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Abstract: We use the two lowest weight states to fit E2 strengths connecting the  and  transitions in

Mo.  Our  results  confirm  that  the  and  states  are  maximally  mixed,  and  that  the  states  are  weakly
mixed in both nuclei. An appropriate Hamiltonian to represent the band mixing is found to be exactly solvable, and
its eigenstates can be expressed as the basis vectors in the configuration mixing scheme and interacting boson model.
The interacting boson model and coexistence mixing configuration under the solvable methods are suitable models
for analyzing the band mixing with high accuracy.
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I.  INTRODUCTION

0+

≃

One of the most impressive features of nuclear struc-
tures  is  band  mixing  at  low  energies.  Several  decades
ago,  Carchidi  and  colleagues  [1, 2] developed  general-
ized two-state  model  wave  functions  within  the  coexist-
ence  model  for  states  in  even-even  nuclei.  A  linear
combination of  the basis  states  in  the two-state  model  is
common. Recently,  it  has been shown [3–8] that  precise
evidence exists for the presence of band mixing in medi-
um mass nuclei such as those of Zr, Pd, Mo, Cd, Te, and
Xe isotopes.  Due to  the  large space configuration,  shell-
model  calculations  with  multi  particle-hole  excitations
are not simple. To determine the nuclear structure of band
mixing in the collective valence shell  and multi-particle-
hole  excitations,  the  interacting  boson  model  (IBM)  has
been proposed [9, 10]. The mass region A 100 has been
of considerable interest for features of the U(5) to SO(6)
transition in even-even nuclei. This mass region is sensit-
ive  to  patterns  such  as  quantum  phase  transitions,  band
mixing, and shape coexistence configurations [11–13].
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Fortune,  in  Ref.  [14],  has  determined  the  amount  of
mixing  between  the  lowest  two , ,  and  states  in

Ge. In this region, he analyzed mixing between the first
two  and  states in Zr [15]. Small mixing pertains
to small E0 strength in this nucleus. In heavy mass nuclei,
the mixing configuration of members of the first two rota-
tional  bands  in Sm  is  apparent  [16].  In  this  case,  the
lower basis-state band is more collective than the second
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94,96 98

band. This region exhibits a shape change from the spher-
ical structure of the neutron closed shell nucleus to a rota-
tional,  deformed  structure.  Binary-reaction  spectroscopy
has provided a new understanding of the band crossing in

Mo [17] and of  a  coexistence configuration in  the vi-
brational  limit  to  a  rotational  limit  [18, 19].  In  recent
studies,  different  isotopes  have  been  applied  to  obtain
nuclear structures such as mixed-symmetry states as well
as band mixing in Mo and shape coexistence in Mo
[20–24].

Nν Nπ

F = Fmax = (Nπ+Nν)/2

The nuclear structures classified in different mass re-
gions  have  been  described  by  the  usual  IBM-1,  with  no
distinction  made  between  neutrons ,  protons , Pro-
ton-Neutron  IBM-2,  E5,  and  X5  critical-point  excitation
and  phase  coexistence  [25–28].  Unlike  IBM-1,  which  is
related to the fully symmetric states ,
IBM-2 is  related to  the exchange and interaction of  pro-
ton and neutron configurations in the band mixing of the
wave function. We know that IBM-2 is often adopted in
configuration mixing schemes. The states are called band
mixing. In  nuclear  models,  the  coexistence  mixing  con-
figuration  (CMC)  seems  to  work  better  due  to  the  band
mixing. The CMC calculations have been confirmed to be
successful  in  explaining  normal  and  intruder  states  that
are  related  to  IBM-1  and  IBM-2.  Though  most  CMCs
have been examined in the IBM-2 framework, configura-
tion  mixing  can  also  be  analyzed  in  accordance  with
IBM-1,  with  no  distinction  between  neutron-type  and
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proton-type  bosons,  as  shown  in  Refs.  [29– 31].  In  the
CMC,  several  terms  play  a  role  in  explaining  the  band
mixing instead of IBM-2. In other words, the CMC is an-
other feature of IBM-2, which does not consider the pro-
ton  and  neutron  interactions.  Consequently,  the  CMC
with different  symmetry  limits  from  the  IBM  can  un-
doubtedly be of  great  help  in  understanding shape coex-
istence phenomena.

(n, ńγ)

The  authors  of  Ref.  [12] explicitly  explored  the  de-
gree  of  separation  energy  as  a  signature  of  coexisting
shapes. Lesher et al. [24] reported several low-spin states
as band mixing of a  reaction. In their calculations,
the band mixing and coexistence configuration were per-
formed between U(5) and O(6) limits.

