
 

Charmed and ϕ meson decay constants from 2+1-flavor lattice QCD*

Ying Chen(陈莹)1,2†     Wei-Feng Chiu(邱伟峰)1     Ming Gong(宫明)1,2    
Zhaofeng Liu(刘朝峰)1,2‡     Yunheng Ma(马运恒)1,2    

(χQCD Collaboration) 
1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

D(∗)
s D(∗) ϕ 483 ×96 ∼ 5.5

a ≈ 0.114
fD = 213(5)

fDs = 249(7) fD∗ = 234(6) fD∗s = 274(7) fϕ = 241(9) D∗ D∗s
f T
V f T

D∗/ fD∗ = 0.91(4) f T
D∗s
/ fD∗s = 0.92(4)

fD∗/ fD = 1.10(3)
fD∗s/ fDs = 1.10(4)
fDs/ fD = 1.16(3) fD∗s/ fD∗ = 1.17(3)

Abstract: On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the
decay constants of , , and . The lattice size is , which corresponds to a spatial extension of 
fm, with a lattice spacing of  fm. For the valence light, strange, and charm quarks, we use overlap fermi-
ons  at  several  mass  points  close  to  their  physical  values.  Our  results  at  the  physical  point  are  MeV,

 MeV,  MeV,  MeV, and  MeV. The couplings of  and  to
the tensor current ( ) can be derived from ratios  and , respectively, which are
the  first  lattice  quantum  chromodynamics  (QCD)  results.  We  also  obtain  ratios  and

,  which  reflect  the  size  of  heavy  quark  symmetry  breaking  in  charmed  mesons.  Ratios
 and  can be taken as a measure of SU(3) flavor symmetry breaking.
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I.  INTRODUCTION

fP

fP

Meson decay constants are important nonperturbative
quantities  for  the  study  of  meson  leptonic  decays,  and
their  results  from  lattice  quantum  chromodynamics
(QCD) have received considerable attention. The pseudo-
scalar meson decay constants ( ) can be effectively used
to  determine  the  Cabibbo-Kobayashi-Maskawa  (CKM)
matrix elements, if combined with experimental measure-
ments  of  the  corresponding  leptonic  decays.  The  newest
lattice QCD average of  can be found in the review by
the Flavor Lattice Averaging Group (FLAG) [1].

fV

D∗s

In  principle,  vector  meson  decay  constants, ,  can
also  be  used  to  determine  the  CKM  matrix  elements;
however, experimental  measurements of  the leptonic de-
cays of vector mesons are much more difficult than those
of  pseudoscalar  mesons  due  to  small  branching  ratios.
With  increasing  statistics,  the  leptonic  decay  of  may

fD∗s

be expected to be measured via BES-III or Belle II for the
first time in the near future for a vector meson [2]. Then,
the comparison of  from experimental  and theoretical
calculations can be used to study the low energy proper-
ties of QCD.

O(1/mQ) mQ

fV/ fP =1−2αs(mQ)/(3π)
fV/ fP

αs(mQ)

fV/ fP

fV/ fP

Furthermore, the  decay constants  of  heavy-light  vec-
tor mesons can be used to test the accuracy of the heavy
quark  effective  theory  (HQET).  By  neglecting  the  terms
of , where  is the heavy quark mass, one can
obtain  [3] from  the  leading  or-
der  QCD calculation,  which  implies  that  the  ratio
approaches one since the strong coupling constant 
vanishes  in  the  infinite  heavy  quark  mass  limit.  We  can
obtain  the  corrections  from  the  higher  order  terms  in
charmed mesons through  from lattice QCD calcu-
lations.  Moreover,  the  ratios  for  charmed  mesons
are  input  parameters  for  QCD  factorization  studies  of
charmed nonleptonic B meson decays [4, 5]. Another im-
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portant quantity, , is the coupling of a vector meson to
the  tensor  current.  The  nonperturbative  determination  of
ratio  is important in the light cone QCD sum rule
(LCSR) calculations of form factors in B to vector meson
semileptonic decays (see discussions in [6-8]).
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fD∗s fD∗s/ fDs
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In this paper, we present a lattice calculation of ,
, and  meson decay constants in a lattice setup with

chiral fermions, which are usually expected to be import-
ant when  light  flavors  are  involved,  since  chiral  sym-
metry is a fundamental property of QCD. We use overlap
fermions for valence quarks and carry out the calculation
on 2+1-flavor domain wall fermion gauge configurations
generated  by  RBC-UKQCD  Collaborations.  The  lattice
size  is  big  enough  (  fm)  to  prevent  large  finite
volume effects. The light sea quark mass is almost at the
physical point. There have been four lattice QCD calcula-
tions of  in the literature so far. Two of them were per-
formed  on  2-flavor  gauge  ensembles  [9, 10].  The  other
two  were  performed  on  2+1-flavor  ensembles  [2]  and
2+1+1-flavor  ensembles  [11], respectively.  An  unexpec-
ted large  quenching  effect  of  the  strange  quark  was  ob-
served  in  and  from  the  2-flavor  result  [9]
(confirmed in [12] but with a reduced effect), whereas the
2-flavor  result  from [10] demonstrated  a  much  less  pro-
nounced effect. In this study, we develop an independent
2+1-flavor  calculation  for  for  comparison  with  the
aforementioned calculations.

The rest of this paper is organized as follows. In Sec.
II, we  present  our  framework  of  the  calculation,  includ-
ing  the  definitions  of  the  decay  constants  and  the  lattice
setup. Sec. III presents the details of the analyses and the
numerical results and discussions. Finally, we summarize
our work in Sec. IV.

