessary to calculate the thermal properties that regulate
the  cooling  process.  These  are  the  neutrino  emissivity
( ),  specific  heat  ( ),  and  thermal  conductivity  ( ).  In
this work,  we  consider  all  established  cooling  mechan-
isms for the thermal evolution of neutron stars, and do not
consider  any  exotic  processes  such  as  axion  cooling
(Sedrakian  (2016)  [93]) and  dark  matter  decay,  for  in-
stance (Kouvaris  (2008) [94]). We now describe the rel-
evant  thermal  quantities  and  also  refer  the  reader  to
Yakovlev et al.  (2000) [69] for a thorough review of the
subject.

The  neutrino  emissivities  are  given  by  the  following
processes:

● Direct Urca (DU) Process:
n→ p+ e−+ ν̄,
p+ e−→ n+ e−+ ν.

ϵDU ∼ 1027T 6
9

−3 −1

T9 = T/109

k f i+ k f j ≥ k f k

It consists of neutron beta decay and electron capture
by the  proton.  This  process  is  extremely  efficient  in  ex-
tracting  thermal  energy  from  the  neutron  star  and  its
emissivity  is  ergs  cm  s  (where

 K) (Prakash et al. (1992) [95]). This can only
occur  when  the  three  triangle  inequalities 
(where i, j,  and k are the  baryons  and  leptons,  respect-
ively) are satisfied, to guarantee momentum conservation
(Prakash et al. (1992) [95]).

● Modified Urca (MU) Process:
n+n′→ p+n′+ e−+ ν̄,
p+n′+ e−→ n+n′+ ν.  The MU is similar  to the DU,

except it contains a bystander particle (denoted by prime)
that facilitates momentum conservation. The phase space
reduction  also  limits  the  efficiency  of  such  a  process

ϵMU ∼ 1021T 8
9

−3 −1
(compared  to  the  DU).  The  emissivity  of  the  MU  is

 ergs cm  s . We note here that we adop-
ted the MU emissivities as calculated in (Friman & Max-
well (1979) [96]). It should be noted, however, that it has
been reported that medium effects due to pions at higher
densities may alter such emissivities (Migdal et al. (1990)
[97];  Schaab et  al.  (1997)  [98];  Blaschke et  al.  (2004)
[99]; (2013) [100]).

● Bremssthralung (BR) process:
n+n′→ n+n′+ ν+ ν̄,
n+ p′→ n+ p′+ ν+ ν̄,
p+ p′→ p+ p′+ ν+ ν̄.

ϵnn ∼ 1019T 8
9

−3 −1 ϵnp ∼ 1020T 8
9

−3 −1

ϵpp ∼ 1020T 8
9

−3 −1

These  scattering  processes  have  also  been  calculated
in  Friman & Maxwell  (1979)  [96]  and  have  emissivities
of  ergs cm  s ,  ergs cm  s
and  ergs cm  s .

● Pair Breaking and Formation (PBF) process:
{BB} → B+B+ ν+ ν̄,
B+B→ {BB}+ ν+ ν̄.
(B stands for the baryon in question)

ϵPBF ∼ 1021T 7
9 ϵPBF ∼ 1022T 7

9 ϵPBF ∼ 1021T 7
9

1S 0
1S 0

3P2

This  process  is  associated  with  the  breaking  and
formation of pairs as the temperature approaches the crit-
ical temperature for pair formation. This process is transi-
ent by definition, and only occurs near the onset of pair-
ing.  The  emissivity  depends  on  the  type  of  pairing,
wherein , ,  and 
for a proton singlet ( ), neutron singlet ( ), and neut-
ron  triplet  ( )  pairing,  respectively  (Yakovlev et  al.
(2000) [69]).

∆

∼ e−∆(T )/T

It is important to note that these processes are subjec-
ted  to  suppression  when  the  temperature  is  low  enough
for pairing to occur. This is due to the presence of an en-
ergy gap ( )  in  the  particle  energy spectrum.  Generally,
the  emissivities  are  suppressed  by  a  factor 
(Levenfish et al. (1994) [25]).