γγ

It may be that the coexistence configurations involve
mixed states, as suggested recently by Thomas et al. [32],
who  used  angular  correlation  experiments  to  study
spins,  multipole mixing ratios,  and collective E2 proper-
ties. They  collected  information  on  the  deformation  en-
ergy surface and mixed-symmetry state.

γ
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Given  this  information  and  the  conclusions  from
Refs. [9, 33–36] regarding analytic expressions and exact
eigen  energies  between  the  spherical  and -soft  shapes
found by using the Bethe-ansatz within an infinite-dimen-
sional  Lie  algebra,  it  would  be  helpful  to  describe  the
shape  coexistence  configuration  and  band  mixing  in

Mo. We thus followed the method of Refs. [9, 33, 34]
and applied a simple two-state model to the energy spec-
tra and electric transition rates in Mo. The exact solu-
tion  and  band  mixing  configurations  have  recently  been
shown  to  be  successful  in  reproducing  the  lowest  state
band and E2 matrix elements.

γ

0+ 2+

4+ 2+

It is preferable to work with the proton-neutron inter-
acting model due to the interaction of protons with neut-
rons, as explained in Ref. [20]. The CMC calculation can
be used to explore the normal 2p-0h proton configuration
for U(5) vibrational  nuclei  and  the  three  intruder  phon-
ons,  with  a  2p-4h or  4p-2h configuration  across  the Z =
40 sub-shell for O(6) -soft nuclei. To this end, we used
the same formalism and calculations via the SU(1,1) Lie
algebra  and SU(1,1)  coherent  states  [9, 33, 37]  for  the
lowest  states  of  band  mixing  connecting  the  and 
states and the  and  states.

II.  CALCULATIONS AND RESULTS

S +(l) =
1
2

l†.l† S −(l) =
1
2

l̃.l̃

S 0(l) =
1
2

(
l†.l̃+

2l+1
2

)
l = 0

IBM-1  and  CMC  are  prominent  phenomenological
models for describing the mixing of low-lying collective
states across an entire major shell. In our system, generat-
ors  can  be  constructed  in  terms  of l-boson  operators  as

 for  the  creation  operator,  for

the  annihilation  operator,  and  for
the  number-conserving  operator,  with  for s bosons

l = 2
̂S U(1,1)

̂S U(1,1)

Ĥ = S +0 S −0 +S 0
1

Ĉ2(S O(2l+1))+ Ĉ2(S O(3))

and  for d bosons [33, 34]. We use the theory of af-
fine  algebraic  techniques  [33, 34], which  de-
termines  the  properties  of  energy  spectra,  mixing  of
states, and electric transition rates. By employing the gen-
erators of the affine  algebra in terms of l-boson
operators,  a  solvable  Hamiltonian  is  constructed  for  the
transitional  region  between  the  vibrational  and  intruder
configurations.  The  Hamiltonian  can  be  written  as

 by  adding  the  second  Casimir  of
 for IBM-1 [33]. All details of

the calculations can be found in Refs. [33, 34].

Ĥ = S +0 S −0 +S 0
1 + Ĉ2(S O(2l+1))+ Ĉ2(S O(3)). (1)

In order to describe the CMC, we first define a typic-
al consistent-Q Hamiltonian in the framework of the ori-
ginal IBM-1 as

ĤCQ = ϵd n̂d − κ Q̂(χ) · Q̂(χ), (2)

ϵd κ χ ∈ [−
√

7/2,0]where , , and  are real parameters of the
model.  Thus,  a  suitable  Hamiltonian  for  describing  the
CMC may be written as [9]

Ĥ = P̂(△ n̂s +△ n̂d + Ĥ0+m(S ++S − )) P̂, (3)

Ĥ0 = εd n̂d + cC2(O(5))+ f L̂ · L̂

nd ν ∆

where  is  a U(5)-limit
Hamiltonian; c and f are real  parameters  needed  to  re-
move  the  degeneracy  in  the  level  energies  for  a  fixed
number of d bosons, ,  but with different  and L.  is
the  energy needed to  excite  two more  particles  from the
closed-shell,  resulting  in  a  configuration  with  two  more
particles and two more holes; it is taken to be a constant
for  simplicity  when  2n-particles  and  2n-hole  excitations
with n = 0, 1, 2, ... are considered. m is the mixing para-
meter under the projection operator of P in the CMC.

