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Abstract: Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper,
we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential.
This toy model captures key features of particle dynamics near a black hole horizon and allows us to make three ob-
servations.  First,  we find that  chaotic  behavior  becomes stronger  with increases in  minimal  length effects,  leading
predominantly to  growth in the maximum Lyapunov characteristic  exponents,  while  the KAM curves on Poincaré
surfaces of a section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it
can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scram-
bling time of black holes. Finally, the model shows that some Lyapunov characteristic exponents can be greater than
the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results re-
veal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.
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I.  INTRODUCTION

Nonlinear  systems  endowed  with  a  deterministic
nature may  behave  in  a  complicated,  highly  unpredict-
able, and “chaotic” way. General relativity is a nonlinear
dynamical theory, and chaotic behavior in general relativ-
ity has been extensively studied, such as in the chaoticity
of cosmological solutions [1, 2]. Among various dynam-
ical systems investigated in general relativity, the test mo-
tion in a given black hole spacetime is a popular topic in
literature,  since  it  is  of  astrophysical  relevance  and
provides some  important  insights  into  AdS/CFT  corres-
pondence.

However, it is well known that the geodesic motion of
a  point  particle  in  the  generic  Kerr-Newman  black  hole

spacetime  is  fully  integrable  [3].  To  induce  chaos,  one
can resort  to  spacetimes with more complicated geomet-
ries, external potentials imposed on test bodies, perturba-
tions introduced to  backgrounds,  or  test  bodies  endowed
with internal structure. For a point particle, chaotic beha-
vior of the geodesic motion has been investigated in sev-
eral  static  axisymmetric  spacetimes [4],  multi-black hole
spacetimes  [5],  bumpy  spacetimes  [6], weakly  magnet-
ized Schwarzschild black holes [7], black holes with discs
or  rings  [8],  the  Schwarzschild-Melvin  black  holes  [9],
accelerating black holes [10] and spacetimes with a quad-
rupole mass moment [11]. In a universal way, the particle
chaotic motion has lately been studied near the black hole
horizon  [12-14]. Interestingly,  gravitational  waves  emit-
ted from chaotic  motions  of  particles  in  a  bumpy space-
time can be used to distinguish an extreme-mass-ratio in-
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spiral  into a Kerr  background spacetime from one into a
non-Kerr  background  spacetime  [15].  Recently,  it  has
been shown that such a proposal may be undermined due
to chaos suppression by frame dragging [16]. Partly mo-
tivated by AdS/CFT correspondence, the chaotic dynam-
ics  of  a  ring  string  have  been  studied  in  various  black
hole backgrounds [17-22] since the geodesic motion of a
ring  string  was  shown  to  exhibit  chaotic  behavior  in  a
Schwarzschild  black  hole  [23]. In  addition,  as  a  simpli-
fied  model  describing  extreme  mass  ratio  inspirals,  the
motion of  a  spinning  test  particle  in  black  hole  back-
grounds was  considered  and  also  demonstrated  to  pos-
sess some chaotic features [24-27].

In  contrast,  the  existence  of  a  minimal  measurable
length has been predicted in various quantum theories of
gravity such as  string theory [28-32].  To incorporate  the
minimal  length  into  quantum mechanics,  the  Heisenberg
uncertainty  principle  can  be  modified,  giving  the  so
called "generalized uncertainty principle (GUP)" [33, 34].
Usually, the  fundamental  commutation  relation  is  de-
formed to realize the GUP. For a 1D quantum system, the
deformed  commutator  between  position  and  momentum
can take the following form

[X,P] = ih̄(1+βP2), (1)

β
∆Xmin = h̄

√
β

h̄→ 0

where  is some deformation parameter, and the minimal
length  is .  Many  minimal  length  deformed
quantum  systems  have  been  investigated  intensively  in
literature, e.g., the harmonic oscillator [35], Coulomb po-
tential  [36, 37],  gravitational  well  [38, 39], quantum op-
tics [40, 41],  compact stars [42-44],  and cosmology [45-
47].  Furthermore,  taking  the  classical  limit ,  one
can discuss  the  minimal  length  effects  on  classical  sys-
tems, such as observational tests of general relativity [48-
55],  classical  harmonic  oscillator  [56, 57],  equivalence
principle [58], Newtonian potential [59], the Schrödinger-
Newton equation  [60], the  weak cosmic  censorship  con-
jecture  [61],  and  motions  of  particles  near  a  black  hole
horizon  [62-64]. In  addition,  the  minimal  length  correc-
ted  Hawking  temperature  can  be  obtained  by  using  the
Hamilton-Jacobi method [65-69].