For  the  specific  heat,  one  calculates  the  contribution
of  all  constituents  by  employing  traditional  microscopic
calculations, which  lead  to  the  specific  heat  of  the  spe-
cies i as,

ci,v =
m∗i ni

k2
f ,i

π2T, (49)

m∗iwhere  is the effective mass of the i-species. It is im-
portant to note that the specific heat is also subject to sup-
pression due to pairing, much like neutrino emission pro-
cesses, albeit with a more complicated mathematical form
(Levenfish et al. (1994) [25]).

κ ∼ 1023ρ14/T8
−1 −1 −1 ρ14 = ρ/1014

3

The final  aspect  is  the  thermal  conductivity  of  neut-
ron  star  matter,  which  has  been  thoroughly  discussed  in
Flowers & Itoh (1976) [101]; (1979) [102]; (1981) [103],
which  has  a  fit  for  the  high density  regime that  is  given
by  ergs  cm s K  (where 
g/cm ).
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Once  we  have  all  the  microscopic  and  macroscopic
components,  we  then  solve  Eqs.  (47)-(48)  numerically.
To do this, we need two boundary conditions:

l(r = 0) = 0● 1.  - which is necessary given that there
is no heat flow at the star core.

Te = Te(Tb(R))

Tb r = R

● 2.  which is the dependence of the ef-
fective surface temperature at the star envelope as a func-
tion  of  the  mantle  ( )  temperature  at . This  rela-
tionship has  been  thoroughly  investigated  by  Gud-
mundsson et  al.  (1982)  [104],  (1983)  [105].  It  accounts
for the properties of the star envelope, as well as the pos-
sibility of accreted matter due to fallback during the neut-
ron star formation process.

V.  RESULTS AND DISCUSSION

In  this  section,  we  study  the  effects  of  the  different
versions  of  the  QMC  and  MQMC  models  on  quantities
related to gravitational wave observables and neutron star
cooling.

A.    GW170817 constraint results
Λ

k2 ωρ

Λ1.4

k2
Λ

ωρ

ωρ

The results of the tidal deformability  and the Love
number  obtained  from  the  QMC/QMC  models,
with  and without  pasta  phases,  and the  three  versions  of
the MQMC are shown in Fig.  2,  with the range for 
[106] also displayed. In the top and bottom panels of Fig.
2,  we  display  the  Love  number  as  a  function  of  the
compactness  of  the  neutron  star,  and  the  variation  of 
with the mass of the star,  respectively. As already indic-
ated  by  Piekarewicz  &  Fattoyev  (2019)  [66],  the  curves
do not collapse into a single curve because of their differ-
ent dependences on y. When the same models are used to
compute the  tidal  polarizability,  their  differences  are  en-
hanced  and  only  two  models,  namely,  QMC  and
MQMC3, give results that are consistent with LIGO res-
ults  for  the  canonical  star.  The  pasta  phase  plays  a  very
modest  role  and  its  influence  is  practically  unnoticed,
which  is  evident  if  one  compares  the  curves  obtained
from QMC with and without pasta and QMC  with and
without pasta.  Considering  the  outer  crust,  all  prescrip-
tions,  namely,  BPS,  crystal  lattice  calculations  presented
in  Piekarewicz  &  Fattoyev  (2019)  [66]  and  the  state-of-
the-art  calculations  in  Fantina et  al.  (2020)  [68]  (tested,
but not shown in this work) result in practically the same
tidal deformabilities.