II.  DEFINITIONS AND LATTICE SETUP

A.    Decay constants of pseudoscalar and vector mesons
fPThe decay constant, , of a pseudoscalar meson P is

defined as

⟨0|ψ̄1(x)γµγ5ψ2(x)|P(p)⟩ = ipµ fPe−ipx, (1)

pµ

fP

with  being  the  momentum  of  the  meson.  Using  the
partially conserved axial vector current (PCAC) relation,
we can obtain  from the matrix element of the pseudo-
scalar density

(m1+m2)⟨0|ψ̄1(0)γ5ψ2(0)|P(p)⟩ = m2
P fP, (2)

m1,2 mP

ψ̄1γ5ψ2
ZP = Z−1

m

where  are quark masses, and  is the pseudoscalar
meson  mass.  For  overlap  fermions,  the  quark  mass  and
pseudoscalar  density  renormalization  constants
cancel each other out ( ) due to chiral symmetry.

fPThis makes  , obtained from Eq. (2), free of renormal-
ization.

fVThe vector meson decay constant, , is given by the
matrix element of the vector current between the vacuum
and vector meson V as

⟨0|ψ̄1(0)γµψ2(0)|V(p,λ)⟩ = mV fVϵµ(p,λ), (3)

ϵµ(p,λ) V(p,λ)
λ

where  is the polarization vector of meson 
with helicity . We use the local vector current on the lat-
tice to  compute  the  above  matrix  element  for  conveni-
ence; however,  we  must  also  calculate  the  finite  renor-
malization constant  for  the  local  current,  which  was  ob-
tained nonperturbatively in Ref. [13] for our lattice setup.

fV
f T
V

In  addition  to ,  vector  mesons  have  another  decay
constant, , which is defined through the following mat-
rix element of the tensor current

⟨0|ψ̄1(0)σµνψ2(0)|V(p,λ)⟩= i f T
V (ϵµ(p,λ)pν−ϵν(p,λ)pµ). (4)

σµν = (i/2)[γµ,γν]

f T
V MS

µ = 2
MS

Here,  in  the  tensor  current, .  Since  the
tensor  current  has  a  nonzero  anomalous  dimension,  we
will give values of  in the commonly used  scheme
and at a scale of  GeV. The matching factor from the
lattice  to  the  continuum  scheme for  the  tensor  cur-
rent was presented in Ref. [13].

B.    Lattice setup

N f = 2+1

L3×T = 483×96
m(sea)
π = 139.2(4)

a−1 =

1.730(4) GeV
La ∼ 5.5 fm

Our calculation is carried out on the gauge configura-
tions  of  domain  wall  fermions  generated  by
RBC-UKQCD Collaborations [14]. We use the gauge en-
semble named 48I, with a lattice size of 
and  a  pion  mass  of  MeV  from  the  sea
quarks.  The  lattice  spacing  was  determined  to  be 

 [14]; thus,  the  spatial  extension  of  the  lat-
tice  is  approximately .  The  parameters  of  the
configurations are given in Table 1.

We  use  overlap  fermions  for  valence  quarks  (as  in
[13])  to  perform a  mixed action study.  The mismatch of
the mixed  valence  and  sea  pion  masses  between  the  do-

am(val)
q (q = l, s,c)

amphy
c

Table 1.    Parameters of the gauge configurations used in this
work.  are  the  valence  quark  mass  parameters
in  lattice  units,  and the  corresponding pion masses  (in  MeV)
are from Ref. [15]. The physical charm quark mass, , is
estimated to be approximately 0.73 (see below).

L3 ×T a−1 Nconf(GeV) 483 ×96 1.730(4) 45

am(val)
l 0.0017, 0.0024, 0.0030, 0.0060

mπ/MeV 114(2), 135(2), 149(2), 208(2)

am(val)
s 0.0580, 0.0650

am(val)
c 0.6800, 0.7000, 0.7200, 0.7400
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∆mix 0.030(6)(5)

am(val)
q (q = l, s,c)

main-wall fermion and the overlap fermion, measured us-
ing ,  is  GeV4 [16],  which  is  very  small,
reflecting  a  small  partial  quenching  effect.  The  multi-
mass algorithm of overlap fermions [17] permits calcula-
tions  of  multiple  quark  propagators  at  a  reasonable  cost.
We calculate propagators with a range of masses from the
light  to  charm  quark  on  45  configurations.  The  valence
quark masses, , in lattice units are given in
Table 1. The deflation algorithm is adopted to accelerate
the inversion by projecting the 1000 low eigenvectors (in-
cluding zero modes) of the overlap Dirac operator, which
are calculated explicitly beforehand.

am(val)
l

0.72

O((amc)2)

We  use  four  mass  parameters, ,  (as  listed  in
Table 1) for the light valence quarks for chiral interpola-
tion.  The  corresponding  pion  masses  range  from  114
MeV to 208 MeV [15]. Two strange quark mass paramet-
ers  are  used  to  extrapolate  to  the  physical  strange  quark
mass point. The bare charm quark masses that we use are
approximately  in  lattice  units,  which  are  not  small.
For chiral lattice fermions, although the discretization er-
ror  due  to  the  heavy  quark  mass  starts  at ,  it
could still  be large. Thus, we shall try to estimate the fi-
nite lattice spacing effects in our results for D-mesons.

C.    Two-point correlators
The  matrix  elements  in  Eqs.  (1),  (3),  and  (4),  using

which the decay constants are defined, can be derived dir-
ectly from the  related  two-point  functions,  with  the  cur-
rents being the sink operators. Since the mesons involved
in  this  study are  all  ground state  hadrons,  for  the  matrix
elements  to  be  determined  precisely,  it  is  desirable  that
the two-point functions be dominated by the contribution
from the  ground states.  In  this  work,  we adopt  the  Cou-
lomb wall-source technique.  In other  words,  we perform
the  Coulomb  gauge  fixing  to  the  gauge  configurations
first and then, calculate the two-point functions using the
following  wall-source  operators,  which  are  obviously
gauge dependent,

O(W)
Γ

(t) =
∑
y⃗,⃗z

ψ̄ f1 (⃗y, t)Γψ f2 (⃗z, t), (5)

ψ f = u,d, s, ... Γ = γ5

Γ = γi i = 1,2,3
where , and  for pseudoscalar mesons
and  ( ) for vector mesons. Based on our ex-
perience  [15],  in  addition  to  the  suppression  of  excited
states, the choice of wall source can also suppress the P-
wave scattering states in the vector channels.