In  this  paper,  we  discuss  the  minimal  length  effects
on the motion of a particle under a harmonic potential in
the Rindler space, which is the approximation of the near-
horizon region. This study is a follow-up of our previous
works  [62, 70],  which  demonstrated  that  the  minimal
length effects  tend  to  increase  chaos.  Analytical  ap-
proaches,  i.e.,  the  perturbation  method  and  Melnikov
method, were employed to investigate the chaotic motion
of a particle around a black hole in [62, 70]. Here, we nu-
merically study  the  motion  of  a  particle  and  the  corres-
ponding chaos  indicators  in  the  Rindler  space.  Our  nu-
merical  results  not  only  support  the  findings  of  [62, 70]
but also signal a shorter scrambling time, a notion that is

connected to chaos.

c =G = kB = 1
h̄ ℓp

The rest of this paper is organized as follows. In sec-
tion II, we obtain the equations of motion for the dynam-
ical system. The dynamics of the system are numerically
analyzed in section III. We summarize our results with a
brief discussion in section IV. In this paper, we take Geo-
metrized  units ,  where  the  Planck  constant

 is the square of the Planck length .

II.  MOTION OF A PARTICLE IN RINDLER
SPACE

To study the minimal length effects on the chaotic dy-
namics  of  a  particle,  we  consider  the  motion  of  the
particle in the near-horizon region, where chaotic behavi-
or  can  be  induced.  Specifically,  we  discuss  a  relativistic
particle moving in the near-horizon region of a 4D spher-
ically symmetric black hole with the metric

ds2 = −h (r)dt2+
dr2

g (r)
+ r2

(
dθ2+ sin2 θdϕ2

)
, (2)

h (r) g (r)
r = r+
τ = it

where  and  are assumed to have a simple zero at
the  event  horizon .  By the  analytic  continuation  to
Euclidean signature , the above metric becomes

ds2
E = h (r)dτ2+

dr2

g (r)
+ · · · . (3)

Near the horizon, one can approximate

ds2
E =h′ (r+) (r− r+)dτ2+

dr2

g′ (r+) (r− r+)
+ · · ·

=dρ2+ρ2d

 √
h′ (r+)g′ (r+)

2
τ

2

+ · · · , (4)

ρ ≡ 2
√

(r− r+)/g′ (r+)
ρ = 0
β = 4π/

√
h′ (r+)g′ (r+) τ

h̄/β

where  we  introduced  a  new  coordinate
.  To  evade  a  conical  singularity  at

,  it  is  necessary  to  impose  a  periodicity
 in  the  Euclidean  time .  From

thermal  quantum  field  theory,  the  Hawking  temperature
of  the  black hole  is  given by . Therefore,  the  Hawk-
ing temperature is

T =
h̄
√

g′ (r+)h′ (r+)
4π

≡ h̄α
2π
, (5)

α ≡
√

g′ (r+)h′ (r+)/2where we define the surface gravity 
for later  use.  To explore the region near the horizon,  we
introduce the proper distance from the horizon,
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x =
∫ r

r+

dr√
g (r)

∼ 2
√

r− r+√
g′ (r+)

, (6)

dt = dθ = dϕ = 0
dx2 = dr2/g (r)

θ = 0

which measures the physical  distance along radial  direc-
tion  (i.e., )  from  the  horizon  since

. If one focuses on a small angular near-ho-
rizon region centered at , the near-horizon metric of
the black hole can be rewritten in terms of x:

ds2 = −α2x2dt2+dx2+dy2+dz2, (7)

where we introduce Cartesian coordinates,

y = r+θcosϕ, z = r+θ sinϕ. (8)

(7)
(2)

x = 0

The metric  is  the  Rindler  space,  which describes  the
near-horizon geometry of the black hole . Note that the
black hole horizon is at  in the Rindler coordinates.
Since we are interested in the motion of a particle in the
near-horizon region, we confine ourselves here to consid-
ering the Rindler space.

(2)

(x,y,z) = (x0,0,0)
x0 > 0

It is well known that the geodesic equation in the met-
ric  is  separable;  hence,  the  geodesic  motion  of  a
particle  is  integrable.  To  make  the  motion  of  a  particle
chaotic, one can impose an external potential outside the
horizon. In what follows, we assume that the potential is
a  harmonic  potential  centered  at  with

,

V (x,y,z) =
ω2

2

[
(x− x0)2+ y2+ z2

]
, (9)

ωwhere  is the angular frequency. Practically, for any ex-
ternal potential, when a particle is displaced slightly from
its  stable  equilibrium  position,  we  can  approximate  the
external  potential  by  the  harmonic  potential.  Therefore,
our  analysis  with  a  harmonic  potential  in  Rindler  space
can illustrate the motion of a particle near stable equilibri-
um, which is close to the horizon. For example, in an ex-
treme-mass-ratio  black  hole  binary  system,  Lagrange
equilibrium points (where a particle is in equilibrium) can
be close to the horizon of the light black hole due to the
extreme mass ratio of the two black holes. In addition to
the possible relation to astrophysics, the harmonic poten-
tial is of further academic interest as it may be used as a
simple external potential for studying chaotic motion near
the  horizon.  In  this  instructive  toy  model,  the  system  is
integrable with  the  absence  of  gravity,  and  hence,  ob-
serving chaotic behavior due to gravity or quantum grav-
ity  effects  will  be  easier.  In  [12, 71],  the  near-horizon
chaotic motion of a particle under the harmonic potential
was  considered  in  the  context  of  general  relativity
without quantum gravity effects.