11.82 km ⩽ R1.4 ⩽13.72 km

In recent  literature,  significant  effort  has  been  direc-
ted towards constraining the radius of the canonical neut-
ron star, see for instance, Malik et al. (2008) [60], Most et
al. (2018) [107], Raithel et al. (2018) [108] and Annala et
al. (2018) [109] for studies in which the outcomes of the
GW170817 event are used to infer the radius. In Malik et
al. (2008) [60], the authors discussed this constraint in the
context of the Skyrme and RMF models, and their calcu-
lations  suggest  a  range  of .  In

R1.4

R1.4

12.00 km ⩽ R1.4 ⩽ 13.45 km
R1.4 = 12.39 km

13

13.6

Λ1.4

ωρ

R1.4 = 12.83 12.94

Most et al. (2018) [107], the constraint on  was estab-
lished based on a large number of EoS with pure hadron-
ic matter,  without  any  phase  transition.  The  authors  de-
termined  that  the  value  of  was  in  the  range  of

, with the most likely value be-
ing . The upper limit of this range is com-
patible  with  the  findings  of  Raithel et  al.  (2018)  [108],
namely, the radius of a neutron star cannot be larger than
approximately  km.  A  similar  result  was  obtained  in
Annala et al. (2018) [109], in which the authors conclude
that the maximal radius of a canonical neutron star is 
km. Concerning the parametrizations that satisfy the con-
straint  for  shown  in  the  bottom  panel  of Fig.  2,
namely,  QMC  and  MQMC3,  it  was  determined  that
they  predict  km  and  km,  respectively
(see Tables  1 and 2).  These  values  are  compatible  with
the aforementioned results.

Λ1

m1

1.37 ⩽ m/M⊙ ⩽ 1.60
m2

Mc = 1.188M⊙ =
(m1m2)3/5

(m1+m2)1/5

ωρ

In Fig.  3 we  show  the  tidal  deformabilities  of  each
neutron  star  in  the  binary  system.  is  associated  with
the neutron star with mass ,  which corresponds to the
integration of every EoS in the range ,
obtained from GW170817. The mass  of the compan-
ion  star  is  determined  by  solving 

 (Abbott et al.  (2017) [111]). We notice that

only the QMC  model (with and without pasta phases),

 

k2

Λ

Λ1.4 = 190+390
−120

Fig.  2.    (color  online)  (top)  as  a  function  of  the  neutron
star  compactness,  and  (bottom)  as  a  function  of M.  Full
circle:  recent  result  of  obtained  by  LIGO  and
Virgo Collaboration [106].
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R1.4 Λ1.4

Λ1.4 ∝ Rα1.4 α , 5

α = 6.58

R1.4 Λ1.4

ωρ

m1 = 1.4M⊙
Λ1 = Λ1.4

Λ1.4

R1.4

and  the  MQMC3  parametrization  yield  values  between
the  confidence  lines.  These  specific  models  satisfy  the
predictions  from  the  LIGO  and  Virgo  collaboration  due
to the  dependence of . The results of several dif-
ferent  studies indicate that ,  but  with ,  as
implied by Eq. (46). In Lourenço et al. (2019) [110], for
instance,  in  which  an  analysis  of  35  relativistic  mean-
field  models  was performed,  the  authors  found .
Therefore,  parametrizations  that  present  lower  values  of

, in general, lead to a decrease of . In the case of
the QMC/MQMC  models,  such  a  decrease  favors  para-
metrization to satisfy the constraint shown in Fig. 2 (this
is  the  case  for  the  QMC  and MQMC3  models).  Re-
garding Fig.  3,  we  identify  the  points  (circles  and
squares) for which one of the companion stars of the bin-
ary system has the value . Therefore, for these
points, we have . We can also see from this fig-
ure that lower values of , due to the smaller values of

, also lead to consistency of the curves with the LIGO
and Virgo band constraint.

B.    Cooling results

∼ 100

We now present  the  results  of  our  thermal  evolution
studies,  obtained  based  on  numerical  solutions  of  Eqs.
(47) and (48). We begin by showing the cooling of a set
of  stars,  covering  a  wide  range  of  masses  for  the  QMC
model. They are shown in Fig. 4. As shown in Fig. 4, all
stars exhibit fast cooling, characterized by a sharp drop in
their surface temperature at the age of  years. Such
fast cooling is the manifestation of a prominent presence
of the direct Urca process (DU) in the stellar core, which

is indeed the case for these stars.  The DU process is ex-
tremely  efficient  in  exhausting  the  star's  thermal  energy,
leading  to  fast  cooling  (Prakash et  al.  (1992)  [95]).  In
turn,  this  indicates  that  such thermal  evolution is  mostly
incompatible  with  observed data  (unless  the  DU process
is suppressed), as we discuss in the following.