OΓ(x⃗, t; r⃗)
r⃗ OΓ(x⃗, t; r⃗) ≡

ψ̄ f1 (x⃗+ r⃗, t)Γψ f2 (x⃗, t)
r ≡ |⃗r|

For the sink operators, we use spatially extended op-
erators, ,  by  splitting  the  quark  and  anti-quark
field  with  spatial  displacement ,  namely, 

.  The  operators  with  the  same  spatial
separation  are  averaged  to  guarantee  the  correct
quantum  number  and  also  to  increase  the  statistics  as  a
by-product. Thus,  the two-point  functions that  we calcu-

late are

CP(r, t) =
1
Nr

∑
x⃗,|⃗r|=r

⟨0|Oγ5
(x⃗, t; r⃗)O(W)†

γ5
(0)|0⟩, (6)

CV (r, t) =
1

3Nr

∑
x⃗,i,|⃗r|=r

⟨0|Oγi
(x⃗, t; r⃗)O(W)†

γi
(0)|0⟩, (7)

and

CT (r = 0, t) =
1
3

∑
x⃗,i

⟨0|Oσ0i
(x⃗, t)O(W)†

γi
(0)|0⟩, (8)

Nr OΓ(x⃗, t; r⃗)
|⃗r| = r C(r, t)
where  is the number of  values with the same

. Two-point functions  with different r can be
calculated simultaneously without expensive extra inver-
sions.  After  the  insertion  of  the  intermediate  states,  the
spectral expression of a two-point function is

C(r, t) =
∑

n,|⃗r|=r

1
2mnNr

⟨0|OΓ(0⃗,0; r⃗)|n⟩⟨n|O(W)†|0⟩e−mnt

≡
∑

n

Φn(r)e−mnt, (9)

Φn(r)
1
Nr

∑
|⃗r|=r

⟨0|OΓ(0⃗,0; r⃗)|n⟩

Φn(r)

C(r, t)

C(ω, t) ≡
∑
ωi

ωiC(ri, t)

where  is proportional  to  the  Bethe-Salpeter  amp-

litude  for the n-th state. Since the r

dependences  of  are  different  for  different  states  in
each  channel,  a  proper  linear  combination  of  several

 values  with  different r may yield  an  optimal  two-

point  function ,  which  is  dominated
by the ground state.

Φn(r = 0)

⟨n|O(W)†
Γ
|0⟩

O(W)†

Obviously,  the  parameterization  of  Eq.  (9)  reveals
that  spectral  weight  is proportional  to  the mat-
rix  element  that  defines  the  decay  constant  of  a  specific
meson  state.  However,  to  obtain  the  decay  constant,  we
need to remove factor , which is the matrix ele-
ment of the wall-source operator, , between the va-
cuum  and  the  meson  state  and  can  be  derived  from  the
wall-to-wall correlation function

CW (t) = ⟨0|O(W)(t)O(W)†(0)|0⟩. (10)

III.  NUMERICAL ANALYSES

A.    Meson masses
To  extract  the  meson  masses,  we  apply  two  fitting

strategies. One  strategy  is  applying  correlated  simultan-
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eous  fittings  to  the  correlation  functions  with  different r
using  one  (for  vector  mesons)  or  two  (for  pseudoscalar
mesons) mass terms. The function form used in the sim-
ultaneous fits is

C(r, t) =
∑
n=0

Φn(r)
[
e−mnt + e−mn(T−t)

]
, (11)

T = 96

Φn(r) mn

χ2

m0

[tmin, tmax]
tmax

δC/C ⩽
tmax

δC/C ⩽

χ2/dof ⩽ 1.0
tmin

where , and the second term in the brackets on the
right  hand  side  is  obtained  from  the  propagation  of  the
correlator in the negative time direction.  and  are
fitted with the minimum  method. We vary the number
of  mass  terms  to  two  or  three  and  check  the  stability  of
the fitting results.  Within statistical  uncertainties,  the fit-
ted ground state mass, , does not depend on the num-
ber  of  mass  terms.  The  upper  limit  of  fitting  range

 is  chosen  using  the  following  criteria.  For  the
pseudoscalar channel,  is fixed to the maximum value
where the relative errors of correlators satisfy 5%.
For  the  vector  channel,  is  chosen  by  requiring

10%. The lower limit of the fitting range is varied
in a wide range during fitting, and we check the stability
of  the  results.  Then,  among  all  the  fittings  that  have

 and yield a consistent ground state mass, we
choose the earliest  to obtain our final results. The un-
certainties  are  obtained  from  Jackknife  analyses  to  take
into account the correlations among the data as we repeat
the fitting for each Jackknife ensemble.

MD tmin

MD

Meff = log(C(r, t)/C(r, t+1))

r = 6.32a r⃗ = (2,6,0)

r = 0

In the left panel of Fig. 1, we show fitted ground state
mass  in lattice units as a function of . Here, we fi-
nally choose the fitting range [11, 18] for the D meson. In
the right panel of Fig. 1, the obtained ground state mass,

, (the band in the graph) is compared with the corres-
ponding  effective  masses, ,
from various correlators with different r. The data points
in  the  magenta  squares  are  from  the  correlator  with

 (  and  permutations  averaged).  The
ones in the blue triangles are from the local sink correlat-
or with . The ones in the black circles are the effect-
ive masses from a combination of two correlators

C(ω, t) =C(r = 1, t)+ωC(r, t), (12)
ω C(r, t)

C(ω, t)

CΓ(r, t)

ωC(r, t) C(r = 1, t) C(ω, t)

where we can tune parameter  and use various  to
make  the  effective  mass  plateau  from  appear  as
early as possible. This leads to our second fitting strategy.
Different states  with  the  same  quantum number  contrib-
ute  differently  to  correlators , and  these  contribu-
tions vary as r varies. Thus, it is possible to find a large r
such  that  the  contribution  of  the  lowest  excited  state  to

 cancels  that  to ,  and  is domin-
ated by the ground state.