In  the  framework  of  usual  non-relativistic  quantum

h̄→ 0

h̄→ 0

mechanics,  a  system  is  described  by  a  state  vector,  and
the dynamics is governed by the Schrödinger equation. In
the classical regime with , the state vector becomes
represented  by  a  trajectory  in  phase  space  obeying
Hamilton's  equation  (or  equivalently,  the  corresponding
Hamilton-Jacobi  equation).  In  the  classical  limit ,
the Heisenberg uncertainty principle becomes

∆X∆P ⩾
h̄
2
→ 0, (10)

(1)

and hence,  the  position  and  momentum  can  be  determ-
ined simultaneously, which is essential for defining a tra-
jectory. For  deformed  quantum  mechanics  with  the  de-
formed  commutator ,  the  corresponding  generalized
uncertainty principle is given by

∆X∆P ⩾
h̄
2

[1+β(∆P)2], (11)

h̄→ 0
h̄→ 0

where the lower bound also goes to zero as . In the
classical  limit  of  deformed  quantum  mechanics,
one can also determine the position and momentum sim-
ultaneously and associate a trajectory to a wave function.
Therefore, it is proper to use the deformed Hamilton-Jac-
obi  equation,  which  is  derived  from  deformed  quantum
mechanics  in  the  classical  limit,  to  study  the  minimal
length effects on a trajectory in the classical regime.

(1)

V (x,y,z)

Incorporating the  deformed  fundamental  commuta-
tion relation , the minimal length deformed Hamilton-
Jacobi equation for the motion of a particle under an ex-
ternal potential has been derived in [62]. To be self-con-
tained, we give the derivation of the deformed Hamilton-
Jacobi equation in the appendix. In the Rindler space with
the harmonic potential , the deformed Hamilton-
Jacobi equation then becomes

1
α2x2

[
∂S
∂t
+V (x,y,z)

]2

−X (1+βX)2 = m2, (12)

X ≡ (∂xS )2+
(
∂yS

)2
+ (∂zS )2where ,  and S is  the  classical

action. The first  derivatives of S with respect to the spa-
tial coordinates are the conjugate momenta,

pi =
∂S
∂xi

(i = x,y,z), (13)

and the Hamiltonian of the system corresponds to the first
derivative of S with respect to the time,

H = −∂S
∂t
. (14)

(12) HSolving  the  Hamilton-Jacobi  equation  for  gives
the Hamiltonian
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H = αx
√

p2 (1+βp2)2
+m2+V (x,y,z) ,

where we define

p2 ≡ p2
x + p2

y + p2
z . (15)

xiThe equations of motion for  are

ẋi =
∂H
∂pi
= αxpi

(
1+βp2

) (
1+3βp2

)
√

p2 (1+βp2)2
+m2

(i = x,y,z), (16)

piand those for  are

ṗx =−
∂H
∂x
= −α

√
p2 (1+βp2)2

+m2−ω2 (x− x0) ,

ṗy =−
∂H
∂y
= −ω2y, ṗz = −

∂H
∂z
= −ω2z. (17)

pz

z = 0 z = 0

z = 0
z = 0 = pz

The equations of motion for z and  show that a particle
that  starts  in  the  plane  remains  in  the  plane.
For simplicity, we only consider the motion of a particle
on  the  plane  in  this  paper.  Therefore,  we  set

 in the remainder of the paper.

III.  DYNAMICS OF PARTICLE MOTION

V (x,y,z)

9(8)
< 10−12

In  this  section,  we  study  the  dynamics  of  a  particle
moving in the Rindler  space under the external  potential

,  with  particular  consideration  of  the  minimal
length effects on the chaotic dynamics. To detect chaotic
phenomenon in the dynamical system, we resort to Poin-
caré surfaces  of  section  and  Lyapunov  characteristic  ex-
ponents (LCEs), which are calculated numerically. Since
the chaotic motion of a particle is very sensitive to initial
values, a numerical method with high precision is highly
desirable.  Here,  we  adopt  Verner's  "most  efficient"
Runge-Kutta  method  [72],  which  can  achieve  high
accuracy solving (with tolerances of ). To test the

∑4
i=1 λi

β E = 5.0
∆H ≡H (t) −H (0)

β = 0 0.7

10−13 α = 1 ω = 10 m = 1 x0 = 1

accuracy of the numerical method, we consider two con-
served  quantities,  namely  the  energy  of  the  system E,
which is  conserved since there is  no dissipation,  and the
sum  of  all  LCEs ,  which  must  be  zero  since  a
volume  element  of  the  phase  space  will  stay  the  same
along  a  trajectory  for  the  conservative  system.  The  left
panel of Fig. 1 shows the sum of all  LCEs as a function
of  with the energy . We also display the error of
the energy   along two trajectories with

 and , respectively, in the right panel of Fig. 1. It
is  demonstrated  that  the  numerical  method  used  in  this
paper  can  maintain  the  numerical  error  around  or  below

. We choose , , , and  for the
numerical analysis in this section.