∼ 3.5

In Fig.  5,  we  show  the  thermal  evolution  of  QMC
neutron  stars  with  the  inner  crust  described  by  the  pasta
phase. It is evdent that the pasta phase has little effect on
the overall  cooling behavior of the star.  This is expected
because  the  pasta  phase  occupies  only  a  small  region.
Careful  analysis  leads  to  the  conclusion  that  the  pasta
phase  had  the  minor  effect  of  aiding  in  core-crust
thermalization, leading to a core-crust thermal relaxation
that  is  years faster  on average.  This  seems reason-
able,  given  that  the  pasta  phase  smooths  the  core-crust
transition.  Thus,  it  is  expected that  this  will  also smooth
out heat propagation between these regions. However, we
note  that  these  are  rough  estimates  and  a  more  detailed
calculation is  warranted,  in  which  the  thermal  and  con-
ductivity  properties  of  the  pasta  phase  are  explored  in
more detail.

ωρ

We  now  repeat  the  preceeding  calculations,  but  for
the QMC  model without pasta (Fig. 6) and with pasta
(Fig. 7).

Similar  to  the  previous  case  (QMC),  the  pasta  phase
has  little  effect  on  the  overall  cooling,  but  instead  only
delays  thermalization  by  a  few  years.  However,  unlike
the previous model,  all  stars  exhibit  slow cooling in this
case, which indicates  that  there  is  no sharp drop in  tem-
perature  when  the  core  and  crust  are  thermally  coupled.
This is  because in this  particular  model,  the proton frac-
tion  at  the  core  of  the  star  is  low enough  to  prevent  the
DU process from occurring, even at the larger densities of
heavier  stars,  thus  leading  to  a  substantially  slower

 

ωρ

m1 = 1.4M⊙
Λ1 = Λ1.4

Fig.  3.    (color  online)  Tidal  deformabilities  obtained  from
the QMC, QMC  and MQMC models for both components
of the binary system related to the GW170817 event. The con-
fidence  lines  (50%  and  90%)  are  the  recent  results  of  LIGO
and Virgo collaboration taken from Abbott et al. (2018) [106].
The  shaded  region  represents  the  obtained  results  with  the
consistent  relativistic  mean  field  models  in  Lourenço et  al.
(2019)  [110].  Circles  (QMC  model)  and  squares  (MQMC
model):  points  for  which  and,  consequently,

.

 

Fig. 4.    (color online) Thermal evolution of neutron stars de-
scribed by the QMC model. The y-axis represents the red-shif-
ted  surface  temperature  and  x-axis  represents  the  age.  Each
curve represents the thermal evolution of a neutron star with a
different mass. All objects exhibit fast cooling due to promin-
ent DU processes in their core.
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thermal evolution.
We  now  investigate  the  cooling  of  the  neutron  stars

described by the MQMC model to determine if the differ-
ent prescriptions used in the EoS calculations play a role
in this  process.  In Figs.  8 - 10 ,  we show the cooling of
neutron stars of different masses for the different MQMC
models. L0

We can see that from the results shown in Figs. 8 - 10,
it is apparent that the overall cooling behavior associated
with  each  model  is,  qualitatively,  the  same.  For  MQMC
models 1 and 2, we observe that all stars exhibit fast cool-
ing,  with  MQMC  3  displaying  slow  cooling  (except  for
high  mass  stars).  It  should  be  noted  that  we  observe  a
clear correlation  between  the  slope  of  the  nuclear  sym-
metry  energy  ( )  and  a  fast/slow  cooling  behavior,

 

Fig. 10.    (color online) Same as Fig. 8 but for the MQMC3
model.

 

Fig.  5.    (color  online)  Same  as  in Fig.  4 but  for  stars  with
pasta phase in the inner crust.