| lw >
a |lwN⟩(g)+b |lwN+2⟩(e)

| l′w′⟩ ≡
N,nd, ν,n∆,L,M

nd = N nd = N +2

0+ 2+ 4+

0↔ 2 2↔ 4

The coexistence configuration has been found in Mo
isotopes  where  the  normal  and  intruder  states  were
defined  by U(5)  and O(6)  limits,  respectively  [38]. Sup-
pose that the normal states (N bosons) with a vibrational
limit  and  intruder  states  (N+2  bosons)  with  a  rotational
limit  coexist  and  that  they  can  interact  and  mix.  In  that
case, the total lowest weight  wave function can be

,  where  the  subscripts g and e refer
to the ground and excited bands, respectively, and 

.  We do  not  want  to  restrict  band  mixing
to the  and  states. Rather, this is an ex-
ample  of  band  mixing  that  can  be  extended  to  other
states. We apply the mixing of several simple states to the
transitions in the three apparent , , and  bands and
the transitions of  and  in  each nucleus.  This
mixing band configuration has been previously applied to
several mass regions from light to heavy mass nuclei, for
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which  evidence  exists  on  the  coexistence  of  different
structures at  low  excitation  energies.  This  simple  ap-
proach attempts to extract the exact solution with high ac-
curacy.

4→ 2 2→ 1
4→ 2)/B(E2;2→ 1

96,98

σ = (
1

Ntot

∑
i,tot |Eexp(i)−Ecal(i)|2

) 1
2


Ntot

Measurements of the reduced transition probabilities,
B(E2; )  and B(E2; )  ,  and  their  ratio, R =
B(E2; ),  are  good  indicators  of  the
phase transition and collectivity of a nucleus in this trans-
itional region. The energy spectra and some partial trans-
ition  rates  of  low-lying  states  related  to  band  mixing  in

Mo are plotted and compared in Figs. 1 and 2. From
the value of the transition matrix elements and comparis-
on  with  experimental  data,  CMC  is  better  than  IBM-1.
That  is,  the  results  of  CMC  have  higher  accuracy,  i.e.,

minimum  values,

when compared with the experimental  data.  In  the mean
root square,  is  the number of  energy states included
in the extraction processes.

0+ 2+

4+ 0g 0e 2g 2e

4g 4e

| lw⟩

To  represent  the  band  mixing,  we  introduce  two
bands, g and e, as in the Refs. [14, 15], with the ,  ,
and  basis  lowest  state  wave  functions , ; , ;
and , ,  respectively.  We  define  the  lowest  weight

 state for the ground state and some excited states as

|lw⟩(g.s.) (AMo) =a |lw⟩(g)+b |lw⟩(e) ,

|lw⟩(0+2 ) (AMo) =b |lw⟩(g)−a |lw⟩(e) , (4)

a0b0 a2b2 a4b4

0+ 2+ 4+

2+ 4+

S −(s)|l′w′⟩ = 0, S −(d)|l′w′⟩ = 0

where  the  coefficients  of a and b are the  mixing  amp-
litudes. These  coefficients  represent  the  mixing  amp-
litudes for both the ground and excited states. Later, when
mixing the potentials, we use ,  , and  for the
ground  and  excited , ,  and  states,  respectively.
We define the lowest weight state for the ground and ex-
cited states of the  and  bands, similar to Eq. (4). The
lowest weight state of the mixing band should satisfy the
relation  . To evaluate the
strength of the matrix elements and energy spectra based
on  the  affine SU(1,1) algebra,  the  eigenstates  are  con-
sidered as

|k;νdνsn∆LM⟩ = NS +(x1)S +(x2)S +(x3)...S +(xk)|l′w′⟩, (5)

νs νd

S +(xi)
xi i = 1,2, ...k

where  and  are seniority  quantum numbers.  To ob-
tain the eigenstates of (1), the Fourier-Laurent expansion
of  the  eigenstates  of  (1)  can  be  investigated  using  the
SU(1,1) generators  in terms of unknown c-number
parameters,  (roots of k pairs) with , and

96Fig.  1.    (color  online)  Energy spectra  and E2 strengths for  the lowest  states  in even-even Mo. The experimental  data  were taken
from [39].

 

98Fig.  2.    (color  online)  Energy spectra  and E2 strengths for  the lowest  states  in even-even Mo. The experimental  data  were taken
from [40].