C(r = 6.32a, t) C(r = 0, t)
C(ω, t)

ω

In the right panel of Fig. 1, the black circles present a
mass plateau  that  starts  much earlier  than  that  from cor-
relator  or .  Therefore,  we can fit
combined correlator  easily with a single exponen-
tial term. We check that this fitting yields stable and con-
sistent  ground  state  mass  as  we  vary  parameter .  We
also  confirm  that  the  results  from  the  above  two  fitting
strategies are consistent.

amD amD∗

amc = 0.72
The  fitting  results  of  and  from  the  two

strategies with  are summarized in Table 2 for
comparison. The second strategy yields  smaller  statistic-
al uncertainties,  since  the  mass  plateau  from  the  com-
bined  correlator  appears  earlier;  thus,  data  points  with
less errors are used in fittings.  Similar advantages of the
second  strategy  are  observed  in  the  analyses  of  other
meson  masses;  therefore,  we  adopt  strategy  II  to  obtain
meson masses in the following.

m2
ss ≡ 2m2

K−m2
π

2m2
K −m2

π

(a2m2
π)phys = 0.00651(3) a2m2

ss(phys) ≡
a2(2m2

K −m2
π)phys = 0.1565(6) mphys

π = 139.6

The results of the pion and kaon masses are shown in
Table 3. The pion mass and the  combina-
tion are  used to  fix  the  physical  up (degenerate  with  the
down quark) and strange quark mass, respectively. From
Table 3, we can observe that  is independent of
the pion mass (or equivalently, the up/down quark mass)
within  the  statistical  uncertainties.  This  is  exactly  what
we  expect  from  the  lowest-order  analysis  of  the  chiral
perturbation theory and is the reason we use this combin-
ation. The  results  of  the  meson  masses  and  decay  con-
stants  will  be  interpolated/extrapolated  to  the  physical
point  where  and 

 by using  MeV

MD tmin MDFig. 1.    (color online)  in lattice units as a function of  (left panel).  (the band in the right graph) from fitting range [11, 18]
is compared with the corresponding effective masses from various correlators (right panel).
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mphys
K = 493.7and  MeV [18]. Here, the uncertainties come

from the  error  of  the  lattice  spacing.  Since  these  uncer-
tainties  are  much smaller  than our  statistical  error  or  the
discretization  error,  as  we  will  observe  later,  we  ignore
them in our estimate of the systematic uncertainty.

ϕ K∗

K∗

mK∗

In Table 4, we collect the masses of  and  at our
valence quark masses. From the data, we can observe that
the  mass  of  barely  depends  on  the  light  quark  mass
with our current statistical uncertainties. To obtain  at
the physical point, we use the following interpolation/ex-
trapolation form:

mK∗ (mπ,mss) = mphys
K∗ +b1∆m2

π+b2∆m2
ss, (13)

∆m2
π = m2

π−m2
π(phys) ∆m2

ss = m2
ss−m2

ss(phys)
u/d

where ,  and .
This is the Taylor expansion around the physical  and
strange quark masses, and we keep only the lowest order,
i.e., the linear terms, since our quark masses are close to
their physical values. Then, we obtain

mphys
K∗ = 895(10) MeV, (14)

b1

where the error includes the statistical/fit uncertainty and
the uncertainty of  the lattice spacing.  Parameter  from
the  fitting  is  consistent  with  zero  within  uncertainty,  as
expected from the raw data.

ϕ

a2m2
ss(phys) = 0.1565

a2m2
ss

For the mass of , we perform linear extrapolation to
physical  point  since  we  have  only
two data points, as given in Table 4. For the correspond-
ing  at each of the two strange quark masses, we use
the average of the four values in the last column of Table
3. This extrapolation yields

mphys
ϕ = 1.018(17) GeV (15)

mphys
K∗

mphys
ϕ

with  the  lattice  spacing  error  included.  Both  and
 are in good agreement with their experiment values.

This  means  that  the  finite  lattice  spacing  effects  in  the
study of light hadrons are smaller than our current statist-
ical uncertainties.

ϕ D∗ D∗s
K∗ Kπ

K∗

Kπ

mphys
K∗ mphys

ϕ

Vector mesons can decay to two pseudoscalar mesons
through P-wave. On our lattice, the minimal nonzero mo-
mentum is 226 MeV, which is not small.  The thresholds
of P-wave decays for , , and  mesons are not open
on our lattice, but  can decay to  on our lattice. We
observed mass plateaus for the  meson, but not for the
scattering states of ,  which we believe are suppressed
by the usage of the Coulomb gauge wall source while cal-
culating  the  2-point  functions  [15].  The  agreement  of

 and  (from  our  interpolation/extrapolation)
with  their  experimental  values  indicates  that  it  is  safe  to
ignore the threshold effects at our current precision.

Ds D∗s
Ds

m2
ss(phys)

(amDs
)phys = 1.1378(26) mDs

= 1968.34(7)

mD∗s

The masses of  and  mesons are listed in Table 5.
We  use  the  experimental  value  of  (together  with

 in  the  above)  to  set  the  physical  charm  (and
strange) quark mass.  With our lattice spacing,  we obtain

 by  using  MeV
from  the  Particle  Data  Group  (PDG2018)  [18].  We  use
the  following  function,  similar  to  Eq.  (13),  to
interpolate/extrapolate  to  the  physical  strange  and
charm quark mass point:

amc = 0.72

tmin

Table 2.    Masses of D-mesons with  extracted us-
ing  the  two  fitting  strategies.  The  first  errors  are  statistical
ones from Jackknife analyses. The second errors are systemat-
ic errors from variations in the center values as we vary .
The two strategies yield consistent results.

amq 0.0017 0.0024 0.0030 0.0060

amD 1.070(4)(1) 1.070(3)(1) 1.070(3)(1) 1.071(3)(1) strategy I

1.071(2)(1) 1.071(2)(1) 1.071(2)(1) 1.073(1)(1) strategy II

amD∗ 1.156(8)(1) 1.157(8)(1) 1.158(7)(2) 1.160(6)(2) strategy I

1.160(2)(1) 1.160(2)(1) 1.160(2)(1) 1.162(2)(1) strategy II

Table 3.    Masses of pion and kaon with statistical uncertain-
ties from Jackknife analyses.

ams amq amK amπ a2(2m2
K −m2

π)

0.0580 0.0017 0.2608(24) 0.0659(12) 0.1317(25)

0.0024 0.2621(20) 0.0780(12) 0.1313(21)

0.0030 0.2631(19) 0.0861(12) 0.1310(20)