A.    Fixed point and orbits

(16)
(17)

ẋi = 0 = ṗi

Invariant  sets,  such  as  fixed  points  and  limit  cycles,
represent  an  important  concept  for  understanding  late
time  dynamics  and  the  stability  of  a  dynamical  system.
Here,  in  particular,  we  find  the  fixed  point  in  the  phase
space of the dynamical system described by Eqs.  and

 and  discuss  the  behavior  near  the  corresponding
fixed point. The fixed point in the phase space is determ-
ined by , which leads to the fixed point solution

x f = x0−
mα
ω2 , y f = 0, px f = 0, py f = 0. (18)

x f ⩾ 0
x0 < mα/ω2

ẋi = 0 = ṗi

Since  in the  Rindler  space,  the  fixed  point  disap-
pears when  . It is noteworthy that the equilib-
rium  point  of  the  system  is  also  given  by .
Therefore, the equilibrium point is

xe = x0−
mα
ω2 , ye = 0, (19)

mα/ω2where  is  the  displacement  from the  center  of  the
harmonic  potential  due  to  the  gravitational  pull  exerted
on the  particle.  Near  the  fixed  point,  the  nonlinear  sys-
tem can be approximated by a  linear  system represented
by the Jacobian matrix, the eigenvalues of which determ-

β E = 5.0
β = 0 0.7

Fig. 1.    (color online) Numerical accuracy. (left) Sum of LCEs as a function of  for . (right) Errors of energy according to time
for  and .
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(18)
ine the near-fixed point behavior. The eigenvalues of the
Jacobian matrix at the fixed point  are given by

iω

√
x fα

m
, iω

√
x fα

m
,−iω

√
x fα

m
,−iω

√
x fα

m

 . (20)

Since  the  eigenvalues  are  purely  imaginary,  this  fixed
point  is  a  center  in  the  sense  that  trajectories  near  the
fixed point are almost closed loops.

(18)

Emin = mαx0

(
1− ma

2ω2x0

)
x = 0

The fixed point solution  corresponds to the min-

imum energy of  the  system, .  At
the event horizon located at , the energy of the sys-
tem E should satisfy

E ⩾ Emax ≡ V (0,0,0) =
ω2x2

0

2
.

Emin < E < Emax

E = 5.0 > Emin = 0.995
x (0) = 0.99 px (0) = 0.1 y (0) = 0 β = 0 0.05 0.3

0.7 β = 0
β

Hence,  for ,  the  system  wanders  around
the fixed point and can never reach or cross the event ho-
rizon. In Fig. 2, we present the orbits of the system in the
x-y plane with the initial values  ( ),

, , and  for , , ,
and .  When ,  the orbit  appears to be regular and
periodic. With the increasing value of , the orbit starts to

β = 0.7

E = 49.999
< Emax = 50.0 x (0) = 0.99 px (0) = 0.1 y (0) = 0
β = 0 0.0003 0.0005 0.1

β = 0
β

β

become  irregular.  Particularly,  the  orbit  in  the 
case  is  shown to  be  quite  erratic. Fig.  3 displays the  or-
bits  in  the x-y plane  with  the  initial  values 
( ), , , and  for

, , ,  and .  It  is  noteworthy  that  the
system  with  already  exhibits  irregular  movement.
When  increases,  the  orbit  becomes  more  irregular.
These observations  signal  that  the  dynamical  system be-
comes more chaotic as  increases.

E > Emax

β = 0
β > 0

(12)

With a proper initial condition, we find that a particle
of  energy  can  asymptotically  approach  the
event horizon when  or cross the horizon within a fi-
nite  interval  of  time  when .  In  fact,  the  Hamilton-
Jacobi equation  gives

p2
(
1+βp2

)2 ∼ x−2 as x→ 0, (21)

p2 = p2
x + p2

y → +∞ x→ 0
V (x,y,z) py

V (x,y,z) py

px→−∞ x→ 0
−∞

x = 0 p2 ≃ p2
x

which means  as .  In contrast,  if
one  turns  off  the  harmonic  potential ,  be-
comes a conserved quantity and always stays finite. After

 is turned on, it is naturally expected that  con-
tinues to  be  finite  at  the  horizon,  although  it  is  not  con-
served anymore. So  as , where we choose

 since  only  ingoing  solutions  are  physical.  Near  the
horizon at ,  one  hence  has  in  the  equations

E = 5.0 x (0) = 0.99 px (0) = 0.1 y (0) = 0 β = 0 0.05 0.3
0.7 β

Fig. 2.    (color online) Orbits in the x-y plane with the initial conditions , , , and  for , , ,
and . The orbit tends to be more irregular for a larger value of . The green dots represent the starting points of the orbits, which are
the fixed points.