 

ωρ

Fig.  6.    (color  online)  Surface  temperature  as  a  function  of
the age of stars in the QMC  model.  Each curve represents
the cooling of stars with the indicated mass.

 

Fig.  7.    (color  online)  Same  as Fig.  6 but  for  stars  with  a
pasta phase.

 

Fig. 8.    (color online) Thermal evolution of different neutron
stars under the MQMC1 model.

 

Fig.  9.    (color  online)  Same  as Fig.  8 but  for  the  MQMC2
model.
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L0
L0
ωρ

whereby  stars  with  higher  values exhibit  faster  cool-
ing (QMC, MQMC1, and MQMC2), and lower  values
lead  to  a  slower  cooling  scenario  (QMC  and
MQMC3).

1S 0
3P2

1S 0

Tc

So far,  in  our  thermal  investigation,  we  have  com-
pletely ignored  the  effects  of  pairing  because  we  are  in-
terested  in  investigating  possible  differences  in  the
thermal behavior  of  the  different  models,  and  the  inclu-
sion  of  pairing  could  potentially  obfuscate  the  results.
However,  it  was  observed  that  all  the  models  behaved
similarly, with major differences associated with the dif-
ferent  values  of  the  symmetry  energy  slope  rather  than
specific  minutia  related  to  the  models.  We  now  need  to
verify that our model is in agreement with observed data,
or at  the  very  least,  is  comparable  to  other  results  in  re-
cent literature (Negreiros et al.  (2018) [15]; Beloin et al.
(2018)  [71];  Carvalho et  al.  (2018)  [112];  Dexheimer et
al.  (2015)  [113];  Raduta et  al.  (2017)  [114]). In  this  re-
gard, we need to include pairing. Pairing in neutron stars
may  potentially  occur  in  three  different  ways,  neutron-
neutron singlets ( ), neutron-neutron triplets ( ), and
proton-proton singlets ( ). Neutron-neutron singlets are
formed  mainly  in  the  neutron-free  region  of  the  crust,
whereas  their  triplet  counterparts  are  mainly  formed  in
the lower density regions of the core. In the case of pro-
ton-proton pairs,  there is still  great uncertainty regarding
the  depth  at  which  they  occur  in  stars.  For  a  review  of
pairing in neutron stars,  we refer the reader to Yakovlev
et al. (2000) [69]. Our implementation of pairing follows
the same principles used in Beloin et al. (2018) [71], i.e.,
given the current uncertainties associated with pairing in
high-density neutron star matter, we use thermal observa-
tion data of neutron stars to constrain neutron and proton
pairing at  the  neutron star  core.  This  allows us  to  calcu-
late  the  pairing  effects  in  neutron  star  cooling  processes
[suppression  of  the  DU process,  the  appearance  of  Pair-
Breaking-Formation  (PBF)  process  near ,  and  the
modification  of  the  specific  heat  of  paired  particles
(Yakovlev et al. (2000) [69])].

ωρ

ωρ

For  completeness,  we  have  shown  the  cooling  of  all
the  investigated  models.  For  our  final  cooling  (with  the
inclusion  of  pairing),  and  the  comparison  with  observed
data, we next focus solely on the models that have satis-
fied  the  observational  constraints  discussed  so  far,
namely, the observed mass and tidal deformability, which
are QMC-  and MQMC3. As shown in Figs. 7 and 10,
these  models  exhibit  very  different  thermal  evolution,
with  QMC  displaying  an  absence  of  DU,  and  thus,
very  slow  cooling.  However,  MQMC3  exhibits  a  more
balanced  behavior,  wherein  low  mass  stars  display  slow
cooling while heavier objects cool down faster.