0.0060 0.2689(20) 0.1202(12) 0.1302(22)

0.0650 0.0017 0.2755(22) 0.0659(12) 0.1475(24)

0.0024 0.2769(22) 0.0780(12) 0.1473(24)

0.0030 0.2780(21) 0.0861(12) 0.1472(23)

0.0060 0.2833(18) 0.1202(12) 0.1461(21)

ϕ K∗

ϕ

t ∈ [11,19] K∗ t ∈ [8,15]

Table 4.    Masses and decay constants of  and  with the
statistical  uncertainties.  The  fitting  range  of  correlators  for 
is . The range for  is .

ams amϕ a f bare
ϕ

amq amK∗

0.0580 0.563(5) 0.126(7) 0.0017 0.505(8)

0.0024 0.504(7)

0.0030 0.503(7)

0.0060 0.504(6)

0.0650 0.579(5) 0.127(7) 0.0017 0.514(7)

0.0024 0.512(7)

0.0030 0.511(7)

0.0060 0.512(7)
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mD∗s (mss,mDs
) = mphys

D∗s
+b2∆m2

ss+b3∆mDs
, (16)

∆mDs
= mDs

− (mDs
)phys b3where , and  is another free para-

meter. From this, we obtain

mphys
D∗s
= 2.116(6) GeV, (17)

2.1122(4)

mD∗s

amc = 0.73

which  agrees  with  the  experimental  value  of 
GeV  [18].  The  interpolation/extrapolation  is  shown  in
Fig. 2. The function in Eq. (16) can describe the data very
well. The dependence of  on the strange quark mass is
relatively small. Therefore, the slope of the straight lines
in the left plot of Fig. 2 is small. This is also why the two
lines in the right plot are very close to each other. The de-
pendence on the charm quark mass is apparent. The posi-
tion of the physical point in the left plot indicates that the
physical charm quark mass is approximately .

D∗The masses of D and  mesons are listed in Table 6.
The  following  ansatz  is  used  to  interpolate/extrapolate
our numerical results to the physical quark mass point:

mD(∗) (mπ,mDs
) = mphys

D(∗) +b1∆m2
π+b2∆m2

ss+b3∆mDs
. (18)

b2∆m2
ss

mDs

mphys
Ds

Here, the  term appears because our lattice results,
,  are  not  calculated  at  the  physical  strange  quark

mass,  and  is  used  to  set  the  physical  charm quark
mass. We obtain

mphys
D = 1.873(5) GeV and mphys

D∗ = 2.026(5) GeV (19)

mD± = 1.86965(5) 1σ
D∗

mD∗± = 2.01026(5)

for the two mesons, respectively, after the interpolations/
extrapolations.  Our D meson  mass  agrees  with  the
PDG2018  value  of  GeV  within .
However,  our  meson  mass  is  heavier  than  the
PDG2018 value  of  GeV by  approxim-
ately 1%. Thus, we estimate the discretization error asso-
ciated with  the  large  charm quark  mass  to  be  approxim-
ately 1% in our results for the charmed meson masses.

B.    Decay constants

1.    Renormalization constants

MS
ZA

ZV = ZA

Before we delve into the data analyses for the meson
decay  constants,  first,  we  present  the  renormalization
constants (RCs) for the local vector current and the tensor
current.  The  RCs  of  the  quark  bilinear  operators  for  our
lattice  setup  (overlap  fermions  on  domain-wall  fermion
configurations)  were  calculated  nonperturbatively  in
Refs.  [13, 19].  For  the  48I  ensemble  used  in  this  work,
we  employed  both  the  RI/MOM  and  the  RI/SMOM
schemes  to  calculate  those  constants  nonperturbatively
[13]. The matching factors to the  scheme for the loc-
al axial vector current, , and for the tensor current (at a
scale  of  2  GeV)  are  listed  in Table  7.  Because  we  use
chiral fermions, we obtain , which was also con-
firmed numerically in Ref. [13].

mD∗s amD∗s a2∆m2
ss

a∆mDs

Fig. 2.    (color online) Interpolation/extrapolation of  to the physical point by using Eq.(16).  is plotted as a function of 
(left panel) or  (right panel). The octagon is the result at the physical strange and charm quark mass point.

 

Ds D∗s
Ds

t ∈ [17,28] D∗s t ∈ [12,25] f bare
D∗s

/ fDs

Table  5.    Masses  and  decay  constants  of  and  with
statistical uncertainties. The fitting range of correlators for 
is . The range for  is . The  ra-
tio is collected in the last column.

amc ams amDs a fDs
amD∗s a f bare

D∗s
f bare
D∗s

/ fDs

0.68 0.058 1.075(1) 0.139(3) 1.165(3) 0.141(3) 1.011(27)

0.065 1.081(1) 0.141(3) 1.170(3) 0.143(3) 1.008(25)

0.70 0.058 1.095(1) 0.140(3) 1.184(3) 0.141(3) 1.009(27)

0.065 1.102(1) 0.142(3) 1.190(2) 0.143(3) 1.005(26)

0.72 0.058 1.116(1) 0.140(3) 1.204(2) 0.141(3) 1.007(27)

0.065 1.123(1) 0.142(3) 1.209(2) 0.143(3) 1.002(26)

0.74 0.058 1.137(1) 0.141(3) 1.223(2) 0.141(3) 1.004(28)

0.065 1.143(1) 0.143(3) 1.229(2) 0.143(3) 1.000(27)
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fP fV2.     and 
fP fV

CP/V (r = 0, t)
CW (t)

10σ

⟨0|O(W)
Γ
|M⟩ CP/V (r =

0, t) ⟨0|OΓ|M⟩ fP/V

fP/V

fV
ZV (= ZA)

To  obtain  decay  constants  and ,  we  perform
simultaneous  fits  to  the  wall-to-point  ( )  and
wall-to-wall  ( )  correlators  for  a  given  meson, M.
These fittings are with two exponentials,  and the ground
state  mass  is  constrained  within  to  its  fitted  result
from  the  above  strategy  II  as  we  determined  the  meson
masses. After removing the matrix element of source op-
erator  from  the  spectral  weight  of 