 

Band mixing in 96,98Mo isotopes Chin. Phys. C 45, 024103 (2021)

024103-3



S +(xi) =
Cs

1−C2
s xi

S +(s)+
Cd

1−C2
d xi

S +(d), (6) Cs Cdwhere  and  are real control parameters. We thus ob-
tain N as the normalization factor with
 

N =

√√√√√√√√√√√√√√√√√
1

k∑
i=n

2Cs
2
(
k−n+

1
2

(
νs+

1
2

))
(1−C2

s xk+1−n)(1−C2
s xi)
+

2
(
k−n+

1
2

(
νd +

5
2

))
(1− xk+1−n)(1− xi)


, (7)

Cs Cdwhere we fix  = [0,  1] and  = 1 in the phase trans-
ition.

The author of Refs. [4, 15] followed a unique determ-
ination  for  the  parameters  of  the  two-state  model.  Here
we instead develop an exact solution for the mixed states.

ζ

We can define the first set of eigenstates (called nor-
mal states in what follows), which are labeled with an ad-
ditional  quantum number  =  1  and  are  similar  to  those
provided by the U(5) limit of the IBM without CMC, by
SU(1,1) coherent states [9],

|ζ = 1, |lw⟩ = eαS +s+βS
+
d |lw⟩. (8)

ζ = 1 ζ = 2

Since  the s-boson  part  and d-boson  part  of  the
Hamiltonian  are  separated,  using  the  Hausdorff-Camp-
bell  relation,  we  use  for  unmixed  states  and 
for  excited  mixed  states.  Details  of  the  exact  solutions
have been presented in Refs. [9, 33, 34].

The electric quadrupole operator is simply defined as

T (E2)
µ =qe2P̂N[(s†× d̃+d†× s̃)(2)

µ ]P̂N

+q′e2P̂[(s†× d̃+d†× s̃)(2)
µ ]P̂, (9)

P̂N

B(E2)

where  is the  projection  operator  onto  the  configura-
tion  mixing  without  multiparticle-hole  excitations.  The
reduced transition probability  is given by

B(E2;αiLi→ α f L f ) =
|⟨α f L f ||T E2||αiLi⟩|2

2Li+1
, (10)

⟨α f L f ||Î||αiLi⟩ = δα f ,αi
δL f ,Li

Î

where the reduced matrix  element  is  defined in  terms of
the  CG  coefficient,  and  with
the unit identity operator .

For the projection operator, we have

P̂|N′,nd, ν,n∆,L,M⟩ =


|N′,nd, ν,n∆,L,M⟩
if N′ ⩾ N
0
otherwise

, (11)

which keeps the operator effective only within the boson

[N]⊕ [N +2]⊕ [N +4]⊕ ...subspace  by  mixed configura-
tions.

Mg Me

0+ 2+ 4+ 2+
Here, we define the matrix elements  and  con-

necting the  and  states and  and  states

Mg =
⟨
0g |E2|2g

⟩
, Me = ⟨0e |E2|2e⟩ , (12)

and

M
′

g =
⟨
2g |E2|4g

⟩
, M

′

e = ⟨2e |E2|4e⟩ . (13)

M (E2; Ji→ J f )
M 2(E2; Ji→ J f ) = (2Ji+1)B(E2; Ji→ J f )

0↔ 2
M0−M3 2↔ 4 M4−M7
96

0↔ 2 M
′
0−M

′
4

2↔ 4 M
′
5−M

′
8 98

M0−M7
96 M

′
0−M

′
8 98

Furthermore, we assume that, for the band mixing of
the ground and excited states, the g states are not connec-
ted  to  the e states  by  the E2 operator  then  the  square  of
the  electric  transition  amplitude.  Thus, ,
satisfying .
We report the reduced electric quadrupole rates for eight
transitions,  including  the  four  connecting  from

 and the four connecting  from  in
Mo. We also have five rates for the transitions connect-

ing  from  and four for  those connecting
 from  in Mo.  The  reduced E2 trans-

itions are listed in Tables 1 and 2. For the convenience of
subsequent  discussion,  we  use  the  labels  for

Mo and  for Mo.