M⊙
Figure 11 shows the thermal evolution of the 1.4 and

2.0  stars for  the model  MQMC3, with nucleon pair-
ing  considered.  Intermediate  mass  stars  have  thermal
evolutions  between  these  curves.  Also  shown  are  the

M⊙

M⊙

most prominent observed data regarding cooling of neut-
ron  stars  (Beloin et  al.  (2018)  [71];  Safi-Harb  & Kumar
(2008) [72]; Zavlin (1999) [73], (2007) [74], (2009) [75];
Pavlov et  al.  (2001)  [76],  (2002)  [77];  Mereghetti et  al.
(1996) [78]; Gotthelf et al. (2002) [79]; MvGowan et al.
(2003)  [80],  (2004)  [81],  (2006)  [82];  Klochkov et  al.
(2015)  [83];  Possenti et  al.  (1996)  [84];  Halpern et  al.
(1997) [85]; Pons et al. (2002) [86]; Burwitz et al. (2003)
[87]; Kaplan et al. (2003) [88]; Zavlin et al. (2009); Ho et
al.  (2015)  [89]).  As  expected,  nucleon  pairing  leads  to
slower  cooling  rates  (associated  with  the  suppression  of
neutrino  emissivities,  as  previously  discussed).  Thus,
when  compared  to  stars  without  pairing  (see Fig.  10)  a
warmer object at the same age is obtained. From Fig. 11
we note that to explain most of the observed data, within
the  confines  of  the  cooling  description  adopted  in  this
work that  makes  use  of  the  neutrino  emissivities  as  de-
scribed  by  Friman  and  Maxwell  [96],  the  mass  of  the
stars  must  be  within  the  interval  1.4-1.8  (the  latter
represented by the cyan curve in Fig. 12). However, it is
also apparent that there are a few stars below this curve,
in which case their mass would be slightly above 1.8 .
This  indicates  a  group  of  observed  stars  within  a  small
mass window, which may be unlikely. Thus, this poses a
challenge in terms of describing the data based on the Fri-
man  and  Maxwell  description  for  the  Urca  process.The
objects that  fall  above  the  expected  range  can  be  ex-
plained  by  considering  fallback  in  the  early  stages  of
neutron  star  evolution  (Gudmundsson et  al.  (1983)
[105]). Such fall back alters the composition of the atmo-
sphere from pure iron to other elements, which affect the
thermal  evolution,  which  keeps  the  star  warmer  for
longer.

∆M/M = 10−9 10−11

Figure 12 shows the thermal evolution of stars for the
MQMC3 model with pairing, as well as the different pos-
sibilities of fallback accretion (  and ).
The hashed band represents the different possible thermal
evolutions that encompass different masses and different

 

Fig.  11.    (color  online)  Thermal  evolution  of  a  set  of  stars
with different  masses  for  the  MQMC3  model,  under  the  ef-
fect of nucleon pairing, as well as the observed thermal data of
thecooling neutron stars.
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possible atmospheres.
Based on the results of Figs. 11 and 12 , we can now

conclude that the MQCM3 model not only complies with
the  constraints  set  by  neutron  star  mass  measurements,
and those extracted from tidal deformability, but it is also
in agreement with the thermal data of neutron stars.

ωρ
M⊙

We  now  consider  the  QMC  (pasta)  model,  for
which  the  cooling  of  1.4  and  2.0  stars under  the  ef-
fect  of  pairing  is  shown in Fig.  13.  As  was  the  case  for
stars  without  pairing (Fig.  6),  stars  in  this  model  exhibit
slow  cooling.  The  occurrence  of  pairing  broadens  the
cooling "spectrum" (which indicates the different cooling
tracks  associated  with  stars  of  different  masses),  but  it
still excludes a large portion of observed data.

ωρ

For  completeness,  we  also  investigate  the  effect  of
different  atmospheric  compositions  of  the  stars  of  the
QMC  (pasta) model under the effect of pairing, which
is shown in Fig. 14. As was the case for the pure iron at-
mosphere, the thermal evolution of stars in this model is
too slow to satisfactorily explain all the data, and fails to
describe the observed temperature of colder stars.