,  we  obtain  and  then,  decay  constants 
by using Eqs. (2), (3) and the fitted meson mass. This fit-
ting and  calculation  process  is  repeated  for  each  Jack-
knife  sample to  obtain the statistical  uncertainty of .
For  obtained from the local vector current, we need to
multiply it with , as discussed in Section IIIB.1.
In the following, we use a superscript “bare” to indicate
decay  constants  obtained  directly  from  the  local  vector
current.

fV ϕThe bare decay constants  in lattice units for the 
meson  at  our  two  strange  quark  masses  are  given  in  the

a f bare
ϕ

(a f bare
ϕ )phys = 0.1265(49)

f phys
ϕ = 241(9) 1/a ZV

a2m2
ss(phys) = 0.1565

f phys
ϕ = 243.4(1.3)

third  column  of Table  4. The  two  center  values  are  al-
most  the  same,  and  our  statistical  uncertainty  is  large
(~6%). Thus, it  is difficult to tell  the strange quark mass
dependence of .  If  we perform a constant fit  to the
two  numbers,  then  we  obtain  or

 MeV after multiplying it with  and .
If  we  perform  a  linear  extrapolation  to  physical  strange
quark mass  point ,  then we obtain  a
value  of  MeV.  We  choose  the  value
with a larger error from the constant fit as our result at the
physical point. Therefore, we obtain

f phys
ϕ = 241(9)(2) MeV (20)

as our final result, where the second error comes from the
difference between  the  constant  fit  and  the  linear  extra-
polation and is treated as a systematic error.

fDs

a fDs

mD∗s
fDs

We use  to estimate our discretization error due to
the  large  charm quark  mass  since  we  cannot  extrapolate
to the continuum limit with only one lattice spacing. The
decay  constant  in  lattice  units  for  all  charm  and
strange  quark  masses  are  given  in Table  5.  One  can  use
the  function  form given  in  Eq.  (16)  (replacing  with

)  to  extrapolate/interpolate  our  lattice  results  in Table
5 to the physical charm and strange quark mass point. We
find the following:

a f phys
Ds
= 0.144(3) or f phys

Ds
= 249(5) MeV. (21)

f phys
Ds

The difference in the center values of  calculated in
this work and in our previous work (254(2)(4) MeV) [20]
is 5 MeV or 2%. Since our previous result  was obtained
in the continuum limit, we treat this 2% difference as an
estimate of the discretization error and assign it to all our
decay constants for the charmed mesons in this work.

a f bare
D∗s

mD∗s
fD∗s

amD∗s a f bare
D∗s

The  vector  meson  decay  constant, ,  from  our
lattice data is given in the sixth column of Table 5. Again,
we use the function form given in Eq. (16) (replacing 
with )  to  extrapolate/interpolate  our  lattice  results  to
the physical charm and strange quark mass point. The fit-
ting is shown on the left panel of Fig. 3. Compared with
the case of  the quark mass dependence of  is
difficult to see relative to the large statistical errors.

(a f bare
D∗s

)phys = 0.144(3)
1/a = 1.730(4) ZV = 1.1025(16)
f phys
D∗s
= 274(5)

ZV

From  the  extrapolation/interpolation,  we  obtain
.  Multiplying  this  number  with

 GeV  and ,  we  find
 MeV. Here, the uncertainty includes the er-

rors from  the  statistics,  extrapolation/interpolation,  lat-
tice spacing, and . If we assign a 2% discretization er-
ror, then we finally obtain

f phys
D∗s
= 274(5)(5) MeV. (22)

D∗

t ∈ [11,18] D∗ t ∈ [10,16] f bare
D∗ / fD

Table 6.    Masses and decay constants of D and  with stat-
istical  uncertainties.  The  fitting  range  of  correlators  for D is

. The range for  is . The  ratio is
collected in the last column.

amc aml amD a fD amD∗ a f bare
D∗ f bare

D∗ / fD

0.68 0.0017 1.028(2) 0.122(2) 1.120(3) 0.123(5) 1.01(4)

0.0024 1.029(2) 0.122(2) 1.121(2) 0.123(4) 1.01(4)

0.0030 1.029(2) 0.122(2) 1.121(2) 0.123(4) 1.01(4)

0.0060 1.030(2) 0.123(2) 1.123(2) 0.124(3) 1.01(3)

0.70 0.0017 1.049(2) 0.123(2) 1.140(3) 0.123(5) 1.00(4)

0.0024 1.050(2) 0.123(2) 1.141(2) 0.123(4) 1.00(4)

0.0030 1.050(2) 0.123(2) 1.141(2) 0.123(4) 1.00(4)

0.0060 1.052(1) 0.123(2) 1.142(2) 0.124(3) 1.01(3)

0.72 0.0017 1.071(2) 0.123(2) 1.160(2) 0.123(5) 1.00(4)

0.0024 1.071(2) 0.123(2) 1.160(2) 0.123(4) 1.00(4)

0.0030 1.071(2) 0.123(2) 1.161(2) 0.123(4) 1.00(4)

0.0060 1.073(1) 0.123(2) 1.162(2) 0.123(3) 1.00(3)

0.74 0.0017 1.092(2) 0.123(2) 1.180(2) 0.123(5) 1.00(4)

0.0024 1.092(2) 0.123(2) 1.180(2) 0.123(4) 1.00(4)

0.0030 1.092(2) 0.123(2) 1.180(2) 0.123(4) 1.00(4)

0.0060 1.094(1) 0.124(2) 1.182(2) 0.123(3) 0.99(3)

MSTable  7.    Matching  factors  to  the  scheme  for  the  local
axial vector current and for the tensor current [13].