 

E = 49.999 x (0) = 0.99 px (0) = 0.1 y (0) = 0 β = 0

0.0003 0.0005 0.1 β

Fig.  3.    (color  online)  Orbits  in  the x-y plane  with  the  initial  conditions , , ,  and  for ,
, , and . As  increases, the orbit is likely to become more erratic. The green dots represent the starting points of the or-

bits, which are the fixed points.
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(16) (17)
px

px

of motion  and , which can be expanded in des-
cending powers of . The first  two terms of the expan-
sions then give the asymptotic equations of motion for x
and  near the horizon,

ẋ ≃ −αx
(
1+3βp2

x

)
, ṗx ≃ αpx

(
1+βp2

x

)
. (22)

Using the Mathematica function DSolve, we find the ana-
lytical solution of the above equations,

x ≃Aα−1e−α(t−t0)
[
1− e2α(t−t0)α−2β

]3/2
,

px ≃−
α−1eα(t−t0)√

1− e2α(t−t0)α−2β
, (23)

t0
e2αt0 > α−2β β = 0

β = 0 x (t)
px (t) E = 53.0 x (0) = 2.0 px (0) = 0.1 y (0) = 0

where A and  are  constants  of  integration  with
. If , it shows that the particle gets infin-

itesimally  close  to  the  horizon  but  never  crosses  it;  this
has  been  well  known  for  some  time.  To  better  illustrate
the  solutions, we plot the orbit in the x-y plane, ,
and  with , , , ,

β = 0 px
0 −∞

β > 0 (23)
t = tc ≡ t0− ln

(
βα−2

)
/ (2α)

t > tc
x (t) px (t) E = 53.0 x (0) = 2.0

px (0) = 0.1 y (0) = 0 β = 0.3
x (t) = 0 t ≃ 0.18748

(22)

and  in Fig. 4, which shows that x and  asymptot-
ically  approach  and , respectively.  More  interest-
ingly, when , Eq.  gives that the particle crosses
the  horizon  at  and travels  be-
hind the horizon when . Fig.  5 presents  the  orbit  in
the x-y plane, ,  and  with , ,

, ,  and .  As shown in the inset,
 occurs at ,  where numerical failure is

encountered. Note that our near-horizon analysis is quite
universal, regardless of the form of the potential, since no
contributions from the potential appear in Eq. .

B.    Lyapunov characteristic exponents

ẋ = f (x)

x (t)

LCEs have been proposed to describe the time evolu-
tion  of  perturbations  of  dynamical  systems  based  on  the
linearization of equations of motion [73]. For a dynamic-
al  system  that  satisfies  the  evolution  equation ,
the  evolution  of  the  tangent  vectors Y along  a  trajectory

 is determined by

Ẏ = JY, (24)

x (t) px (t) β = 0 E = 53.0 x (0) = 2.0
px (0) = 0.1 y (0) = 0

px

Fig. 4.    (color online) Plots showing the orbit in the x-y plane, , and  for  with the initial conditions , ,
, and . The red line and green dot represent the event horizon and the staring point of the orbit, respectively. The ar-

rows  show  the  increase  in  simulation  time.  The  proper  spatial  of  the  particle  from  the  horizon  exponentially  decreases  with  time,
whereas the magnitude of the momentum  grows exponentially with time.

 

x (t) px (t) β = 0.3 E = 53.0 x (0) = 2.0
px (0) = 0.1 y (0) = 0

t ≃ 0.18748

Fig. 5.    (color online) Plots showing the orbit in the x-y plane, , and  for  with the initial conditions , ,
, and . The red line and green dot represent the event horizon and the starting point of the orbit, respectively. The ar-

rows show the increase in simulation time. The inset displays that the particle crosses the horizon at .
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Y (0) = I
x (0)

x (t) Λ

where J is the Jacobian matrix, and . The matrix
Y characterizes  how  perturbations  of  propagate  to
the final point and defines another matrix  in the in-
finite time limit,

Λ = lim
t→∞

1
2t

ln
[
Y (t)YT (t)

]
. (25)

Λ λi

x (t)

x (t)

x (t)

λi

The  eigenvalues  of  are  defined  as  LCEs ,  which
measure  the  exponential  expansion  rates  of  infinitesimal
perturbations along the trajectory . The sum of first p
largest LCEs  can  be  obtained  by  computing  the  expan-
sion rate of  a p-dimensional  volume along . In prac-
tice, one starts with p linearly independent perturbations,
evolves them along , and performs the QR decompos-
ition  [74] (or  equivalently,  the  Gram-Schmidt  orthonor-
malization  [75]) at  each  step  to  counterbalance  all  vec-
tors tending to align along the same direction. The expan-
sion  rates  are  then  averaged  over N successive  steps,
yielding the LCE spectrum. Here, we employ the method
based on the QR decomposition to numerically calculate
the LCEs .

λi

λmax

Among all LCEs , the maximum Lyapunov charac-
teristic  exponent  (MLCE)  is  of  particular  interest
since  a  strictly  positive  MLCE  can  be  considered  as  an
indication of deterministic chaos. The MLCE of the mo-
tion of a particle near the horizon of the most general stat-
ic black hole has recently been argued to satisfy a univer-
sal bound [12, 71],

λmax ⩽
2πT

h̄
= α, (26)

α

(26)

(26)

where T is  the temperature,  and  is the surface gravity.
The  bound  was  also  conjectured  to  be  satisfied  for
MLCEs  of  out-of-time-ordered  correlators  in  thermal
quantum  field  theories  [76].  Interestingly,  it  was  later
shown that the bound  can be violated for the motion
of a charged massive particle in a charged black hole [77]

or when  the  minimal  length  effects  are  taken  into  ac-
count [62].