0↔ 2 2↔ 4
96 98

2+

0↔ 2 2↔ 4
96

98

To describe the band mixing in the nuclei, it might be
helpful to  apply  simple  two-state  mixing  with  fewer  fit-
ting  parameters.  For  our  band  mixing,  we  analyze  the

 and  transitions  separately,  with  the  lowest
weight  states  for Mo and Mo,  and then compare  the

 mixing  obtained  in  the  separate  fits.  Results  for  the
 and  fits  and  a  comparison  with  IBM-1 and

CMC  are  listed  in Table  1 for Mo  and Table  2 for
Mo.  We  obtain  the  coefficients  of  the  lowest  weight

states  for  the  mixing  band  by  a  fitting  procedure.  The
amplitudes  have  physical  meaning  in  that  we  can  define
the strength  of  the  mixing  using  these  values.  When ad-
justing the parameters, we confine the amplitudes to [0-1]
to clearly  determine  the  strength  of  the  mixing.  We  re-
port the g and e amplitudes for the low lying states.

M2

96 M
′2 98

Inspection shows that the experimental sum of  for
Mo is greater than the sum of  for Mo. The sum
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M2 0+ 2+ 96

M
′2 98

of  for connecting the  and  states for Mo and
the  sum of  for  the  same states  for Mo are  241.76
and 151.64 Weiskopf units (W.u.), respectively.

M2 2+ 4+
96 M

′2 98

2+ 2+ 0+

M(E2) 96 2+1 → 0+1
2+2 → 2+1

M
′
(E2) 98 2+1 → 0+1

2+

The  sum  of  for  connecting  the  and  states
for Mo and sum of  for the same states for Mo are
585.26  and  515.43  (W.u.),  respectively.  The  first  and
second  state has high strength for both the  and 
states.  For  example,  the  relevant E2  matrix  elements

 in Mo  for  the  transitions  of  and
 are  10.17 and 9.05,  respectively.  Moreover,  the

value of  in Mo for the transitions of  is
9.94. The results of our fitting for IBM-1 and CMC con-
firm  this  pattern.  We  can  conclude,  as  has  long  been
thought, that the first two  states are maximally mixed.

2↔ 4
2↔ 4

Based on variations of our calculations,  we conclude
that the  IBM-1  sum  is  slightly  smaller  than  the  experi-
mental one.  Nevertheless,  the CMC results  are  large,  in-
dicating  too  much  deformation  (and/or  collectivity)  in
that calculation. We also note that the CMC sum is larger
than that of IBM-1. The deviations that occur when con-
necting  the  fits  are  shown in  Figure.  Some of  the
discrepancies  of  an  extraction  of  the  transitions

4+2 → 2+2
4+2 → 2+1

98
refer to a shortage of experimental  data for  and

 in the fitting procedure of Mo.

4+ 2+

4+

M(E2) 96

4+1 → 2+1 4+2 → 2+2
M

′
(E2)

98 4+1 → 2+1 4+1 → 2+2

4+2 → 2+1
4+2 → 2+2

M
′

Mg≫ Me

Based on the value of B(E2) connecting the first  and
second  states to the first and second  states [39, 40],
it is clear that it is the  state that should be included in
the  mixing.  The  experimental  values  of  in Mo
for the transitions of  and  are 19.20 and
14.07, respectively. The experimental values of  in

Mo  for  the  transitions  of  and  are
19.51 and 11.61, respectively. Unfortunately, there are no
experimental  data  for  the  transitions  of  and

, but we have calculated the IBM-1 and CMC for
these transitions. It should be noted that the small size of
M and  in  our  system  is  usually  indicative  of  weak
mixing and .

0↔ 2

96

2↔ 4 96

98 0↔ 2

98

2↔ 4
98

∑
M2

i = M2
g +M2

e∑
M2

i
96

98

In  the  extraction  procedure,  connecting  the 
transitions, the E2 matrix elements of the g band are ap-
proximately 1.83 and 2.16 times greater than those of the
e band  for  IBM-1  and  CMC,  respectively,  in Mo.
Moreover, the E2 matrix elements of the g band for con-
necting  the  transitions  in Mo  are  greater  than
those of the e band by approximately 2.19 and 3.29 times
for  IBM-1  and  CMC,  respectively.  Our  results  suggest
that  the  basis-state  transition  matrix  elements  for  the g
bands are more significant than for the e bands. This also
holds for Mo. For connecting the  transitions, the
E2 matrix elements of the g band are approximately 2.30
and 3.09 times greater than those of the e band for IBM-1
and  CMC,  respectively,  in Mo.  Furthermore,  the E2
matrix  elements  of  the g band  for  connecting  the 
transitions  in Mo  are  approximately  2.07  and  2.37
times  greater  than  those  of  the e band  for  IBM-1  and
CMC,  respectively.  The  conclusion  is  again  that  the
lower basis-state band is slightly more collective for Mo
isotopes.  Comparing  these  extractions,  we  can  conclude
that the CMC results are better than those of IBM-1. Us-
ing the notation from Tables 1 and 2, we have some inter-
esting  results:  the  relation  is  prominent
for both connecting transitions. A comparison of these as-
sumptions  for  is  given  in Figs.  3 and 4 for Mo
and Mo.  The  values  of  Fits  1  and  2  are  related  to  the
calculation of IBM-1 and CMC, respectively. We can see
that the fitted values of CMC are in good agreement with
the experimental data.