VI.  FINAL REMARKS

In the present work, we used five different versions of
the  quark-meson  coupling  model  to  compute  the  Love
number and tidal polarizability. We evaluated them using
GW170817 constraints  and also  investigated  the  cooling
process  associated  with  them.  Two  of  the  models  were
based on the original bag potential structure (QMC mod-
el)  and  three  versions  considered  a  harmonic  oscillator
potential  to  confine  the  quarks (MQMC  model).  The
bag-like  models  also  utilized the  pasta  phase  to  describe
the inner crust of neutron stars. Although they were based
on  different  concepts,  all  versions  of  the  quark-meson

ωρ

Λ1.4

coupling model used in the present work were chosen be-
cause they  satisfy  nuclear  bulk  properties  within  accept-
able  ranges.  We  compared  our  EoS  with  FSUGarnet
(Piekarewicz & Fattoyev (2019) [66]) and confirmed that
the outer crusts were coincident, and the liquid cores cor-
responding to all EoS were very similar. Most of the dif-
ferences were observed for the inner crust  and in the vi-
cinity of the crust-core transition region, where the pasta
phase  was  included.  Our  results  indicated  that  the  pasta
phase  only  played  a  minor  role  in  the  calculation  of  the
dimensionless  tidal  polarizability  and  just  two  of  the
models  (QMC  and  MQMC3)  yielded  results  that  lie
within  the  expected  range  of  the  canonical  star  .
Moreover,  it  appeared inside the region delimited by the
confidence lines.  We  emphasize  that  there  is  a  correla-
tion  between  the  model  symmetry  energy  slope  and  the
fact  that  it  satisfied  the  investigated  constraints  (or  not),
such that  the  lower  values  appeared  to  be  more  consist-

 

∆M/M

Fig.  12.    (color  online)  Thermal  evolution  of  a  set  of  stars
with  different  masses  for  the  MQMC3  model  with  pairing,
and  taking  into  account  different  atmosphere  compositions
(represented  by  the  amount  of  accreted  matter ).  The
blue  hashed  region  represents  the  different  possible  thermal
evolutions that  encompass  different  masses  and  different  at-
mospheric compositions.

 

M⊙ ωρ

Fig. 13.    (color online) Thermal evolution of the 1.4 and 2.0
 stars of model QMC  (pasta), under the effect of nucle-

on pairing,  as well  as observed thermal data of  cooling neut-
ron stars.

 

ωρ

∆M/M

Fig.  14.    (color  online)  Thermal  evolution  of  stars  under
QMC  (pasta) model with pairing, and considering different
atmospheric compositions  (represented  by  the  amount  of  ac-
creted  matter ).  The  blue  hashed  region  represents  the
different possible thermal evolutions that encompass different
masses and different atmospheric compositions.
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m2

ent with  the  observational  data.  Furthermore,  we  ob-
served  that  the  two  models  that  satisfied  the  LIGO  and
Virgo  predictions  exhibited  similar  patterns  for  the  radii
and  polarisability  of  the  canonical  star.  It  is  known
(Lourenço et al. (2019) [110]) that in general, parametriz-
ations that present lower values of  lead to a decrease
of .  Among  the  examined  models,  QMC  and
MQMC3, which have lower values of , were consist-
ent with the LIGO and Virgo band constraints.  It  should
be  noted  that  the  chirp  mass  value  was  updated  to

 (Abbott et  al.  (2019)  [115])  after  this
work was completed, but new calculations for  do not
affect our main results and conclusions.

σ

We used  the  same  models  to  study  the  cooling  pro-
cess and verified that  in this  case,  there was a clear  cor-
relation  between  the  slope  of  the  symmetry  energy  and
the velocity of the cooling process, i.e., models with high-
er (lower) slope values produced fast (slow) cooling. We
note that  this  result  seems to agree with an analysis  per-
formed  by  Dexheimer et  al.  (2015)  [113],  in  which  the
authors  updated  the  non-linear  model.  In  this  work,  a
similar trend was observed, i.e.  models with larger slope
values  for  the  symmetry  energy  exhibited  faster  cooling
compared  to  their  counterparts  with  lower  values.  Once
again,  the pasta phase played a minor role in cooling by
speeding up  the  process  in  approxiately  3.5  years,  if  su-
perconductivity is not considered.