β

E = 5.0
x (0) = 0.9999 y (0) = 0 py (0) = 0 E = 49.999
x (0) = 1.2 y (0) = 0 py (0) = 0

E = 5.0
β 0 0.006
7×10−4

β β ≃ 0.006
β ≳ 0.006 β

β α = 1
(26)

E = 49.999
β

β ≳ 0.02
(26)

H βE2

E = 49.999

In our case, the dependences of MLCEs on  are ex-
hibited  in Fig.  6 for  the  initial  conditions ,

, ,  and  and ,
, ,  and , respectively.  Our  nu-

merical results show that MLCEs depend strongly on the
choice of the energy E and are quite insensitive to the re-
maining initial conditions. For , we notice that the
MLCE is  always  positive.  As  ranges  from  to ,
the  MLCE  is  approximately .  Interestingly,  the
MLCE as a function of  has a kink at .  When

,  becomes  significantly  greater  than  zero  and
grows rapidly as  increases. Since we here choose ,
the  MLCE  always  satisfies  the  bound .  When

,  the  MLCE remains  positive  as  well  and  has
an increasing trend as a function of , except for several
small  fluctuations.  It  is  noteworthy  that  when ,
the  bound ,  which  is  displayed  by  the  black  dashed
line in Fig. 6, is violated for the MLCE. As the minimal
length corrections in  are of the order of , the min-
imal  length  effects  play  a  much  more  important  role  in
the  case.  The  observations  in Fig.  6 indicate
that the minimal length effects tend to make the dynamic-
al system more chaotic, especially when the energy of the
system is large.

C.    Poincaré Surface of Section
Poincaré  maps  were  introduced  to  map  complicated

behavior in the phase space to a certain lower-dimension-
al  subspace,  called  the  Poincaré  surface  of  section  [78].
Poincaré maps can be used to visualize the dynamics of a
chaotic system. In an integrable system, a quasi-periodic
orbit  fills  the  Kolmogorov-Arnold-Moser  (KAM)  torus
densely over the course of time, while a periodic (reson-
ant) orbit  repeats  itself  after  a  few windings.  On a Poin-
caré surface of section intersecting the torus transversally,
the crossing points  constitute  a  closed curve and a  finite
number of fixed points for the quasi-periodic and period-

λmax β E = 5.0 49.999
λmax β

(26)

Fig. 6.    (color online) The maximum Lyapunov characteristic exponents  as functions of  for  (left) and  (right). It
shows that  is always positive and primarily increases as  increases, revealing that the minimal length effects could make the tra-
jectories more chaotic. The black dashed line represents the bound .
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ic  orbits,  respectively.  When  the  integrable  system  gets
perturbed slightly,  the KAM theorem [79] states that  the
quasiperiodic  KAM  tori  are  usually  deformed  but  not
destroyed,  which  also  leads  to  KAM  closed  curves  on
Poincaré surfaces  of  section.  However,  the  resonant  or-
bits  disintegrate  to  form  Birkhoff  chains  of  islands  and
thin  chaotic  layers  surrounding  the  Birkhoff  islands  of
stability on Poincaré surfaces of section [80].  On further
deviating from the integrable system, the KAM curves in-
tervening  between  chaotic  layers  of  different  resonances
are  destroyed,  and  the  chaotic  layers  can  overlap,  which
generates large scale chaos and stronger chaotic behavior.
In short, the observation of a region with scattered points
in  a  Poincaré  surface  of  section  is  a  clear  signature  of
chaos.

y = 0 py > 0
px

E = 5.0 β

x (0) px (0)
y (0)

2 3

β = 0.1

Here, we choose the Poincaré surface of section as the
one  defined  by  and ,  which  consequently
leaves us a two-dimensional diagram with the vertical 
axis and the horizontal x axis. Fig. 7 shows the Poincaré
surfaces  of  section  for  with  various  values  of .
We  select  22  initial  conditions  (i.e., E, , ,  and

)  and  plot  the  crossing  points  of  the  corresponding
phase orbits  in  8  colors  on the  Poincaré  surfaces  of  sec-
tion. The crossing points of the same orbit are in the same
color,  whereas  one  color  corresponds  to  or  orbits.
Note  that  the  set  of  initial  conditions  of  the  orbits  is  the
same for each Poincaré surface of section. When ,
the  Poincaré  surface  of  section  consists  of  KAM  closed

β

β

curves,  which  shows  that  the  orbits  are  quasi-periodic.
This observation is in agreement with Fig. 2,  which also
reveals  that  the  orbit  with  small  is  quasi-periodic.
However, for a larger , it displays that the KAM curves
start to get destroyed to become scattered plots (e.g., see
the  lower-right  panel  in Fig.  7).  In  short,  the  growth  of
the minimal length effects leads to the onset of chaos and
a following increase in chaotic behavior of the motion of
a particle in the Rindler space.