0+ 2+ 2+

4+ 96,98

96,98

The best  fit  results  for  the  basis-state  transition  mat-
rix elements connecting the  and  states and  and

 states  in Mo  are  shown  in Tables  3-6.  In  both
Mo isotopes,  the  lower  basis-state  (g-band)  is  found

to be somewhat more collective than the second state.
R = Me/Mg

R
′
= M

′

e/M
′

g 2↔ 4
R = Me/Mg

R
′
= M

′

e/M
′

g 2↔ 4

This solution has  = 0.45, which is almost
the  same  as  the  ratio  =  0.48  for  the 
transitions in IBM-1. The solution also has  =
0.30, which is similar to  = 0.42 for the 
transitions  in  CMC.  Good  agreement  with  CMC  is  also

M(E2)

0+ 2+ M0−M3 4+

2+ M4−M7 96

Table  1.    Experimental  and  theoretical  values  of 
(W.u.) connecting the  and  states from  and 
and  states from  in Mo.

label initial final M(E2)exp M(E2)IBM−1 M(E2)CMC

M0 2+1 0+1 10.17 8.15 9.30

M1 0+2 2+1 7.14 7.65 7.46

M2 2+2 2+1 9.05 8.86 9.0

M3 2+3 0+1 2.34 5.33 4.12

M4 4+1 2+1 19.20 14.96 16.01

M5 4+2 4+1 1.27 11.22 6.90

M6 4+2 2+1 4.13 0.73 7.03

M7 4+2 2+2 14.07 16.18 15.35

M(E2)

0+ 2+ M
′
0−M

′
4 4+

2+ M
′
5−M

′
8 98

Table  2.    Experimental  and  theoretical  values  of 
(W.u.) connecting the  and  states from  and 
and  states from  in Mo.

label initial final M
′
(E2)exp M

′
(E2)IBM−1 M

′
(E2)CMC

M
′
0 2+1 0+1 9.94 8.51 9.20

M
′
1 2+2 0+2 3.39 5.14 4.36

M
′
2 2+2 0+1 2.28 3.86 2.08

M
′
3 2+3 0+2 6.0 4.0 5.73

M
′
4 2+3 0+1 0.4 4.0 3.65

M
′
5 4+1 2+1 19.51 17.33 18.97

M
′
6 4+1 2+2 11.61 15.26 14.26

M
′
7 4+2 2+1 unknown 7.22 5.36

M
′
8 4+2 2+2 unknown 12.51 13.07
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0↔ 2 0+
noted in this case. Nevertheless,  this trend does not hold
for  the  transitions.  This  may  indicate  that  the 
state should not be included in good band mixing.

Recently,  considerable  attention  has  been  directed  to
investigating band mixing based on the coexistence mod-
el  [41].  The  authors  of  [41]  proposed  a  two-state  model
containing band mixing, which could be used as a signa-

0+ 2+ 4+ 42

42

(g)
(e) Me

2+ 2+3
0+

2+3 → 0+1 = 1.10 96 2+3 → 0+1 =0.032 98

(g) (e)

ture of collectivity. Some interesting structures are invest-
igated  in  the  paper,  and  it  is  shown that  the  variation  of
the matrix elements can modify the structure of the nuc-
lei.  In  this  region,  the  authors  found  a  two-state  mixing
model  in  the  lowest  two , ,  and  states  of Ca.
The  excited  band  was  found  to  be  more  collective  than
the  ground  band  in Ca  [41].  In  our  case,  the  resulting
structural  information consists  of  the  extracted values  of
the  basis-state  transition  matrix  elements  for  the  and

 bands. The small size of the resulting  reveals that
the  upper  basis  state,  especially  in  the  case  of ,  is
nearly  spherical  with  no  strong E2  to  state
( ) in Mo and ( ) in Mo.
This suggests that this state has a spherical shape and that
it  can  be  treated  as  an  intruder  state.  In  particular,  it
means that  there  are  coexistence  configurations  associ-
ated with these states. In our work, we also report the col-
lectivity  of  states  using  the  algebraic  model,  and  this
solvable  model  confirms  the  coexistence  configuration.
Therefore, investigation of the band mixing in this struc-
ture reveals that the nuclear models presented here can be
utilized for  other  signatures  of  coexistence  configura-
tions. Each physical ground  and excited  state can
be  represented  as  a  linear  combination  of  basis  states.