ZA(= ZV ) ZT /ZA(2 GeV) ZT (2 GeV)

1.1025(16) 1.055(31) 1.163(34)
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f bare
D∗s

/ fDs

fD∗s fDs

mD∗s
( f bare

D∗s
/ fDs

)phys = 0.999(24)
ZV

At  each  quark  mass  combination,  we  obtain  the
 ratio as given in the last column of Table 5. The

statistical error is from Jackknife, using the Jackknife es-
timates of  and . Then, the ratio is extrapolated/in-
terpolated  to  the  physical  quark  mass  point  by  using the
function form in Eq.  (16)  (replacing  with the ratio).
As  a  result,  we  find  that . Mul-
tiplying it  with  and assigning a  2% discretization er-
ror, we obtain

( fD∗s/ fDs
)phys = 1.101(27)(22). (23)

fD fD∗ fD∗/ fD

fDs
fD∗s

Decay constants  and  and the  ratio from
our lattice data are shown in Table 6. Similar to the above
analyses for  and , we obtain

f phys
D = 213(2)(4) MeV, f phys

D∗ = 234(3)(5) MeV, (24)

( fD∗/ fD)phys = 1.10(2)(2). (25)

mD(∗)

fD∗ ZV

fD∗

fD∗

Here, the  first  error  comes  from  statistics  and  the  inter-
polation/extrapolation to the physical quark mass point by
using Eq. (18) with the replacement of  by the decay
constants or their ratio. For , the error of  is also in-
cluded in the first error. The second error is the 2% sys-
tematic uncertainty due to finite lattice spacing. As an ex-
ample, the interpolation of  to the physical pion mass
is shown in the right panel of Fig. 3. Since our four light
quark  masses  are  distributed  around  and  close  to  the
physical point (the same is also true for our charm quark
masses),  the  uncertainty  of  at  the  physical  point  is
smaller than those of the lattice data.

fDs
/ fD fD∗s/ fD∗Now, we turn to the  and  ratios, which

reflect the size of SU(3) flavor symmetry breaking. These
ratios can be calculated in two ways. One is using our fi-

fD(∗)
(s)

1.17(4)

fDs
/ fD = 1.163(14)

fD∗s/ fD∗ =

nal  results  for  at  the  physical  quark  mass  point.  By
doing  this,  we  obtain  for  both  ratios.  The  other
way  is  first  calculating  these  ratios  at  our  nonphysical
quark masses and then interpolating/extrapolating them to
the physical point by using the function form in Eq. (18).
The  second  method  yields  and

 1.17(2) without including the 2% discretization
error. Including this error leads to

fDs
/ fD = 1.163(14)(23) and fD∗s/ fD∗ = 1.17(2)(2), (26)

fDs
/ fD

which  we  take  as  our  final  results  for  the  two  ratios.
These  results  indicate  that  the SU(3)  flavor  symmetry
breaking  effects  have  a  size  of  ~17%.  Our  value  for

 agrees  with  the  result  from  the  RBC-UKQCD
Collaborations  in  Ref.  [21],  which  uses  unitary  lattice
setups with eight gauge ensembles, including the 48I used
in this work.

f T
V / fV3.    

CT (r = 0, t)
f T
V f T

V / fV

Because  of  the  bad  signal-to-noise  ratio  in
,  we do not  directly  determine decay constant

,  but  calculate  the  ratio  from  the  ratio  of  two-
point functions:

f T
V

fV
= lim

t→∞
CT (r = 0, t)
CV (r = 0, t)

≡ lim
t→∞

R(t). (27)

CT (r = 0, t) CV (r = 0, t)
R(t)

The cancelation of statistical fluctuations from the numer-
ator, ,  and the  denominator, ,  leads
to a better signal for ratio , since both two-point func-
tions  are  calculated  on  the  same  gauge  ensemble  and,
thus, are correlated. At the large time limit, the contribu-
tions from the higher states to the two-point functions are
suppressed  by  their  heavier  masses.  Then,  from  Eq.  (3)

fD∗s
fD∗

Fig. 3.    (color online) Interpolation/extrapolation of  to the physical point by using the function form given in Eq. (16) (left panel).
The right panel shows the interpolation/extrapolation of  by using function form given in Eq. (18). The quark mass dependence is
difficult  to  see with the relatively big statistical  errors.  The octagons show the results  at  the physical  strange and charm quark mass
point.

 

Ying Chen, Wei-Feng Chiu, Ming Gong et al. Chin. Phys. C 45, 023109 (2021)

023109-8



f T
V / fV

R(t) D∗ D∗s
δR(t)

R(t) tmin tmax
f T
V / fV tmax

δR/R ⩽ tmin
tmin

f T
V / fV

D∗s

and  Eq.  (4),  one  can  derive  that  the  ratio  approaches
 for  the  ground  state  since  the  other  factors  in  the

numerator and the denominator cancel  out. Fig.  4 shows
ratio  for  and  in the  left  and  right  panels,  re-
spectively. The uncertainties, , of the ratio shown in
the figure  are  from  Jackknife  analyses.  As  we  can  ob-
serve,  this  ratio  approaches  a  plateau at  large t. We per-
form constant  fits  to  in  the  range  [ , ] to  ob-
tain , where  is fixed to the maximum value of t
with 10%.  is  varied  to  check  the  stability  of
the fitting results.  The variation ranges of  are indic-
ated by the red lines in Fig. 4. We make sure that all the
fittings  yield  consistent  results.  In  this  way,  we  find  the
bare value of  at each quark mass point. As an ex-
ample,  the  numerical  results  of  this  ratio  for  are
presented in Table 8.
 

f T
D∗s
/ fD∗sTable  8.    Bare  values  of  at  various  valence  quark

masses.

amc

0.6800 0.7000 0.7200 0.7400

ams ( f T
D∗s
/ fD∗s )bare

0.0580 0.862(2) 0.865(2) 0.867(2) 0.869(2)

0.0650 0.863(2) 0.865(2) 0.867(2) 0.869(2)

 

f T
D∗s
/ fD∗s f T

D∗/ fD∗

ZT /ZA(2 GeV) =
1.055(31) MS

Then, we use Eq. (16) and Eq. (18) to interpolate/ex-
trapolate  our  raw  data  to  the  physical  quark  mass  point
for  and  respectively. After multiplying the
results  with  renormalization  factor 

 in the  scheme and assigning a 2% discretiz-
ation uncertainty, we find

( f T
D∗s
/ fD∗s )

phys = 0.92(3)(2) and ( f T
D∗/ fD∗ )phys = 0.91(3)(2)

(28)

ZT /ZA(2 GeV)

at the scale of 2 GeV. Here the first uncertainty includes
the  errors  from  statistics  and  interpolation/extrapolation
and the error of  and is dominated by the er-
ror of the renormalization factor. The second uncertainty

is from the finite lattice spacing effect.