β β = 0
β E = 49.999

E =
5.0

β

β = 0

β = 0.3
β

0.5

When the  energy  increases,  chaotic  regions  in  Poin-
caré surfaces of section can be observed for a small value
of  or  even .  We  present  the  dependence  of  the
Poincaré  surfaces  of  section  on  with   in
Fig. 8, which exhibits much richer structures than the 

 case.  In  fact,  chains  of  islands,  chaotic  regions  with
scattered  plots,  and  separatrices  in  the  Poincaré  surfaces
of  section  and  their  evolution  with  are  seen  in Fig.  8,
where we plot crossing points of 31 phase orbits in 8 col-
ors.  To  study  the  minimal  length  effects  on  the  chaotic
behavior,  we  focus  on  the  cyan  KAM  curve  on  the  left
side  of  the  Poincaré  surface  of  section  (upper-left
panel of Fig. 8), which is marked by a red arrow and en-
circled by the chaotic region with scattered brown points.
For , it shows that the cyan KAM curve is not des-
troyed but gets deformed with a larger width. When  is
increased to  a  value  as  large  as ,  the  lower-left  panel
of Fig. 8 displays that the cyan KAM curve disintegrates
into scattered cyan points so as to form a chaotic region.

β E = 5.0 βFig.  7.    (color  online)  The dependence of  the  Poincaré  surfaces  of  section on  for  the  motion of  a  particle  with .  As  in-
creases, the KAM tori tend to break, which implies that the chaotic behavior becomes stronger.
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β 0.5 0.7On  further  increasing  from  to , the  chaotic  re-
gion becomes more dispersed on the Poincaré surface of
section, which is shown in the lower-right panel of Fig. 8.
These observations lend further support to the conclusion
that the minimal length effects can make chaotic behavi-
or of the system stronger.

IV.  DISCUSSION AND CONCLUSION

In this  paper,  we investigated  the  minimal  length  ef-
fects on the motion of a particle in the Rindler space un-
der a harmonic potential.  We first  distinguished two dif-
ferent  types  of  trajectories  in  the  motion  of  the  particle.
For  the  first  type  of  trajectories,  the  particle  travels
around the fixed point, and the trajectories can be erratic
when  the  minimal  length  effects  are  large  enough.  The
particle moving along the second type of trajectories will
cross  the  horizon  at  a  finite  Rindler  time  if  the  minimal
length effects  are  turned  on,  whereas  it  just  asymptotic-
ally  approaches  the  event  horizon  in  the  absence  of  the
minimal length  effects.  We  then  exploited  Poincaré  sur-
faces of section and LCEs to investigate the chaotic beha-
vior  of  the  system,  and  as  the  minimal  length  effects
grew, the following were found:

E = 5.0 49.999● Figure  6 showed  that,  for  and ,  the
MLCEs are always positive and generally increase.

E = 5.0● Figurre  7 displayed  that,  for ,  the  KAM
curves tend to disintegrate.

E = 49.999● Figure  8 exhibited  that,  for ,  the  cyan
KAM curve breaks into a chaotic layer.

(26)

(26)

In light of our numerical results, we come to the con-
clusion that chaotic behavior is more likely to happen in
the  presence  of  the  minimal  length  effects.  This  is  in
agreement with  earlier  observations  and  generic  argu-
ments for a massive particle perturbed away from an un-
stable  equilibrium  near  the  black  hole  horizon  [62],  as
well as recent findings for the geodesic motion perturbed
by  the  minimal  length  effects  around  a  Schwarzschild
black  hole  [70].  Specifically,  the  right  panel  of Fig.  6
showed  that  the  universal  bound  of  MLCEs  can  be
violated  in  the  presence  of  the  minimal  length  effects.
Note  that  the  bound  was calculated  in  the  frame-
work  of  general  relativity  with  the  absence  of  quantum
gravity effects [12, 71].  The larger the value of MLCEs,
the more  chaotic  the  system will  be.  Therefore,  our  res-
ults  further  suggest  that  quantum  gravity  effects  could
make classical trajectories in black holes more chaotic.

ts ∼ h̄T−1 lnS

(23) ts ts

In addition,  black  hole  horizons  have  been  conjec-
tured  to  be  fastest  scramblers  in  nature  [81],  with  the
scrambling time , where T and S are the tem-
perature and entropy of the black hole, respectively. Here,
we  can  use  Eq.  to  estimate  by  relating  to  the

β E = 49.999 β

0.1 0.7 β = 0.3
β = 0.5 β = 0.7

Fig. 8.    (color online) The dependence of the Poincaré surfaces of section on  for the motion of a particle with . As  in-
creases from  to , the cyan KAM curve marked by a red arrow first gets deformed ( ) and then disintegrates to form a chaot-
ic region ( ), which becomes more dispersed ( ). Thus, as the minimal length effects are increased, the chaotic features be-
come more evident.
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x = δ ℓp
(5) (23)

time that it takes to reach the stretched horizon located at
,  which  is  roughly  one  Planck  length  [82, 83].