 

∑
M2

i = M2
g +M2

e 0↔ 2 2↔ 4
96

Fig.  3.    (color  online)  Comparison  of  the  equation
 connecting  the  relevant  and 

transitions in Mo. Note that Fit 1 and Fit 2 are proportional
to the results in Tables 1-6.

 

98Fig. 4.    (color online) The same as Fig. 3 in Mo.

0+ 2+
96

Table 3.    Best fit results for connecting the  and  states
in Mo.

parameter Mg Me R = Me/Mg

value fit 1 13.37 7.28 0.54

value fit 2 14.07 6.49 0.46

2+ 4+
96

Table 4.    Bets fit results for connecting the  and  states
in Mo.

parameter Mg Me R = Me/Mg

value fit 1 22.51 10.26 0.45

value fit 2 23.22 7.05 0.30

0+ 2+
98

Table 5.    Best fit results for connecting the  and  states
in Mo.

parameter M
′
g M

′
e R

′
= M

′
e/M

′
g

value fit 1 11.07 4.81 0.43

value fit 2 11.81 3.82 0.32

2+ 4+
98

Table 6.    Best fit results for connecting the  and  states
in Mo.

parameter M
′
g M

′
e R

′
= M

′
e/M

′
g

value fit 1 24.53 11.83 0.48

value fit 2 25.46 10.70 0.42
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Me/Mg M
′

e/M
′

g
98

Mg,M
′

g,Me M
′

e
96

98

From  the  coefficients  in  Eq.  (4),  we  find  that  the  basis
state  is lower in energy than , and the pattern is the
same  for  higher J.  Therefore,  the  ground  band  is  below
the  excited  band.  The  extracted  values  of  the  basis-state
in the transition matrix elements, which emerge from the
analysis  of  Eqs.  (12)  and  (13),  indicate  that  and 
are larger than  and  for connecting the  and

 transitions in Mo. Then, the conclusion is that
the lower basis-state band is slightly more collective. Ac-
cording to  an  analysis  of  the  IBM  and  CMC  configura-
tions, the dominance of the basis-state g increases as the
angular momentum J in the lower state increases. The ra-
tios  and  are remarkably constant in Mo.
Furthermore, the absolute values of the basis-state trans-
ition  matrix  elements  (  ,  and )  support  the
earlier  remark that Mo is  slightly  more  collective  than

Mo.

M
′

Mg Me
96

98

96 98

Jg > Je 0+ 4+

96 98 Mg

M
′

g Me M
′

e

The  energy  spectra  and  relevant E2  matrix  elements
that  arise  from the  fits  for  IBM and  CMC are  presented
and are compared to the experimental values. The values
of M and  are provided in the figures. These values in-
dicate that, as discussed above, the CMC analysis agrees
much better with the experimental data than do the IBM
predictions. A comparison of the matrix elements and the
absolute  values  of  and  suggests  that Mo  is
slightly  more  collective  than Mo.  It  is  evident  that  the
CMC  calculations  are  good  agreement  with  the  present
data. We now present our numerical results for the best fit
related to the CMC calculations in order to illustrate and
compare the mixing amplitudes and mixing potentials  in

Mo and Mo. The mixing amplitudes and mixing po-
tentials derived from the best fit are listed in Table 7. We
note  that  the  strength  of  mixing  for  the g band  in  the
lower  state  increases  as  the  angular  momentum J in-
creases from 0 to 4. The comparison is clear in the table.
By solving and analyzing the band mixing and fitting pro-
cedure for the coefficients, we find that the coefficients of
the ground  states  are  larger  than  the  coefficients  of  ex-
cited  states,  indicating  that  the  basis  state  of  the  ground
states is lower in energy than the excited states. This be-
havior is  even  more  pronounced  for  higher  angular  mo-
menta:  the  coefficients  for  the  up  to  the 
state.  We therefore  know that  the g band  is  below the e
band. We have also seen that  the extracted values of the
matrix elements for Mo and Mo indicate that  and

 are larger than  and . The conclusion is that the
lower basis-state band is slightly more collective.