IV.  SUMMARY

fP fV f T
V / fV

D(∗)
(s) ϕ

mπ m2
ss ≡ 2m2

K −m2
π mDs

D∗(s) ϕ K∗

We calculated  decay  constants , ,  and  of
the  charmed  and  light  mesons,  including  and ,  by
using 2+1-flavor  domain  wall  fermion  gauge  configura-
tions at one lattice spacing. The valence overlap fermion
has  4,  2,  and  4  mass  values,  respectively,  for  the  light,
strange, and charm quarks. We use the experimental val-
ues  of , ,  and  to  set  the  physical
light, strange, and charm quark masses. The masses of D,

, ,  and  at the physical point are found via inter-
polation/extrapolation  using  the  lowest  order  of  Taylor
expansion (i.e., a linear interpolation/extrapolation) since
our valence quark masses are close to their physical val-
ues.

mD mD∗s mϕ mK∗

D∗

fDs

Masses , , , and , obtained from our lat-
tice calculation, are in good agreement with their experi-
mental  measurements.  The  mass  we  found  is  1%
higher than its experiment value. The center value of 
from this  calculation  is  2% away  from our  previous  lat-
tice QCD calculation extrapolated to the continuum limit
[20].  Thus,  we  estimate  the  discretization  uncertainty  in
this work to be around 2%.

The final results of this work for the decay constants
are  given  in  Eqs.  (20),  (22)-(26),  (28).  By  quadratically
adding the statistical/fitting uncertainty and the systemat-
ic  uncertainty,  we  obtain  the  decay  constants,  shown  in
Table 9, and some of their ratios, shown in Table 10. For

R(t) D∗ D∗sFig. 4.    (color online) Ratio of two-point functions, , for  (left panel) and  (right panel).
 

D(∗)
(s)Table 10.    Ratios of decay constants for .

fD∗/ fD fD∗s / fDs fDs/ fD fD∗s / fD∗

1.10(3) 1.10(4) 1.16(3) 1.17(3)

D(∗)
(s) ϕ

f T
V / fV MS

Table  9.    Decay  constants  of  and  in  units  of  MeV.
 is given in the  scheme at the scale of 2 GeV.

Ds D∗s D D∗ ϕ

fP/V /MeV 249(7) 274(7) 213(5) 234(6) 241(9)

f T
V / fV − 0.92(4) − 0.91(4) −
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ϕ

ZT /ZA

f T
D∗s
/ fD∗s f T

D∗/ fD∗

light  vector  meson ,  the  statistical  error  dominates  the
uncertainties, whereas for the heavy mesons, the discret-
ization error and the error from  (when needed) are
the  main  sources  of  uncertainty.  We  believe  our  results
for  and  are the first  lattice QCD calcula-
tions that  can be used as  input  parameters  for  the LCSR
calculations  of  form  factors  in B to  vector  meson
semileptonic decays.

fϕ = 241(9)
N f = 2
fϕ = 308(29)

fϕ

fϕ
Γ(ϕ→ e+e−) = 1.251(21)

Our  number,  MeV,  is  lower  than  the
 lattice simulation result in Ref. [22], which yields

 MeV.  This  may  be  due  to  the  dynamical
strange quark effects.  Note  that  our  is in  good agree-
ment with that in [23],  which is also a 2+1-flavor lattice
calculation.  The experimental  value of  can be extrac-
ted  from  keV  [18]  by  using  the
relation

Γ(ϕ→ e+e−) =
4πα2

em

27mϕ
f 2
ϕ . (29)

αem = 1/137.036 mϕ = 1019.461(16)
f exp
ϕ = 227(2)

1.5σ

Inputting  and  MeV
[18],  one  finds  MeV.  Our  result  agrees
with the experiment value at .

fDOur  value  for  is  213(5)  MeV,  which  agrees  with
other  lattice  QCD  calculations  with  2-flavor  [24],  2+1-
flavor  [25-27],  and  2+1+1-flavor  [28, 29]  simulations.

fD+ |Vcd | =
45.91(1.05) fD =

213(5)

Combining  the  latest  experimental  average, 
 MeV,  from  PDG2018  [18]  and  our 

 MeV, one obtains

|Vcd | = 0.2155(51)(49). (30)

Here,  the  two  errors  are  from the  lattice  calculation  and
experiment, respectively.

fD∗(s)
fD∗s/ fDs

fD∗s/ fDs

fD∗s/ fDs

In Fig. 5, we compare  and the  ratio from
this  work  and  other  lattice  QCD  calculations  [2, 9-12].
The values from the 2+1-flavor and 2+1+1-flavor simula-
tions are  consistent.  There might  be tension between the
2-flavor calculations and other calculations, including the
dynamical strange quark. This may reflect an unexpected
large quenching effect from the strange quark. However,
the 2-flavor calculation of  in [10] shows that this
quenching effect  is  not  as significant  as that  observed in
[9]. The two calculations employ different lattice actions
of the two-flavor theory. The computation in [12] is per-
formed  on  the  same  2-flavor  gauge  ensembles  as  those
used in [9] and employs the same analysis method as that
used  in  [11].  It  yields  a  with  a  smaller  strange
quark quenching  effect  and,  therefore,  is  more  in  agree-
ment with [10]. Thus, more lattice QCD calculations, es-
pecially  those  with  two  dynamical  flavors,  are  certainly
welcome to clarify this situation.

The  ratios  of  decay  constants  of  charmed  mesons  in
Table  10 show  that  the  size  of  heavy  quark  symmetry
breaking  is  approximately  10%,  whereas  the  size  of
SU(3) flavor symmetry breaking is approximately 17%.

ϕ

To better control the systematic uncertainty from dis-
cretization  effects  in  our  work,  we  need  to  perform  our
calculation at more lattice spacings in the future. We also
need  to  include  the  quark-line  disconnected  diagram  for
the  meson  two-point  function.  To  accurately  estimate
the  threshold  effects  of  strong  decays  of  the  vector

mesons, further studies on larger volumes are necessary.
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