ωρ

ωρ

We further  explored  thermal  evolution  under  a  more
realistic  scenario  in  which  nucleon  pairing  and  different
atmospheric  models  were  considered.  By  considering
such phenomena,  we calculated the thermal  evolution of
the  two  models  (MQMC3 and  QMC )  ,  which  was  in
agreement  with  the  constraints  set  by  the  neutron  star
mass measurements, as well as the tidal deformability es-
timates from GW170817. Our results were evaluated us-
ing observed thermal data on cooling neutron stars, which
showed that the MQMC3 model can successfully explain
the entire set of observed data (by encompassing the dif-
ferent  possible  masses  and  atmospheric  compositions).
However, model QMC  could only match the observa-
tions  of  high  temperature  neutron  stars,  excluding  cold
objects from its  prediction  range.  However,  it  is  import-
ant to note that there is still  a need for further investiga-
tions, by considering for instance, medium corrections to
the  modified  Urca  process  (Migdal et  al.  (1990)  [97];
Schaab et  al.  (1997)  [98];  Blaschke et  al.  (2004)  [99];
(2013) [100]) as well as the effects of pairing on the elec-
tron  thermal  conductivity  [116].  We  intend  to  pursue
these investigations in future research.

The results of our studies revealed that among the five
investigated models, the only model that can describe as-
trophysical quantities as massive NS and tidal polarizabil-

ities,  in  addition to providing an excellent  description of
the  possible  cooling  processes,  is  the  MQMC3  model.
However,  more observational  data  is  desirable.  It  is  also
important to note that  this  conclusion was made by con-
sidering  neutrino  emissivities  based  on  calculations  by
Friman  and  Maxwell  [96].  A  different  approach  for  the
Urca  emissivity  by  considering  medium  corrections,  as
previously  indicated,  could  potentially  lead  to  different
conclusions.  It  should  be  noted  that  the  adoption  of  a
purely  nucleonic  EoS  such  as  the  one  adopted  in  this
work  is  typical  (see  the  recent  works  from  Bauswein et
al. (2019) [117] and Lucca & Sagunski (2019) [118], for
instance). However, this does not imply that the consider-
ation of other phases of matter such as quark matter is un-
usual. There are many other avenues that involve strongly
interacting matter that may still be considered in the con-
text of our work. For instance, stellar matter consisting of
hadronic  and quark  EoS with  or  without  a  mixed phase,
and  at  higher  densities,  deconfined  quark  matter  in  the
CFL and CCS phases (Lau et al. (2017) [119]). It has re-
cently been  shown  that  the  existence  of  quark  cores  in-
side  massive  stars  should  be  considered  as  the  standard
pattern and not an exotic alternative (Annala et al. (2020)
[120]). This conclusion was based on a model-independ-
ent  analysis  of  the  sound  velocity  in  both  hadronic  and
quark matter. Hence, once the possibilities of these differ-
ent phases  are  considered,  the  internal  constitution  af-
fects  the quantities  investigated in  the present  work,  and
every  case  is  worth  investigating  and  examining  using
observational  constraints.  The  NICER  telescope  [121]
that  was launched in 2017 is  expected to test  theories  in
nuclear  physics  by  exploring  the  exotic  states  of  matter
within neutron  stars  using  rotation-resolved  X-ray  spec-
troscopy  and  will  provide  precise  values  for  masses  and
radii. If this data is integrated with future GW results, the
identification of the inner constituents of neutron stars in
a binary  system  (neutron-neutron,  neutron-hybrid  or  hy-
brid-hybrid)  (Christian et  al.  (2019)  [122]) will  be  pos-
sible. The inclusion of other internal phase transitions and
their  consequences  on  the  thermal  evolution  of  neutron
stars  is  left  to  future  studies.  In  that  sense,  the  present
work  is  the  first  step  towards  calculations  related  to  the
pasta-like  phase  that  may  be  present  between  hadronic
and quark matter in hybrid stars at high stellar densities.
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