Then, Eqs.  and  give

ts ∼
h̄

2πT

ln ℓp2πT
− 3β0

2

(
ℓp

2πT

)4 , (27)

β0 ≡ βℓ2p
ts

where we define a dimensionless parameter . For
a Schwarzschild black hole, the scrambling time  is

ts ∼
h̄

2πT

(
ln

16S
π2 −

3β0π
4

512S 2

)
, (28)

which indicates that the minimal length effects can make
black holes scramble faster. To summarize, in this paper,
we  proposed  a  toy  model  to  show  that  quantum  gravity
effects  tend  to  increase  chaotic  behavior  and  scrambling
efficiency of black holes. Further exploration of quantum
gravity effects on chaotic dynamics will lend insight into
physics of black holes, early universe, and dynamical as-
tronomy.
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APPENDIX A: DEFORMED HAMILTON-JACOBI
EQUATION

Φ

Aa

Consider  a  scalar  field  of  mass m minimally
coupled  to  a  four-vector  potential  in  flat  spacetime,
governed by the Klein-Gordon equation

−
(
∂0− i

qA0

h̄

)2
Φ+ δi j

(
∂i− i

qAi

h̄

)(
∂ j− i

qA j

h̄

)
Φ =

m2

h̄2 Φ,

(A1)

0
i = 1,2,3

Φ Aa

Aa =
{
A0, 0⃗

}
(A1)

where the index  denotes the time coordinate, the index
 runs over spatial coordinates, and q is the charge

of  the  scalar  field  associated  with .  For  simplicity,
we consider an external potential . The Klein-
Gordon equation  then becomes[(

∂0− i
qA0

h̄

)2
+

p2

h̄2 +
m2

h̄2

]
Φ = 0, (A2)

pi ≡
h̄
i
∂

∂xi
p2 ≡ δi j pi pi

(1)

where we define the momentum operator ,  and
. In three dimensions, a simple generalization

of the deformed algebra  reads [34, 37]

[Xi,P j] =ih̄
[
(1+βP2)δi j+2βPiP j

]
,[

Xi,X j

]
=0,[

Pi,P j

]
=0. (A3)

Xi Pi

xi pi

In the  pseudo-position  representation,  one  can  ex-
press  and  in terms of the conventional  momentum
and position operators  and ,

Xi =xi,

Pi =pi

(
1+βp2

)
, (A4)

pi =
h̄
i
∂

∂xi
(A3)

where . Therefore,  for  the  case  where  the  de-
formed  commutation  relations  are  considered,  the
deformed  Klein-Gordon  equation  has  been  suggested  in
[84, 85], [(

∂0− i
qA0

h̄

)2
+

P2

h̄2 +
m2

h̄2

]
Φ = 0, (A5)

P2 ≡ δi jPiPi. Φ = exp(iS/h̄)
(A5) h̄→ 0

where  Substituting the ansatz 
into  Eq.  and  taking  the  limit ,  one  finds  that
the  leading  term  gives  the  classical  Hamilton-Jacobi
equation in deformed spaces,

[
∂0S −qA0

]2−X (1+βX)2 = m2, (A6)

X ≡ δi j∂iS ∂ jSwhere S is the classical action, and .

(A6)
(7)

ea

We  now  generalize  the  deformed  Hamilton-Jacobi
equation  in  flat  spacetime to  the  Rindler  space.  To
this end, we can express the Rindler metric  in a local
orthonormal frame ,

ds2 = gµνdxµdxν = ηabeaeb, (A7)

ηab µ,ν ∈ {t, x,y,z}
a,b ∈ {0,1,2,3} ea = ea

µdxµ
where  is  the  Minkowski  metric, ,  and

. A natural choice for  is

e0 = αxdt, e1 = dx,

e2 = dy, e3 = dz, (A8)

eµawhich gives the vierbein fields 

eµa =


(αx)−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (A9)

Since the local orthonormal frame corresponds to locally
inertial coordinates, the deformed Hamilton-Jacobi equa-
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(A6) eµa

tion in the local orthonormal frame is simply given by the
deformed Hamilton-Jacobi equation in flat space, namely
Eq. .  In  contrast,  the  vierbein  fields  enable con-
version between spacetime and local Lorentz indices,

∂0S −qA0 =eµ0
(
∂µS −qAµ

)
= (αx)−1 (∂tS −qAt) ,

∂1S =∂xS ,∂2S = ∂yS ,∂3S = ∂zS . (A10)

(A10) (A6)Plugging Eq.  into Eq. , we can express the
deformed Hamilton-Jacobi  equation  in  the  Rindler  co-
ordinates,

1
α2x2

[
∂S
∂t
−qAt

]2

−X (1+βX)2 = m2, (A11)

X ≡ (∂xS )2+(
∂yS

)2
+ (∂zS )2 Aµ =

{
At, 0⃗

}where S is  the  classical  action,  and 
.  For  the four-vector  potential ,

the potential energy V of the scalar is1)

V = −qAt. (A12)

(A11) (A12)
(12)

Hence,  Eqs.  and  lead  to  the  deformed
Hamilton-Jacobi equation  with the potential V in the
Rindler coordinates.
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1) For example, a RN black hole has , which gives . The electric potential energy of a charged particle of charge q in the RN black hole is
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