0+ 2+ 4+

0+ 2+ 4+

Next,  we  focus  on  an  important  indicator  of  band
mixing, the mixing potential, which can be defined based
on  the  level  spacing.  The  level  spacing  of  the  low lying
states  is  essential  for  describing  the  band  mixing.  The
spacing of the , , and states can be combined with
the mixing  amplitudes  to  obtain  the  matrix  elements  re-
sponsible for the mixing. Thus, in each nucleus, the mix-
ing  potentials  between  the ,  ,  and  bands  are

V0 = a0b0∆E2 V2 = a2b2∆E2 V4 = a4b4∆E4

0+ 2+

4+

0+ V0 = a0b0∆E2
∆E2

0+

a0 b0

2+ 4+

2+

96 98

M(E2 M
′
(E2)

,  , and , respect-
ively. The comparisons are listed in Table 7. From the in-
teraction  matrix  elements  in  a  two-state  model,  we  can
learn  the  collectivity  of  the  basis  states.  We  find  the
wave-function  amplitudes  by  analyzing  the  IBM  and
CMC models.  The mixing amplitudes arise  from the ex-
traction  of  coefficients  from  Eq.  (4).  The  spacings  (en-
ergy separation) of the physical states for the J = , ,
and  states are useful for determining the mixing poten-
tials.  For instance,  for ,  we have ,  where

 is  the  energy  difference  in  the  nucleus  between  the
excited  state and the ground state. We have similar ex-
pressions  for  the  other  angular  momentum  values.  We
neglect the  negative  values  of  the  mixing  potentials  be-
cause physically, we select positive  and  in the wave
function, thereby  dismissing  solutions  for  negative  val-
ues. The same scheme can be extended to a combination
of two  states or two  states. Thus far, in our discus-
sion,  an inspection of the mixing amplitudes and mixing
potentials for both nuclei indicates that the two  states
are  almost  maximally  mixed.  Important  information  is
contained in  the  mixing  amplitudes  and  mixing  poten-
tials  that  arise  from  the  analysis.  Based  on  the  analysis
and the results in Table 7, we find that the mixing poten-
tial  for Mo is  higher  than  for Mo.  We can  conclude
that in IBM-1, we do not have a projection operator in the
Hamiltonian  when  compared  with  CMC.  By  adding  a
U(5) limit term and applying the projection operator, we
are able to consider the band mixing in the Mo isotopes.
One  of  the  main  criteria  for  selecting  the  appropriate
model  in  our  work  is  the  results  for  the  energy  spectra
and E2  transition.  We  also  achieve  good  agreement
between the variation of ) and  with the ex-
perimental data. We can conclude that the results for two-
state  mixing  based  on  the  mixing  model  are  better  than
the results based on IBM for the band mixing of Mo iso-
topes.

III.  SUMMARY AND CONCLUSION

lw
0+ 2+ 4+

96,98

We  applied  the  lowest  weight  two-state  mixing
model to the partial , , and  states of Mo isotopes
and the matrix elements connecting them and compared it
with  nuclear  models.  The  models  are  satisfactory  for

Mo.  The  results  indicate  that  the  lower  basis-state
band  is  slightly  more  collective  in  both  nuclei.  The
simple numerical approach presented in this paper opens

96 98

Table 7.    Comparison of the mixing amplitudes and mixing
potentials in Mo and Mo.

J 96 Mo g amplitude 96 Mo V/keV 98 Mo g amplitude 98 Mo V/keV

0 0.50 315.70 0.43 164.12

2 0.77 249.32 0.69 191.31

4 0.89 172.01 0.86 108.18

Band mixing in 96,98Mo isotopes Chin. Phys. C 45, 024103 (2021)

024103-7



0+ 2+

4+

up  ways  of  understanding  band  mixing  and  coexistence
configurations in the framework of the interacting boson
approximation,  i.e.,  CMC.  The  CMC  calculations  in  the
two-state  mixing  model  reproduce  the  experimental  data
very  well,  providing  insight  into  the  mixing  model
between the lowest states. The results of the fitting indic-
ate  that  the  states  are  barely  mixed,  whereas  the 
and  states exhibit a high level mixing.

In summary, we propose a novel theoretical two-state
mixing  based  on  a  solvable  model.  From  the  numerical
results  produced  by  the  interacting  model,  we  find  that
this nuclear model can be an exceptional tool for describ-
ing the  structure  of  band  mixing.  The  main  characterist-
ics of the proposed structure, such as the energy spectra,
transition probabilities, and other degrees of freedom, can
be finely paraphrased by the interacting models.
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